73
Green’s mill 1

Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Green’s mill

1

Page 2: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Prima pagina del saggio di George Green pubblicato nel 1828

2

Page 3: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

George Green (14 July 1793–31 May 1841) was a Britishmathematician and physicist, who wrote An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (Green, 1828). (Note: This 1828 essay can be found in "Mathematical papers of the late George Green", edited by N. M. Ferrers.) The essay introduced several important concepts, among them a theorem similar to modern Green's theorem, the idea of potential functions as currently used in physics, and the concept of what are now called Green's functions.George Green was the first person to try and explain a mathematical theory of electricity and magnetism which formed the basis for other scientists such as James Clerk Maxwell,William Thomson and others.Green's life story is remarkable in that he was almost entirely self-taught.

3

Page 4: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Green’s functions in one-body quantum problems

2can be used to convert into an integral equation

and to convert volume integral over to surface integrals over boundary S.

1 ( ( ) ) ( ) 02 r V r rε ψ

Ω

− ∇ + − =

ε δ− ∇ + − = −

2 Introduce G satisfying:

with r' source point:

1 ( ( ) ) ( ', ) ( ' )2 r V r G r r r r

ε ψ

ε ψ

− ∇ + − =

⇒ − ∇ + − =

2multiply by

2.

1 ( ( ) ) ( ) 0 G(r',r)2

1G(r',r)( ( ) ) ( ) 02

r

r

V r r

V r r

ε δ ψ

ψ ε ψ δ

− ∇ + − = −

⇒ − ∇ + − = −

2multiply by

2

1( ( ) ) ( ', ) ( ' ) ( )2

1( ) ( ( ) ) ( ', ) ( ) ( ' )2

r

r

V r G r r r r r

r V r G r r r r r

The delta not yet invented at Green’s time

Source

4

Page 5: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

ε ψ

ψ ε ψ δ

− ∇ + − =

− ∇ + − = −

2.

2

subtract: V disappears

1G(r',r)( ( ) ) ( ) 02

1( ) ( ( ) ) ( ', ) ( ) ( ' )2

r

r

V r r

r V r G r r r r r

2 2

integrate

1 1( ) ( ) ( ', ) G(r',r)( ) ( ) ( ) ( ' )2 2r rr G r r r r r rψ ψ ψ δ− ∇ + ∇ = −

ψ ψ ψ δ ψΩ Ω

− ∇ + ∇ = − =∫ ∫

2 2

important step: interchange and '

1 [ ( ) ( ', ) G(r',r) ( )] ( ) ( ' ) ( ')2 r r

r r

dr r G r r r dr r r r r

ψ ψ ψΩ

∇⇒ = − ∇∫

2 2 ' '

1( ) '[G(r,r') ( ') ( ') ( , ')]2 r rr dr r r G r r

This is the sought integral equation5

Page 6: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Ω

=∫ ∫

Start from divergence (Gauss or theor' em) .S

divA dr A n dSOstrogradsky s

= Φ∇Ψ −Ψ∇Φ

insert: A

Ω

∇ Φ∇Ψ −Ψ∇Φ = Φ∇Ψ −Ψ∇⇒ Φ∫ ∫

( ) ( ).S

dr n dS

Ω

⇒ Φ∇ Ψ −Ψ∇ Φ = Φ∇Ψ −Ψ∇Φ∫ ∫

2 2( ) ( ).S

dr n dS

Next: convert volume -> surface integral

ψ ψ ψΩ

= ∇ − ∇∫

This lends itself to transform the r.h.s.

2 2

of

' '1( ) '[G(r,r') ( ') ( ') ( , ')]2 r rr dr r r G r r

6

Page 7: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

ψ ψ ωω

= = =− =

= +

0 1

Introduce reso, 1

( ) 1Let

lvent:H E E

H GH H H

10 0

1 1 1 1 , or alsoHH H H Hω ω ω ω

= +− − − −

operator identities

0 0 1 1 11 1 1( ) ( ) 1ω ω

ω ω ω− = − − + = +

− − −H H H H H

H H H

10 0

1 1 1 1ω ω ω ω

= +− − − −

HH H H H

Example: H1=δV(r): then, in the coordinate representation

10 0

1 1 1 1' ' 'r r r r r H rH H H Hω ω ω ω

= +− − − −

Green’s functions are a versatile tool:Among their uses the resolvent

7

Page 8: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

8

10 0

1 1 1 1' ' '

Insert complete set of position eigenstates:

r r r r r H rH H H Hω ω ω ω

= +− − − −

1''0 0

1

1 1 1 1' ' '' '' '

'' ( '') ''ω ω ω ω

δ

= +− − − −

=

∑r

r r r r r H r r rH H H H

H r V r r

8

Page 9: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

9

This gives the Lippmann-Schwinger equation

( ) ( ) ( ) ( ) ( )30 0, ' , ' '' , '' '' '', 'G r r G r r d r G r r V r G r rδ= + ∫

The Lippmann-Schwinger equation is mostconvenient when the perturbation islocalized . Typical examples are impurityproblems, in metals. The alternative isembedding (Inglesfield 1981)

1''0 0

1

1 1 1 1' ' '' '' '

'' ( '') ''ω ω ω ω

δ

= +− − − −

=

∑r

r r r r r H r r rH H H H

H r V r r

9

Page 10: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

10

Propagators: Bose field with speed c

( ) ( ) ( )( ) ( )ω ωφε ε

−= + = + † †

'coordinate' of oscillator

2 2k ki t i t

k k k k kk k

t a t a t a e a e

( )

( ) ( )

φ

φ ω φ

=

∂= −

22

2

harmonic oscillator, normal mode of

Bose Field. EOM:

k

k k k

t

t tt

( )

ω

φ

= ⇒

∂+ = ∂

22 2

2 0

k

k

ck

c k tt

( )φ ∂

⇔ − ∇ = ∂

22 2

2 field wave equation , 0.c r tt

( )ω ωπ φω

ε−= += −

†conjuga2

te momentum k kk k

i t i tkk k

k

i a e a e

( )π φ π ω φ ω= + = +∑ ∑

2 2 2 †1 12 2( , ) ( )k k k k k k k k

k kH a a

The Hamiltonian is a collection of oscillators:

10

Page 11: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

11

( )

( ) ω

ω δ

φ φ

θ φ φ θ φ φ δ

φε

∂+ = − ∂ =

= + − =

= +

22

2

' '

' ' '

Propagator is a Green's function defined by : ( )

Let us show that it is the vacuum average ( ) 0 [ ( ) (0)] 0

( ) 0 ( ) (0) 0 ( ) 0 (0) ( ) 0 ( )

with2

k

k k

kk k k

k k k k kk k

i tk k

k

D t i tt

D t P t

t t t t D t

t a e a( )ω ε ω= † , . Indeed,ki tk k ke

( ) ( )ω ωω θ θ−= + −† †2 ( ) 0 0 0 0k ki t i tk k k k k kD t t a e a t a e a

( ) ( ) ω

ω ωθ θω ω

−−= + − =

||1( )2 2

kk k

i ti t i t

kk k

eD t t e t eω

ω

=||

( ) is continuous, however2

ki t

kk

eD t

( ) ( ) ( ) ( )

