15
Hydrology and Earth System Sciences, 8(1), 822 (2004) © EGU Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations V. Naudet 1 , A. Revil 1 , E. Rizzo 1 , J.-Y. Bottero 2 and P. Bégassat 3 1 CNRS-CEREGE, Dept. of Hydrogeophysics and Porous Media, Aix-en-Provence, France 2 CNRS-CEREGE, Dept. of Interfacial Chemistry, Aix-en-Provence, France 3 ADEME, 2, Square La Fayette BP 406, Angers, France E-mail for corresponding author: [email protected] Abstract Accurate mapping of the electrical conductivity and redox potential of groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP) and electrical resistivity tomography (ERT) have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution) and redox conditions (electro-redox contribution). Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R²=0.85) is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. There is good linear correlation (R²=0.91) between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume Introduction In industrialised countries, over 1 kg of municipal and domestic waste is produced per day, per inhabitant; most of it is deposited in municipal landfills. In the last decade, the increasing public concern with groundwater management problems due to waste disposal has generated significant hydrogeological and geochemical research activity. This research concerns, for example, the mapping of the redox potential and the electrical conductivity of the groundwater, which are two key-parameters for the characterisation of contaminant plumes and for site remediation technologies (Christensen et al., 2000, 2001; Kemna et al., 2002). The redox potential is sensitive to organic matter associated with landfill leachate and its biodegradation by bacterial colonies plus the presence of specific electro-redox components (Atlas, 1981; Christensen et al., 2000, 2001; Vayenas et al., 2002). The conductivity of the groundwater indicates its ionic strength and its degree of ionic mineralisation, e.g. elevated concentrations of heavy metals. Mapping these two parameters in the field by classical geochemical methods is often difficult because borehole measurements are expensive and invasive and provide only scarce information. In addition, these measurements are time-consuming and can perturb local equilibria. For groundwater sampling in observations wells, the samples are taken after 30 minutes of purging when the geochemical parameters are constant. Also, the introduction of a sampling cell into a borehole generates disturbances due to the introduction of oxygen, which perturbs in situ redox potential measurements. Establishment of steady state conditions in a borehole can then take from a few hours to a few weeks (Christensen et al. , 2000; Schulte-Ebbert and Hofmann, 2000). Consequently, few properly constrained maps of redox potential have been obtained to date over contaminated sites.

Groundwater redox conditions and conductivity in a contaminant

  • Upload
    lenga

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Groundwater redox conditions and conductivity in a contaminant

!"#$% &'("#$%" !) *%+,-."%

(' /$'0

!" #$" # % &"'(") *+& ! $,-./0" ! 12#$ $,-.34"12#$ #$%+

++ ++

! " # $ %$ $$ &'#$ $#( $ &% %$& %$ # !() #*$ $$# *$ !# %% %"+$ # #$ # , '-() *$!% # &&&$ $ # $# +* $./', '0() ! # %

# ((!# !(1$$ %$ #& ### & & *$! !! $! #( + $ & 2 &( 3 % $ &!% $"#4 #$ % $(. # $ & & #*% $ & * $ (& #& "##% #%%", ' +&& # (,2 #% $$ $ # *$ !&&!(

Page 2: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

5! & # +##! # %% ! #+ ! $ . ) +6 '7 '6 8 '-'9:"( $ $; ! + #+$! !&&$$ * $ ! $ % #

# $## +33(() #+$ < !! $!

# $& ## % +$&'< % $ $ !& # #%* $ ( ! $ =) # # % ># # &

% 4 !" "

# $ %#

Page 3: Groundwater redox conditions and conductivity in a contaminant

((6' & # # ! & ()$ !# % $ 45+ # &&% () < & # # #%$ 3 //'5 '=!')!(%! & ! #%2 !$##+$ *#1(4 $$& #2 ! !$$#+$ ! $ % # (

) # +31 ?8, @ !$3(#&$# =!5 % <#%# 1() # &!/(, & A

$#% $% % &() !& (B "C* 4(6 !&! $$& $ %2 ! % $ () " # 2 !& & % (3(() & $#$&#< "D() #&% ! 2 * & $ () $; #2 # *&% &% !() !$;# %2 # 4E % ! ! ( ) ! $ # ( %#%# + +%(%! #%$ (3*$> ## # %#% %% & # $ &!() $# $# ### #%