( ) ( )

1( )2

2

k k k k

k k

i t i t i t i tk k k

k

i t i t

D t i t e i t e t e t et

i t e t e

ω ω ω ω

ω ω

ω θ ω θ δ δω

θ θ

− −

∂= − + − + − −

∂−

= − − 11

Page 12: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

12

( ) ( ) ω ωθ θ−∂ −= − − ⇒

∂( )

2k ki t i t

kiD t t e t e

t

( ) ( ) ( ) ( ) 2

2 ( )2

k k k ki t i t i t i tk k k

iD t i t e i t e t e t et

ω ω ω ωω θ ω θ δ δ− −∂ −= − − − + +

( ) ( ) ( )2

2 ( )2

k ki t i tkkD t t e t e i t

tω ωω θ θ δ−−∂

= + − −∂

ω

ω

=||

Therefore, ( ) obeys2

ki t

kk

eD t

( )2

22 ( )k kD t i t

tω δ

∂+ = − ∂

and is Green’s fuction of wave equation

2 2 ( )k kD iω ω ω − + = − 12

Page 13: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

13

( ) ( ) ( )ω ω δ ω ω δω ω∞ − + + −

−∞= +∫ ∫

0

requires convergence factors02 k ki i t i i t

k kD dt e dt e

( ) ( ) ( )ωω ω ω δ ω ω δ

−= +

− + + −

12k

k k k

i iDi i

( ) 2 2kk

iDi

ωω ω δ

−=

− −

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ω

ω ω

φ φ

φε ε

φ −

=

= + = +

= + ⇒ =

' '

† †

||†

ummary: Propagator ( ) 0 [ ( ) (0)] 0

2 2For nonrelativistic bosons (phonons,plasmons) one often uses

( ) k

k k

kk k k

i t i tk k k k k

k k

k k ki t

kD t

S D t P t

t a t a t a e a e

a et t a t

( ) ( ) ( )ωω ω δ ω ω δ

−= +

− + + −kk k

i iDi i

ω

ω

=||

Fourier transform of the propagator ( )2

ki t

kk

eD t

13

Page 14: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

14

Relativistic Bosons, Photons

( )ε = + → − ∇

2 2 4Dispersion With ,k c k m k ic

ψ ψ ∂ −∇ + = − ∂

2 22

2 2

Scalar particle: Klein-Gordon (Relativistic Schrödinger)

1mcc t

( )( )2 2 22 2 4k

k

i iDi c k m c i

ωω ω δ ω δ

− −+

= =− − − −

Relativistic notation ,p k icω =

( )2 2 4( ) iD p

cp m c iδ−

=+ −

14

Page 15: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

15

( )2

Massless scalar (if it existed)

( , ) ( ) iD k D pcp i

ωδ

−= =

Photon propagator ( ) ( ) ( ), ' 'D x x P A x A xµν µ ν =

( )The Photon has 4 components : ,A A iµ φ=

( )µ

∂− ∇ = ∂

22 2

2 , 0c A r tt

( ) ( )

4 ( ')

, , , ,2 24

Massless vector ( )

( , ) ( , ')(2 )

photonip x xi d p eD k D x x i

cp i cp iµ ν µ ν µ ν µ νω δ δπδ δ

−−= ⇒ = −

− −∫

( )

'

2 4

'

2

( ) 0 [ ( ) (0)

( )

] 0kk k k

iD pcp i

t

m c

D t P

δ

φ φ−

=+ −

=

φ φ=' 'The previous result ( ) 0 [ ( ) (0)] 0 generalizes tokk k kD t P t

,p k icω =

22 (4)

2 21( , ') ( ) ( ')x xD x x x xc tµν δ∂

= ∇ − = −∂

15

Page 16: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

16

the gauge invariance allows introducing arbitrary f:

( )pfppip

ipD νµ

µνµν

δ+

−−

=0

)( 2

( )

4 ( ')

, , 24( , ') ( ')(2 )

ip x xd p eD x x i f x xcp iµ ν µ ν µ νδ

π δ

= − + ∂ ∂ −−∫

4( )f p p−= Landau gauge

2 2

1( )0

p pD p i

p i pµ ν

µν µνδ

= − − −

( ) ( ) ( ) ( )there is a gauge invariance , and since 0A x A x x A xµ µ µ µχ→ + ∂ =

( ), , 2( , ) is butiD k OKcp i

µ ν µ νω δδ

−=

2 0 and is a divergenceless symmetric tensor.p p p

p D p Dp

µ µ νµ µν ν µν≈ − =

1The Lorentz gauge : . 0 corresponds to choosingA Ac tµ µ

φ∂∂ = ∇ + =

( ) ( ) ( ), ' 'D x x P A x A xµν µ ν =

16

Page 17: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

1717

'

(T) †, 'ig (x,t, x',t') = T (x,t) (x',t')

σσ σ σψ ψ

Many-Body Quantum averages in terms of GF

†The average of one-b densitiesody ' '

'

ˆ f(x) = f (x) (x). (x)σσ σ σσσ

ψ ψ∑

( ) ( )σσ σ σ

σσ

σσ σσσσ

ψ ψ

→ + →

†' '

'T

' '' ' '

is done at once: f = f (x)< (x). (x)>=

-i lim lim f (x)g , , ', 't t x x

x t x t

Electron propagator

ψ anticommuting Heisenberg representation operators.The average must be taken over true g.s

(more generally, in equilibrium at temperature T).Difficult, but more feasible than the calculation of wave functions!

Also called time-ordered Green’s function

17

Page 18: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

1818

( ) ( ) ( )T

' 'x,t =-i lim lim g , , ', '

t t x xx t x tσ σσρ

→ + →

Important examples: the density

'

(T) †, 'ig (x,t, x',t') = T (x,t) (x',t')

σσ σ σψ ψ

also yields the current density

( ) ( ) ( ) ( )Tx '' '

-1x,t = lim lim g , , ', '2m xt t x x

j x t x tσ σσ→ + →∇ −∇

18

Page 19: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

1919

( ) ( )†The average of one-body operators ' '

' A = dx a ( )x x xσσ σ σ

σσ

Ψ Ψ∑ ∫

( ) ( )

( ) ( )' '''

' '''

A = ±i dx lim lim , ' '

=±i lim lim Tr[ , ' ' ]

T

x xt tT

x xt t

a x g xt x t

a x g xt x t

σσ σσ

σσ σσ

+

+

→→

→→

upper sign Bose

lower sign Fermi

'

(T) †, 'ig (x,t, x',t') = T (x,t) (x',t')

σσ σ σψ ψ

More generally

19

Page 20: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Electron non-interacting propagator

( ) ( )ψ ψ

ψ

= −(0) †1 1 2 2 1 1 2 2( ) where

anticommuting Heisenberg representation operators.The average must be taken over noninteracting g.s

(the vacuum or more generally a filled Fermi sphere).

G x t x t i T x t x t

Also called time-ordered Green’s function; this is needed for many-body perturbation theory

20

Page 21: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Electron non-interacting propagator

( ) ( ) ( ) −= − Φ Φ = 0 00 †

Noninteracting propagator on discrete basis( , , ) 0 , iH t iH t

a b a aG a b t i Tc t c where c t e c e

0

det of spin-orbitals labelled with eigenfunctions k of H

k k kc c nσ σ

Φ =

⇒ Φ = Φ

Simple example

21

Page 22: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

† †

( ) [ ( ) (0)]

( ) ( ) (0) ( ) (0) ( )k k k

k k k k

ig t T c t c

t c t c t c c tσ σ

σ σ σ σθ θ

= Φ Φ

= Φ Φ − − Φ Φ

0 0† †Let us develop ( ) (0) = in detail.iH t iH tk k k kc t c e c e cσ σ σ σ

−Φ Φ Φ Φ

0

0

0 0

( )† †

( )†

= Fermi sphere (energy E )+ electron if empty

(0) =e

(0) =e

(0) = e

Contribution: ( )(1 )

k

k

k

k

k k

iH t i E tk k

iH t i E tk k

iH t iH t i tk k

i tk

c

e c c

c e c

e c e c

e t n

σ

εσ σ

εσ

εσ σ

ε

ε

θ

Φ

Φ

Φ

− − +

− − +

− −

Φ

Φ Φ

Φ Φ

Φ Φ

22

Page 23: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

23

ωδω δ ω

ω ε η

η

= =− +

+= −

0

0 0 ''

Noninteracting propagator on H eigenfunction basis in

( , ', ) ( , )

0 electrons in empty states0 holes in filled states

kkkk

k k

k

space

G k k G ki

( ) ( )(1 ) ( ) ki tk k kig t e t n t nε θ θ−= − − −

† †

† †

Putting all together, ( ) [ ( ) (0)]

( ) ( ) (0) ( ) (0) ( )

( ) (0) (0) ( ) (0) (0)

( )(1 ) ( )

k

k

k k k

k k k k

i tk k k k

i tk k

ig t T c t c

t c t c t c c t

e t c c t c c

e t n t n

σ σ

σ σ σ σ

εσ σ σ σ

ε

θ θ

θ θ

θ θ

= Φ Φ

= Φ Φ − − Φ Φ

= Φ Φ − − Φ Φ

= − − −

Page 24: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

24

Lesser and greater Green’s functions( Heisenberg operators)g<

i,j(t, t’) = <c† i (t’) cj (t)>g>

i,j(t, t’) = <cj (t)c† i (t’)>

g<i,j(t, t’) filled states spectroscopy

g>i,j(t, t) empty states spectroscopy

Other Quantum Green’s functions

=

= Ψ Ψ Ψ = Ψ

0 0 0 0 0

Consider first 0 : averages over,

ground stateO O H E

T

What matters is the order of operators, not of times

GF are versatile and many kinds are needed and used.

24

Page 25: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

25

Retarded and advanced Green’s functions; what matters is the order of times:igr

i,j(t, t’) = (g<i,j(t, t’) + g>

i,j(t, t’))θ(t − t’)

-igai,j(t, t’) = (g<

i,j(t, t’) + g>i,j(t, t’))θ(t’ − t)

Other Quantum Green’s functions

gai,j(t, t’)= gr

i,j(t’, t)*

igri,j(t, t’)=< [cj(t’),c† i (t)]+>θ(t − t’)

Equivalently,-iga

i,j(t, t’)=< [cj(t),c† i (t)]+>θ(t’ − t)

25

Page 26: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

The different GF have different physical contents. Example: a model also used for transport problems(M.Cini, prb, 1980)

ε=∑ †0 k k k

kH a a =∑ †

1 ' ''

( ) ( )kk k kkk

H t V t a a

σ

∂∂

∂=

(T)k,k'one can see contents by calculating g (t, t').

The derivative of c (t) is obtained by theˆ ˆˆHeisenberg EOM: i [H,A]

k

it

At

† †

( ) [ ( ) (0)]

( ) ( ) (0) ( ) (0) ( )k k k

k k k k

ig t T c t c

t c t c t c c tσ σ

σ σ σ σθ θ

= Φ Φ

= Φ Φ − − Φ Φ

26

Page 27: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

δ δ ε

δ

δ−

+

∂= − + +

∂+

∑∑

(T) (T)k,k' ' k,k'

(T)p,k'

(T)p,k' '

(T)p,k' '

g (t, t') ( ') g (t, t')

(t)g (t, t'),

initial conditions g (t=0, t'=0 )=-i (1 )

g (t=0, t'=0 )=i

kk kk

kpp

kk k

kk k

i t tt

V

f

f

δ(T) (T)kk' k,k' 'g (t, t'=t+0)-g (t, t'=t-0)=i kk

One obtains

27

Page 28: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

δ δ ε

δ

∂= − + +

∂+

∑∑

(r) (r)k,k' ' k,k'

(r)p,k'

(r)k,k' '

g (t, t') ( ') g (t, t')

(t)g (t, t'),

initial conditions g (t, t')=-i

kk kk

kpp

kk

i t tt

V

∂=

∂Using the Heisenberg EOM: i [H,A]

one can also obtain

At

Information contents

(T)k,k'g (t, t') knows about the Fermi level

and is a many-body Green's function(r)

k,k' g (t, t') is basically a one-body quantityindependent of filling (in noninteracting models)

28

Page 29: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

2929

Simple tight-binding Hamiltonians: retarded GF and DOS

Chain (d=1), square (d=2) , cubic (d=3) lattices

< >

= < >= >∑ †

,, . . 0h i j h

i jH t c c i j n n t

Chain:

( )

1( ) common eigenfuctions of translation an

2 o

d

c sk

i

h

knn e T HN

t kε

ψ

=

=

Bipartite lattice (first neighbors of black sites are red, first neighbors of red sites

are black)

Page 30: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Square lattice

( ) ( )

( )

2

1( ) common eigenfuctions of translation and

2 [cos cos ]

x x y y

k

i k

y

n

h

k

x

nn e TN

t k k

ε

+

= +

=

Bipartite lattice

< >

= < >= >∑ †

,, . . 0h i j h

i jH t c c i j n n t

Page 32: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3232

Local Green’s functions for tight-binding Hamiltonians

( )

( ) ( )( )

( )

αα

ε

ρ ω δ ω ε δ ω επ

< >

=

< >= >

=

= − = −

∑ ∫

,

2 2

, nearest neighbors 0

d=dimensionality, 2 cos

1| 0 | | 0 |2

h i ji j

hd

k h

dd k kd

k BZ

H t c c

i j t

t k

k d k k

Chain (d=1), square (d=2) , cubic (d=3) lattices

Page 33: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3333

( )2 cosk ht kε =

( ) ( )( ) ( )1dim 0

1 1 , (0, )2 sin 2 sinh h

k kdk k

t k t kπ ω

ωω

δρ ω π

π π−

= = ∈∫

band edges 2 ht± k=0,π

arccos2 h

k ktωω

= =

argument of delta=0 for

Local Green’s functions for tight-binding chain

( ) ( ) ( )πρ ω δ ω ε

π= −∫ 2

0

1 | 0 |2d kdk k

2 2

arccos cos sin 1 1 ,2 2 2 2h h h h

k k kt t t tω ω ωω ω ω ωθ

= ⇒ = ⇒ = ± − −

( )