% 5& $'%$( # )# *% + '&,-. /

Page 4: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

$ 3(()%!% 2 # %

% 3($ #% FG $% # $2 #( )& $ $#& $#1&0() $ & ! # !# % (HG4G4 * ; & # $! * $! % !! # %%#31() # *#3( & * $ (. #!*$ ;$!*$*; $#*#% &%%B(6 # " # & # ; !$ #+$ & $!(0 !$$ $ ## # * *# $ () % $(A"%# #%%FG43((<# &%%FAF% #() % $*103+$ $ &2 #"%# #&#%FA() #

3 % FB % FA G F IB $#*#&%%FAF3()&() *#& & $#* $ % *$ # ! 2 $ )&(%!& #"#%# $ # %() $# *#&%%FAF3((

) #+$ $! #& # $ &#+$% % $ $ ( # % # < $ % $J "$% %#%3 //'6 //')! $% * 92 ,'9 (4(9 % () 2 $ 2 $ #+$

1K1*+ L$#%B%+$<&M<&,

!!"## !! $ $""% !!" & !"% !!!'('($#

) *" + ,-./ -+! 0!/ 11+ !,,! .! ,+2 "!"2)2 * /+ ""+ "1 !/ * * "+! ""! 22)+ * * * " ,+" , !! ""! *), "1. +,1 !" "++ 0 02 "!! / 1 )"! * 11 " .! /+ 0!/ /-, -! " ! "!2 +,)"" * // 11.. ".2 0!/ " ! .+/ ".! / 2 +/)"2 * 1, 2,12 2! "+ 1!. "1-! "/! - ! "2!!)", *2 ,+! 1 " * * "/! +" 1!) " ""/ "" , !1 1 0 02 " ! /. 11) 1 +. ,+2 ! " * * ""! 2 1!) + *,! ",+ 22 0!/ * * ,! 12 "/ ),1 " " . / !" "+2 0 02 "1! 2" 1!)- *+1 21 +1 0!/ * * "+! "!! "1!

Page 5: Groundwater redox conditions and conductivity in a contaminant

?< @ # &< () $#" &-,M<&,

(:

#*&% !! $ #() # &% L% &#% LB #& (. %" #& $! % ! ! ##( # # <% #!## C+ () <! % #!# #! ( ) ! # BN0% ! # $() ?$#@ 2

%&% #*&#

!+ & ! @ # ,%//()&$ !% +$#$(6- ##@% ! # $$$ ;( # + $ & ! &# $##! <$( $ $$$* #B0$&() <# 2 & $# #(3< #$& 1 % $$ #$$ $# 9 4 $% $$! #+$$ % 3(4() $%$# $#1&#%% $#(

-400

-300

-200

-100

0

100

200

Self-potential (mV)

a

Entressen Landfill

Settling basins

SP base

Wells for chemicalanalyses7

SP data points

Ground waterflow direction

N

Wells for piezometricanalyses

500 m

P12P12

P13P13

P2P2

73

1200m

71000m

10 11 2

23

6

17

5

2692 15

21

P8P8

SP profiles (seeFigure 9)

% 1$.% #+&0 ! &1002 30 +! &0+ + 4 4

Page 6: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

< ! 4 !$ =) % ## # "%# #& .653(() $ !; 2 # 2 % % ! !((!#!&=)% !# % & )&() .61 +).+% % H # # A NB () H%& #!! & #!(( ; !++() 45+ ! $#% $ #$#4!+!# #(

) < ! % %##J"$% !# $; # 2 # $% #* $() #& !# % $ $ $& ( 3*$ % $$!< #%% #%" $3 //'6 //4//'=!('9 (4() $ # & %"%=!(///(: $ #<

% *$ % (0 H //'O(//G'0 &(///'92 ,'9:"'9 (4 !&!!<% $ () % * $ (%! &2 ! $ $ *$#<$(

6#$ ##+$

$$ ! 2 # *# &$+ $ () # #

$ 2 # # * # *!3(() & 9% $ * $ & & &( ) *#% $ #*% 9

M0

$ $ ,:

, ((.