2

1dim 2

121

21

2

h

h

h

t

t

t

ωθ

ρ ωπ ω

− =

( )1

1One verifies that 1.dωρ ω

−=∫

Page 34: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3434

( )

( )

( )

2 cos

band edges : 2, cos 1

group velocity sin 0 near edges

particles spend more time where they are slo

k 0,

w

k h

k

h

k

t k

ktd kdk

π

εε

ε

=

= ± = ± ⇔

=

=

Symmetry of spectrum is due to bipartite graph

0=dkd kε 0=

dkd kε

band edges 2 ht± k=0,π3 2 1 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

k

1( )ρ ω

Page 35: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3535

Chain:

Bipartite lattices, 1d,2d,3d

Chain:

SquareSquare

Changing the sign to all the black orbitals is just a gaugetransformation and cannot change any physical quantity, yet it is equivalentto sending the off-diagonal one-electron matrix element th to −th

However, εk is proportional to th and must change sign as well.

The spectrum is symmetric and the eigenfunctions at εk and− εk get exchanged by the gauge transformation.

Page 36: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

36

Off-diagonal matrix elements of the resolvent for the chain

ωω ω

ω ωω ω ω ω

ω+ −

= +− −

= + ⇒ =− −

= + + −− −

+

=

,

0 , 0 , 1 0, 1

0

Calculation of :1 1take matrix elements of identity 1

1 1 1 10 0 0 0

The chain H is suc ( 1 1 )h that

m n

n n n

h

h

g m n

HH H

n H n n H nH H H H

g g gt

n

H n t n n

0, 00

21 1 0

nn

h h

g g q

q q qt q tω ω

=

= + ⇒ − + =

36

This is a 3-term recurrence relation: try solution

2

12 2h h

qt tω ω

±

⇒ = ± −

| |

0 00( ) ( ) ( ) implies attenuation with distancenng g qω ω ω−=

Page 37: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3737

( )2 2

2 ( ', , ) '2

dz g x x z x xm dx

δ

+ = −

Continuous model, 1d

2 dimensions

( )2

2

2 '

2

2| | '

2( ', , ) , 0, blows at only edge 0

0 exponential damping ( ', , )

mzi x x

mz x x

m eg x x z z zi z

for z g x x z e

− −

= > →

<

Square

Page 38: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3838

( )

( ) ( )( )

( )

αα

ε

ρ ω δ ω ε δ ω επ

=

= − = −

∑ ∫2

2 cos , d=dimensionality,

1| 0 |2

d

k h

dd k kd

k BZ

t k

k d k

( )( )

( ) ( )( )2 21 2 [cos cos ]

2 x y h x ydk dk t k kπ π

π πρ ω δ ω

π − −= − +∫ ∫

( ) ( ) ( )( ) ( )( )11 2 cos 2 cos ] 2 cos

2 y h x h y h xdk t k t k t kπ

πδ ω ρ ω

π −− − = −∫

artichocke technique

( ) ( ) ( )( )2 11 2 cos

2 x h xdk t kπ

πρ ω ρ ω

π −= −∫

( )

2

1dim 2

121

21

2

h

h

h

t

t

t

ωθ

ρ ωπ ω

− =

Page 39: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

3939

This integral can be written in terms of the complete elliptic integral of the first kind. The band now extends from −4thto 4th, and is symmetric (the graph is bipartite).

Singularities become milder when integrated over, however they are still evident here:

Log Van Hove singularity

( ) ( ) ( )( )2 11 2 cos blows up at 0 and jumpsat edges

2 x h xdk t kπ

πρ ω ρ ω ω

π −= − =∫

Page 41: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

4141

22 ( ', , ) ( ')

2z g r r z r r

+ ∇ = −

Continuous 3d case

22 | '|

2( ', , )2 | ' |

mzi r rm eg r r z

r rπ

= −−

π π π

−− = →

−− →

2

2 2 2 2 2

2sin( | '|)1 2Im ( ', , )| '|2 2

| '

Well-known singularity(edge singularities depend on dimensional

| 0

ity)

mz r rm m mzg r r zr r

for r r

E

Page 42: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

42

Lehmann representationIn non-interacting models, the poles of the Green’s functions close to the realaxis correspond to eigenstates of the Hamiltonian where a particle can existor where one can put a particle. Here we see how to generalize this notion to

the fully interacting case.

Zero-Temperature Fermi Case

M,n

M,n set of many-body eigenstates of H with M electrons M = 0, 1, 2,.... = electron number n = 0, 1, 2,... runs over the M-body eigenstates, such thatH M,n = E M,n , N M,n = M M

,n

iHt -iHt

G(N; xt, x't') = -i N, 0 T [ (x, t) (x't')] N, 0

(x, t) = e (x)e

ψ ψ

ψ ψ

average over the N-body interacting ground stateof the Hamiltonian H and the operators are in the Heisenberg picture.

Page 43: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

43

inserting the complete set we obtain the very useful Lehmann representation: for t > t’,

1, ,0

iHt -iHt iHt' † -iHt'

( )( ') †

1, 1,

( , ', ') N, 0 (x, t) (x't') N, 0

N, 0 (x, t) (x't') N, 0

N, 0 e (x)e 1, 1, e (x')e N, 0

,0 ( ) 1, 1, ( ') ,0N n N

n

ni E E t t

n

N n

iG x x t t

N n N n

e N x N n N n x

n

N

N

ψ ψ

ψ ψ

ψ ψ

ψ ψ+− − −

− =

=

= + +

+ +

+ +

=

1, ,0

( )( ') †

( , ', ') N, 0 (x't') (x, t) N, 0

,0 ( ') 1, 1, ( ) ,0N n Ni E E t t

n

iG x x t t

e N x N n N n x N

ψ ψ

ψ ψ−− − −

− = −

= − − −∑

for t < t’,

ω δ ω δ

ω δ

δ

δ ω∞ − +

−∞

−= =

+ −∫ ∫0

0

Fourier transform using (with infinitesimal >0 ):

i t t i t ti idt e t ei i

d

Page 44: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

44

1, ,0

1, ,0

,0 ( ) 1, 1, ( ') ,0( , ', )

( )

,0 ( ') 1, 1, ( ) ,0( )

n N n N

n N n N

N x N n N n x NG x x

E E i

N x N n N n x NE E i

ψ ψω

ω δ

ψ ψω δ

+

+ +=

− − +

− −+

+ − −

quasiparticle excitations, including IP and E.A.

Singularities:

( )

( )

''

, ', '( , ', ) ', sign( ' )*

'1, ', ' Im( )sign(

Spectral function

) 0

:x x

G x x di

x x G

ωω

ρ ωω ω δ ω µ δ

ω ω δ

ρ ω ωπ

ρ

µ

= = −− +

= − − >

Re z

Im z IP

EA

μ=chemical potential

Page 45: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( )

( )

†1, ,0

†1, ,0

( , ', ) ,0 ( ) 1, 1, ( ') ,0 ( )

,0 ( ') 1, 1, ( ) ,0 ( )

N n Nn

N n Nn

x x N x N n N n x N E E

N x N n N n x N E E

ρ ω ψ ψ δ ω

ψ ψ δ ω

+

= + + − −

+ − − + −

particle addition

particle subtraction

Similar to G we met in Fano theory, except that Im G changes sign at Fermi level

( )

( )

''

, ', '( , ', ) ,

spectral f

( ' )*'

1, ', ' I unctio( ( nm ) ) 0

x xG x x sign

i

x x G sign

ωω

ρ ωω δ ω µ δ

ω ω δ

ρ ω ω µπ

= = −− +

= − − >

45

Page 46: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Finite Temperatures, Fermi and BoseInstead of the ground state average we make a grand-canonical one,:

1 Fermione can extend to Bose by defining

1 Boses = −

( ) ( )†( ') ',mn n x m m xR nx x ψ ψ=

1 1ˆ ˆ( ), = , , grand partition functionnKK

nB

A Tr A e K H N Z eZ K T

ββρ ρ β µ −−= = = − =∑

( ) †

( ') ( ')

( , ', ') Tr [ ( , ), ( , )] ( ')= ( ( , ') ( ', ) )n mn mn

r

K i t t i t tmn mn

mn

g x x t t i x t x ti t t e R x x e R x x e

Zβ ω ω

ρ ψ ψθ

+

− − −

− = −− −

+∑

( ) ( , ')1( , ', ')= ( ) .n mK Kr mn

mn mn

R x xg x x t t e seZ i

β β

ω ω δ− −− +

+ +∑

Page 47: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( ) ( )

( ) ( ) ( )

, ', '', ',2 '

, ', '', ',2 '

r

a

x xdg x xi

x xdg x xi

ρ ωωωπ ω ω δ

ρ ωωωπ ω ω δ

= − +

= − −

( ) ( )( )

( ) ( )( )

( ) ( )( )

( )

T-dependent Spectral function2 , ' 1

2 , ' 1

2 , '

n

n n m

n m

Kmn mn

mn

K K Kmn mn

mn

K Kmn mn

mn

e R x x seZ

e R x x seZ

R x x e seZ

β βω

β β

β β

πρ δ ω ω

π δ ω ω

π δ ω ω

− −

− −

= + +

= + +

= + +

The general analytic structure is the same for all systemsand similar formulas hold for Fermi and Bose particles.

In a similar way,

1Time-ordered ( , ', ) ( , ')n mK K

mnmn mn mn

e seG x x R x xZ i i

β β

ωω ω δ ω ω δ

− − = − + + + −

( ) ( )†( ') ',mn n x m m xR nx x ψ ψ=

Page 48: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

48

Fluctuation-Dissipation TheoremFor the time-ordered G

' Im ( , ', ') 'Re ( , ', ) tanh Bose' 2

' Im ( , ', ') 'Re ( , ', ) coth Fermi' 2

d G x xG x x

d G x xG x x

ω ω βωωπ ω ωω ω βωωπ ω ω

= − − = − −

The above results imply a number of relationships involving ρ and the realand imaginary parts of the various Green’s functions. Recall

( ) ( )† ' .( , ')mn n x m mx nR x xψ ψ=

One shows that assuming Rmn(x, x) is real (it must be positive forx = x’ and it can be taken real anyhow in the absence of magnetic fields)

H. B. Callen, T. A. Welton (1951)

Page 49: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

49

' Im ( , ', ') 'Re ( , ', ) tanh Bose' 2

' Im ( , ', ') 'Re ( , ', ) coth Fermi' 2

d G x xG x x

d G x xG x x

ω ω βωωπ ω ωω ω βωωπ ω ω

= − − = − −

At 0 Kelvin they become the well known Hilbert transforms.

Albert Einstein (1905) found that i Brownian motion the mean-free-path isproportional to the viscosity, Harry Nyquist 1928 found that the noise in a conductor is proportional to the resistivity. Spontaneous fluctuationsproduce the response of a system to an external perturbation.

Page 50: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

50

Interacting system

Adiabatically switchedweak perturbation,the

cause

)(ˆ)(' tFAtH −=

Kubo formulae for linear response theory

B=effect of cause A with <B>=0 in equilibrium

0S

S

H

eq eq HeTr B

Tre

β

βρ ρ−

−= =

ˆ ˆ( ) we need density matrix B t Tr Bρ ρ= ⇒

'SH H H= +

χ

φ φ∞

∆ ∫Recall the familiar relation P = E of electric field to polarization, the linear response equation is

t

BA BA-B(t) = dt' (t - t')F(t'), (t )=response function

50

Typically, one excites the system with a probe A F(t) and measures some induced quantity B

Page 51: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

51

Hence, the first order density matrixobeys

( ) ( ) ˆ, ( ) ,S eqdi t H t F t Adt

ρ ρ ρ− −

− ∆ = ∆ + −

( ) ( )ρ ρ−

− = + '( ),Sdi t H H t tdt

( ) ( )

[ ]

ρ ρ ρ

ρ ρ ρ

−− −

− ∆ = − + ∆

= + − + ∆ +

( ),

ˆ, ( ) , , ...

S eq

S eq eq S

di t H AF t tdt

H F t A H

Linearized equation of motion

51

Heisenberg EOM

( ) ( )ρ ρ ρ ρ≈ + ∆S ; commuet tes with Heq eq St t

)(ˆ)(' tFAtH −=

Page 52: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

check: just differentiate

( ') ( ')

( ') ( '' (

'

' )( (,

,

,

'

)'S S

S

S S

S

t iH t t iH t t

eq

iH t t iH t t

eqt

t iH t t iH t t

eq

t

d d Fe A e dtdt i

F te A ei

de A e Fdtt

d

d

tρ ρ

ρρ− −

−∞

− −−

− −

−∞

=

+

∆ =

+

Compact solution formula

( )ρ ρ−

− −

−∞ ∆ = − ∫

( ') ( ')(it looks anti-Heisenberg)

1 , ( ') '.S Si it H t t H t t

eqt e A e F t dti

( ) ( ) ˆ, ( ) ,S eqdi t H t F t Adt

ρ ρ ρ− −

∆ = ∆ −

,( )( ) eqS

SFAi t Htid

it

Hd ρ ρρρ∆ = − +∆−

∆+

( ) ( ) , ( ), . .S S eqdi H t t H A F t O Kdt

ρ ρ ρ ρ ⇒ ∆ = ∆ −∆ + −

52

Comment: if probe A commutes with system Hamiltonian, no B.