#*&& $ % *$! % # #( 3 !$# *!$ % # (1& ! $ " *

$& !#* #+ $,

NO3/O2 red.Fe(III)/Mn(IV) red.CH4 + SO4 red.

landfill

Organicmatter

[Fe2+]=0 mg/l

[Fe2+]>10 mg/l

C(H2O)

FeIIIOOH

BiofilmOrganicmatter

Diffusion

Fe2+

EH0

Fe2+

Aquitard

Aquifer

Vadose zone

EHEHEH1 2 3

Groundwater flow

% 6, "4++555 +" + $,,,% " $,,,% " #+ " + ++ #

+ # 6

Page 7: Groundwater redox conditions and conductivity in a contaminant

( + $ &* &#! ## ! ## ((H,$ # () ## %#& & !&#*(. *!& $#$(#% & 0 * * $ #,:(,2 &!$ $ % !( &$ $ ! ; % & $$ &$ (.! $#&&! &! & ##! &$ ;$ % $!#! & &#&% % & ./(= + #

& &6(') ( # 5 $!! & $ # " &!() *$ &# #+ # &% # ## *$() % & !# % &% &# & # # $! &#&#$&&## # %$ ()1P ! % ##*$& !###+$(

3 // $$ 2 #+$ ! % (. #+ $$* #3 @ 2 & *$ &=! 4J

) - ( - 00

hhC’

% *$ 0 $ #+$ % $; () $

$

$; ! <&%

Q0

&# ! "

$##0$#$; !() *$ $& &%<*$ *$ &

&! "$# <() $# % &#% $## !2((3 B& %=CQ(/&%$; #+$() 2 %QN(A N

RBA(

% $ ## !QN(AS(0

S(0() # 0 0

*##*$&%(. !# < # S0 ,T ## S(0 % ###=CQ(/ & <$! ! () !# % & ## < & %!%%" ! # $ () # <+ !& ##& ! < ##& !# *& # # # $ !(2 $ "

<& % %#%! () "& %3(B'!# #+$$3( $3(B()% <$

# & % $ <% *$ %3(B=CQ(B(H% % < % !&(H FB% >& # % 2 # % % ! 3(A() $&% #+$

*$ %

3(BJ

)E E( C 0 H0HHH

% Q

< &

*$,Q(BS(/ *

$## *$

0 <

QBA(4R(0 *$

< & () $ ! <$ * $$( $ ! ,

Q(B%

#1/A#+$$( & # # () #

Page 8: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

% 0$% !$.% +$7 %$ %8 +4 2$)%$% $.% ! $%8 + " $ %

+ 970.# $7%+ 9&0.

Page 9: Groundwater redox conditions and conductivity in a contaminant

% 7. + :- &00& 3 7*

* *$ #+$ ! # # % & + # * $!$#((+ ## *$() $$ , /B 92 , <+ $ # *$(,#&## & (3 * $ $ % 3( G

*# $ & % % && ((

Q0

& # *#() !*$! $# # & % ;% &# & & & ! $ 3( ( ) !$!*$!

N0

%$# &$&& & *$ !& #

:

$!

& *#::

(.$G

N

Redox potential (mV)

-1000

-800

-600

-400

-200

0

200

73

1200m

71000m

10 11 2

23

65

2692

21

Entressen Landfill

Settling basins

SP base

Wells for chemicalanalyses7

SP data points

Ground waterflow direction

500 m

Wells for piezometricanalyses

Redox Front

Redox Front

15

17

% 8'"$.%+ + " $7%

Page 10: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

#& N0R0() !$&&% $#& $$ % # & + () & & "# ! > # $$ ( 3 / % # # $$!% # B !$ #BN4B0% ! # * $ 4NG0() 3(#% %

## $ $$ # *$##+$(

) !#"$$% ((=!(//($ # !# %() # !& "!# *$& (

"#$ ) ! $# % ! =590 8" 6" //A' # ?& !@ %$% # ! +2 % 2 # !! () $ % ! !! ( %! # & # ! $& !+2 $ & (6 & &% & 2 # $ & ! % ()%$!!$# %