Page 53: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

53

ˆEffect: ( ) ( )B t Tr t Bρ = ∆

cyclic property

( ') ( ')ˆ( ) , ( ') '

S St iH t t iH t t

eqiB t Tr e A e B F t dtρ

− − −

−∞

∆ = ∫

( ') ( ')ˆ ˆ( ) , ( ') ', that is,

S St iH t t iH t t

eqiB t Tr A e Be F t dtρ

− − −

−∞

∆ = ∫

ˆ( ) , ( ') ( ') 't

eq HiB t Tr A B t t F t dtρ

−∞

∆ = − ∫

Heisenberg picture operators with HS

Obtain first-order response

53

( )ρ ρ−

− −

−∞ ∆ = − ∫

( ') ( ')(it looks anti-Heisenberg)

1From , ( ') '.S Si it H t t H t t

eqt e A e F t dti

Page 54: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

54

( ) , ( ') ( ') 't

eq HiB t Tr A B t t F t dtρ

−∞

∆ = − ∫

This is the Response equation

Hence, ( ) ' ( ') ( ') with the response functiont

BAB t dt t t F tφ−∞

∆ = −∫

( ) ( ) ( ) (ugly!)BA eq eqi t Tr A B t AB tφ ρ ρ− = −

cyclic property

[ ]( ) ( ) ( ) ( ),BA eq eqi t Tr B t A AB t B t Aφ ρ ρ−

− = − =

This is Kubo formula in its simplest form. The response function is a correlation function.

54

φ∞

∆ ∫t

BA-B(t) = dt' (t - t')F(t'),

Page 55: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

55

[ ]( ) ( ) ( ) ( ),BA eq eqi t Tr B t A AB t B t Aφ ρ ρ−

− = − =

Let us derive a new form restarting from

( ) ( ) ( ) (ugly!)BA eq eqi t Tr A B t AB tφ ρ ρ− = −

55

Comment: if probe A commutes with system Hamiltonian, no B.

Comment: if probe A commutes with B, no B.

Since , the formulaSH

eqe ugly

Z

β

ρ−

=

( )yields: ( ) , ( )SHBAi t Tr A e B tβφ − − =

Page 56: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

56

( )yields: ( ) , ( )SHBAi t Tr A e B tβφ − − =

We get another Kubo formula by a chain of transformations, that we prove below:

( )( ) ( ),1S

BAHAi t Tr B te

Zβφ − − =

0

identity: , ( )H H H HA e e e HA AH e dβ

β β τ τ τ− − − = − ∫

0

, [ ]H Ht i

dAA e i e ddt

ββ β

τ τ− −=− = − ∫

0

( )( ) | ( )BA t idA tt B t d

dt

β

τφ τ=−= ∫ 56

( ) ( ) ( )BA eq eqi t Tr A B t AB tφ ρ ρ− = −

Page 57: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

57

( ),( ) ( )SBA

HA ei t Tr B tβφ − − =

0

, ( )H H H HA e e e HA AH e dβ

β β τ τ τ− − − = − ∫

is obtained by the identity

( ) ( )

0

by integratin

)

g (

,

:

(

, )

H H H H H H H H

H

H H H H

H

d de A e e Ae A He Ae e AHed d

e HA AH e

e A e e HA AH e dβ

β β τ τ

β β β β β β β β

β β

β β

τ− −

− − − −

= − = −

= −

= − ∫57

Proofs

Page 58: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

58

0

, ( )H H H HA e e e HA AH e dβ

β β τ τ τ− − − = − ∫

0

, [ ]H Ht i

dAA e i e ddt

ββ β

τ τ− −=− = − ∫

58

One can eliminate the commutator in favor of a time derivative using

[ , ( )] [ ] [ , ] [, ]Ht H

H Ht i

ti idA dAi H e Ae idt

H A t H Ad

et

e τ ττ

−− =−

−= −= = ⇒−

0

, [ ] ,H Ht i

dAA e i e ddt

ββ β

τ τ− −=−−

⇒ = − ∫

Page 59: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

0 0

( ) ( )( ) | ( ) | ( )HBA t i t i

dA t dA tt Tr e d B t B t ddt dt

β ββ

τ τφ τ τ−=− =−= =∫ ∫

0

, [ ]H Ht i

dAA e i e ddt

ββ β

τ τ− −=− = − ∫

,( ) ( )SBA

HA ei t Tr B tβφ − − =

Finally, inserting

one obtains

59

into

Page 60: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Example: conductivity tensor

β τ τ

β βτ τ

σ τ

τ τ τ

−−

−−

=

= = +

∫ ∫

0

0 0(0) ( )

Ht Hti iH Hij i j

Ht Hti iH Hi j i j

d e J e e J e

d J e e J e e d J J t i

depends on the autocorrelation function of current in equilibrium

60

σ ( , )ij t T

= =(cause) (effect)ii

dxA x J nedt

σ=i ij jJ E= −∇

,E V V x

β βσ τ τ −= =∫0 ( ) ( ) , Hiij j

dxd i J t X Tre X

dt

Re time

Im time

t

Page 61: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( )

( ) ( ) ( ) ( ) ( )

λ λλ

α β α β γ δ δ γα β γ δ

= +

= Ψ Ψ

= Ψ Ψ − Ψ Ψ

∑ ∫

∑ ∑ ∫

0†

0 0

† †' ' ' ' ' ' ' '

' ' ' '

Many-body theory : the full Hamiltonian reads

( )

12

H H VH dy y h y y

V dydz y z v y z z y

Many-body problem and Green’s functions

ψ ψ ψ ψ = − † †

2 1 2 3 4 1 2 3 4

Two-particle

( , , , ) ( ) ( ) ( ) ( )

(Heisenberg operators)

GF

G x x x x T x x x x

σσ σ σψ ψ

'

(T) †, 'Along with ig (x,t, x',t') = T (x,t) (x',t') ,

which describes the propagation of a Fermion, we also need to propagate 2.

2x

1x 3x

4x

This arises from the equation of motion for g (see below). 61

Page 62: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

β α β β β α β

αβ β αβ αδ δ δ δ

Ψ Ψ Ψ Ψ +Ψ Ψ Ψ

= − Ψ = − Ψ

† †( ) : ( ) ( ) ( ) ( )Multiply b ( ) ( )

( ) (

y

) (

) (x)

y x y y y x y

x y y x y

( ) ( )λ λλ

λ

α α

α λ λ α

− −

ΨΨ = Ψ

= Ψ Ψ Ψ Ψ

Ψ

=

∑ ∫∑ ∫

†0

0

0

0

0

c( )

( ) (x)

ommutator with H[ ( ),H ] [ ( ), ]

[ ( ), ( ) ( )] ( )

dy y h y y

dyh y h

x x

x y y x

The field operators anticommute:α β

α β β α αβδ δ+Ψ Ψ =

Ψ Ψ +Ψ Ψ = −

† †

[ ( ), ( )]

( ) ( ) ( ) ( ) ( )

x y

x y y x x y

Equations of motion technique [ , ]di A A Hdt

=

( ) ( ) ( ) ( )αα β αβ γ δ δ γ

β γ δ

α

∂Ψ= Ψ + Ψ − Ψ Ψ

∂Ψ

∑ ∑ ∫ †0 ' ' ' ' ' '

' ' '

First,we show that( , )

( ) ( , ) .

We need to commute ( , ) with H.

x ti h x x t dy y v x y y x

tx t

62

Page 63: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( ) ( ) ( ) ( )α β α β γ δ δ γα β γ δ

= Ψ Ψ − Ψ Ψ∑ ∑ ∫ † †' ' ' ' ' ' ' '

' ' ' '2 .V dydz y z v y z z y

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

α α β α α β α β α

αα α α β α β αδ δ−Ψ Ψ Ψ = Ψ Ψ Ψ −Ψ Ψ Ψ =

= − −Ψ Ψ Ψ −Ψ Ψ Ψ

† † † † † †' ' ' ' ' '

† † † †' ' ' ' '

Using the anticommutation relations, [ , ]

[ ( ) ]

x y z x y z y z x

x y y x z y z x

( ) ( ) ( ) ( ) ( ) ( ) ( )αα β α α β α β αδ δ= − Ψ −Ψ Ψ Ψ −Ψ Ψ Ψ† † † † †' ' ' ' ' '( )x y z y x z y z x

( ) ( ) ( ) ( ) ( ) ( ) ( )αα β α αβ β α α β αδ δ δ δ= − Ψ −Ψ − −Ψ Ψ −Ψ Ψ Ψ† † † † †' ' ' ' ' ' '( ) [ ( ) ]x y z y x z z x y z x

( ) ( )αα β αβ αδ δ δ δ= − Ψ − − Ψ† †' ' ' '( ) ( ) . Therefore,x y z x z y

( ) ( ) ( ) ( ) ( ) ( )α α α β α β γ δ δ γα β γ δ

− −Ψ = Ψ Ψ Ψ − Ψ Ψ∑ ∑ ∫ † †' ' ' ' ' ' ' '

' ' ' '[ (x),2 ] [ , ]V dydz x y z v y z z y

( ) ( ) ( ) ( ) ( )αα β αβ α α β γ δ δ γα β γ δ

δ δ δ δ= − Ψ − − Ψ − Ψ Ψ∑ ∑ ∫ † †' ' ' ' ' ' ' ' ' '

' ' ' '[ ( ) ( ) ]dydz x y z x z y v y z z y

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )β αβ γ δ δ γ α α αγ δ δ γβ γ δ α γ δ

= Ψ − Ψ Ψ − Ψ − Ψ Ψ∑ ∑ ∑ ∑ ∫† †' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '] .dz z v x z z y dy y v y x x y

63

Page 64: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( ) ( ) ( )α α

α β αβ γ δ δ γβ γ δ

Ψ = Ψ

Ψ = Ψ − Ψ Ψ∑ ∑ ∫0 0

†' ' ' ' ' '

' ' '

Summarizing : [ ( ), ] ( ) ( )[ ( ), ]

x H h x xx V dz z v x z z x

( ) ( ) ( ) ( )αα β αβ γ δ δ γ

β γ δ

∂Ψ= Ψ + Ψ − Ψ Ψ

∂ ∑ ∑ ∫ †0 ' ' ' ' ' '

' ' '

( , )( ) ( , )

x ti h x x t dy y v x y y x

t

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )β αβ γ δ δ γ α α αγ δ δ γβ γ δ α γ δ

= Ψ − Ψ Ψ − Ψ − Ψ Ψ∑ ∑ ∑ ∑ ∫† †' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' '] .dz z v x z z y dy y v y x x y

( ) ( ) ( ) ( )δ γ γ δ α β γ δ β α δ γΨ Ψ → −Ψ Ψ

→' ' ' ' and ( ' ' ' ' )Now in the first term we rename z y wh

( ' ' ' ' ).The second contribution is id

ile in the secon

entical to the firs

d

t.

x y y x

( ) ( ) ( ) ( )αα β αβ γ δ δ γ

β γ δ

∂Ψ= Ψ + Ψ − Ψ Ψ

∂ ∑ ∑ ∫ †0 ' ' ' ' ' '

' ' '

write for the time associated with x( , )

( ) ( , ) .

x

xx

x

I tx t

i h x x t dy y v x y y xt

64

Page 65: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( ) ( ) ( )αα β αβ γ δ δ γ

β γ δ

∂Ψ= Ψ + Ψ − Ψ Ψ

∂ ∑ ∑ ∫ †0 ' ' ' ' ' '

' ' '

( , )( ) ( , ) .x

xx

x ti h x x t dy y v x y y x

t

( ) ( ) ( ) ( )α α

α

αα

β αβ γ δ δ γβ γ δ

∂ΨΨ = Ψ Ψ +

∂Ψ Ψ − Ψ Ψ∑ ∑ ∫

† †0

† †' ' ' ' ' '

' ' '

( , )( , ) ( ) ( , ) ( , )

( , )

x ti z t h x z t x t

tz t dy y v x y y x

αΨ†Now left multiply by ( , )z t

( ) ( ) ( ) ( )

† †0

† †' ' ' ' ' '

' ' '

( , ) ( , ) ( ) ( , ) ( , )

( , ) , ,

z x z xx

z y y

i z t x t h x z t x tt

dyv x y z t y t y t x

α α

α

α α

αβ γ δ β δ γβ γ δ

∂Ψ Ψ = Ψ Ψ +

− Ψ Ψ Ψ Ψ∑ ∑ ∫

Ground-state average, tz>tx

65

Page 66: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( )

( ) ( )β δδ

+

+

Ψ Ψ

>

∂− =

=

+

∂ ∑ ∫†

' '

0 2

the eom,for ,involves a special ordering of operators:

( ) ( , ) ( , ) , , ;

we need to write in order to ge , ,t

,

.( , )y

z x

y

x

y

t t

i h x iG

y t

x z dyv x y G x

y

y y

y t

t

t

z

y

( )δ δ +

∂− = − − − ∂

∫0 2

Extending to the case ,we obtain the EOM

( ) ( , ) ( ) ( ) ( , ) , , , .

z x

x zx

t t

i h x G x z x z t t i dyv x y G x y y zt

( ) ( ) ( )α β δ γΨ Ψ Ψ Ψ† †

' ' 'New object: ( , ) , ,z y yz t y t y t x

ψ ψ ψ ψ = − † †

2 1 2 3 4 1 2 3 4

introduce the two-particle

( , , , ) ( ) ( ) ( ) ( )

(Heisenberg operators)

GF

G x x x x T x x x x

σσ σ σψ ψ

'

(T) †, 'Recalling the definition ig (x,t, x',t') = T (x,t) (x',t') ,

2x

1x 3x

4x

x z =∂ − ∂

0( )i h xt y +y

zx+

66

Page 67: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

67

( )

ψ ψ ψ ψ

δ

ψ ψ ψ ψ

+

∂− = − ∂

= −

= = −

† †2 2

† †2 1 2 3 4 1 2

0 21

3 4

(1,2|3, 4) (1,2,3, 4) (1) (2) (3) (4) ; the EOM

( , , , ) ( ) ( ) ( ) ( ) often denote

(1) (1,1') (1,1') 2 (1,2) 1; 2

d

|2 ;1' or

as:

Popular shorthand notations :

i h G i d v G

G x x x x T

t

G

x x x

G T

x

( )δ + ∇∂+ − = − ∂

∫21

21

(1) (1,1') (1,1') 2 (1,2) 1; 2|2 ;1

al

'

s

.

o

2i U G i d v G

t m

( )δ + ∂ ∇+ − = − ∂

∫22

22

One can also differentiate with respect to 2

obtaining th

(2) (1,2) (1,2) 1 1; 1|1 ; 2 (1,2)2

e adjoint equation:

i U G i d G vt m

( )δ δ + ∂− = − − − ∂

∫0 2( ) ( , ) ( ) ( )

eom reads

( ,

:

, ) , ,x zi h x G x z x z t t i dyv x y G x y y zt

67

Page 68: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

Hierarchy of Green’s functions: eom for G2 yieldsG3 objects (several kinds).......

In principle for finite systems one can find the exact solution by solving a set of coupled equations.

In reality one must truncate the hierarchy in some way; one can improve a non-interacting approximation for G by including a non-interacting approximation for G2, and presumably one can do betterby truncating at higher order.

68

Page 69: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

696969

Recall: Quantum averages in terms of GF

†The average of one-b densitiesody ' '

'

ˆ f(x) = f (x) (x). (x)σσ σ σσσ

ψ ψ∑( ) ( )σσ σ σ σσ σσ

σσ σσ

ψ ψ→ + →∑ ∑ T†

' ' ' '' '' 'f = f (x)< (x). (x)>=-i lim lim f (x)g , , ', '

t t x xx t x t

'

(T) †, 'ig (x,t, x',t') = T (x,t) (x',t')

σσ σ σψ ψ

( ) ( )†The average of one-body operators ' '

' A = dx a ( )x x xσσ σ σ

σσ

Ψ Ψ∑ ∫

( ) ( )σσ σσ+ →→∫

' ''' A = -i dx lim lim , ' 'T

x xt ta x g xt x t

But we can gain info on interaction energy, too

And this is crucial

( ) ( ) ( )T

' 'x,t =-i lim lim g , , ', '

t t x xx t x tσ σσρ

→ + →

Page 70: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( )δ δ

ψ ψ ψ ψ

δ

+

+

+

∂− = − − − ∂

= − = − ≠ = +

∂− = − ∂

0 2

† †2 1 2 3 4 1 2 3 4

0 2

eom : ( ) ( , ) ( ) ( ) ( , ) , , ,

where ( , , , ) ( ) ( ) ( ) ( ) .

Setting , with 0 but ,

( ) ( , ) ( , ) ,

x zx

x z z x

x

i h x G x z x z t t i dyv x y G x y y zt

G x x x x T x x x x

z x t t t t

i h x G x x i dyv x y G xt ( )+ +, ,y y x

Ground-state energy from 1-body GF(is the g.s. magnetic, superconducting, CDW,.... Questions that require precise gs energy calculations)

recall: T orders earlier times on the right; each exchange brings (-)

( )ψψ ψ ψ

ψψ ψψ

ψ

ψ

ψ+ +

+ +

+

+

+

+ +

= =

∂− = − = ∂

+− =

∫∫

0

2

††

( ) ( , ) ( , ) , , , (by definition)

( , ) (exchange( ) ( ) ( ) ( )

(

with )

( , ) ( ) (bring ( ) to t

( )

( )

( ) (

) ( ) he left

)

) ( )

x

y y

y

i h x G x x i dyv x y G x y y xt

i dyv x y

i dyv x y

T x y x y

T xy xx

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ

+

+

+

+ =

= −

= + =

∫∫

† †

†( , ) (bring to the right )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,, )

)

(

(

y x

T x y y x

T

i dyv x xy

i dyv x y tx y x ty 70

Page 71: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

71

ψ ψ ψ ψ+ +∂ − = + ∂

∫ † †0( ) ( , ) ( , ) ( ) ( ) ( ) ( )i h x G x x i dyv x y x y y x

t

ψ ψ ψ ψ+ +∂ − = = ∂

∫ ∫ † †0( ) ( , ) ( , ) ( ) (So, ) ( ) ( ) 2dx i h x G x x i dxdy v x y x y y x i V

t

01 ( ) ( , )2

V dx i h x G x xi t

∂ = − ∂ ∫

x z =∂ − ∂

0( )i h xt y +y

zx

x

=∂ − ∂

0( )i h xt

y +y

x +x

The previous result

becomes

)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅: −𝑖𝑖𝑖𝑖(𝑥𝑥t, 𝑥𝑥𝑡𝑡 + 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑅𝑅 𝑑𝑑𝑅𝑅𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑

The propagator ‘knows’ the interaction. 71

Page 72: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

( ) ( )

( ) ( )λ λ

λ

λ λλ

+

= Ψ Ψ

= Ψ Ψ = −

∑ ∫∑∫ ∫

†0 0

†0 0 0

The average of the one-body part is( )

( ) ( ) ( , )

H dy y h y y

H dy h y y y i dy h y G y y

→ →

∂= + = − + ∂

∫0 ' , ' 0

The knowledge of is enough to get exact .A reliable calculation of E is of crucial importance since important many-body techniques (DFT etc.) are var

lim ( ) ( , ' ')2

iati

t t x x

G E

iE H V dx i h x G xt x tt

onal.

πωπ ε ω

= − +∑ ∫2

200

Recall results of part 11 1 2ˆ [ Im ]

2

:

( )

0

q,q

neV dq

The propagator also ‘knows’ the kinetic+potential term

72

Page 73: Green’s mill - Istituto Nazionale di Fisica Nuclearepeople.roma2.infn.it/~cini/ts2015/ts2015-16.pdf · George Green(14 July 1793–31 May 1841) was a . British mathematician and

73

Recall: we have already met the Coulomb interactionin terms of density fluctuations

2† †

20

Using

ˆ ˆ1 4ˆˆ ˆ ˆ ( ).2q k k q q q k

k qk

ec c Vq

nσ σσ

πρ ρ ρ ρρ+ −≠

= = = −∑ ∑

𝑡𝑡𝑥𝑥Relation to ground state potential energy

22

20

ˆInteraction in ground state : 0 0 inserting complete set,

2 ˆ( | 0 | ). qq n

V

e n nqπ ρ

=

−∑ ∑

( ) [ ]2 2

0 02

2

200

1 4Comparing with Im 0 ( ) ( ) ,q,

1 1 2ˆ0 0 [ Im ].2 (q, )

q n nn

q

e nq

neV dq

π ρ δ ω ω δ ω ωε ω

πωπ ε ω

= + − −

= − +

∑ ∫