3(() !$% % ##!() J! %!;D$ !; ! $ # 2 # L+ 4 ! ! & % !%!! LB+$##<(# # !& & $$ $() "# 2 # % $# + + #$#.63(() &&%FB(

#%&) 5+!3( !& $ & 45+ # !!# !& & #(.$-$ % $#3($ # 45+$() 45+# ! % & # () $&% # ! % !#=) ; & # + 2 ! ( ) ! # ! % "!#B=)$ #4 %( $$ $ &$$

SP measured on the field

Estimation of C'

Piezometric head data

Remove the electrokineticcomponent from the

SP field data

Correlation between SP and EH

EH measured on boreholes

Estimation of a redox map

% /+ "

Page 11: Groundwater redox conditions and conductivity in a contaminant

-500

-400

-300

-200

-100

0

100

0 100 200 300 400 500 600 700-200

-150

-100

-50

0

0 200 400 600 800 1000

P13 P12

SP

(mV

)

Distance (m) Distance (m)

-600

-500

-400

-300

-200

-100

0

100

0 200 400 600 800 1000 1200 1400 1600-400

-300

-200

-100

0

100

0 500 1000 1500 2000 2500 3000 3500 4000Distance (m) Distance (m)

SP

(mV

)

P2 P8

50 m

50 m

100 m

100 m

360 mV

150 mV

350 mV 180 mV

West WestEast East

NorthWest East South

% 3, 2&#21#23&23)$)% + 70300

+370)70.

Entressen landfill

N

92

17

5

26

15

Settlingbasin

11102

23

A

B

0 100 200mD

C

% 4. $'% +,$%( + )+

!;& =) # ! $# !# %-#$$#=) & # $($%+ $ & "

!# " !# %&H*/AJ

s

f

F

4

% ! # #

# !

& +% # ' # # # &'Q

. /% $ *$ #() # (BN(B% ! ! L(1 # ! ! & !$

Page 12: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

% 44) $'% ; + ; 30 )

5 85 165 245 325 405 485 565 645 725 805 885 965 1045

Electrical resistivity (in Ω.m)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0

Aq

uif

erV

ado

se z

on

eDepth (m)

#10

#92 #17

#15

#2

#5

#11

5.56

3.82

2.25

0.75

AB

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

14.40

11.86

9.56

Mar

l (P

lioce

ne)

7.46

7.0

8.0

Depth (m)

((=!//& ( +& " # !

$ ! ! # %& $ ! $# # # !( +# # &2(4 J

M'

! # % % % ! # #=)() ! # % $ # 2 #(QN4((QNB(BA # 3( () ! # ! #! 4 %%

"() & $ &% % + !# %$! !# % & 3(4() !! # % ! # ! )& 3( A() ! % =)"$ (QN4((QNB(BA% ! %+ $;!&!%3((HFB%" & &!% "# 2 #! L ( ! % ! &% & !#(4G 3(A(# 2 ### ##

" ! ! !# % &

Page 13: Groundwater redox conditions and conductivity in a contaminant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8Fluid conductivity in boreholes, σf (S/m)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Bul

k co

nduc

tivity

from

ER

T, σ

(S/m

)

F = 10.4 = 10.4 + 0.8 0.8 R² = 0.92 = 0.92

-

#11

#2

#92

#26#5

#10#17

σ=(1/F) σf z = -5.56 m = -5.56 m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8Fluid conductivity in boreholes, σf (S/m)

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

Bul

k co

nduc

tivity

from

ER

T, σ

(S/m

)

-F F = 23.1 = 23.1 + 1.7 1.7R² = 0.91 = 0.91

#11

#2

#92

#26

#5

#10#17

σ=(1/F) σf z = -3.82 m = -3.82 m

% 458 +$ % + $

% )'4<)1&4<77=

0.0 0.15 0.3 0.45 0.5 0.75 0.9 1.05

Calculated electrical conductivity of the groundwater (S/m)

Z = -5.56 mZ = -5.56 m

#92

#5

#10 #11 #2

#15

#17

#26

A

B

N

100 200 300 400 500 600 700 800 900 m

σf = = F σF = 10.4 = 10.4

Z = -3.82 mZ = -3.82 m

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800 900 m

#92

#10 #11 #2

#15

#17

#5

#26

A

B

N σf = = F σF = 23.1 = 23.1

% 41 $ % + 30$%4<>)1&+ <30?$ %4<77=+ <&)3 + 4 4

2(% $#M'(3 & % $ ( Q N4( (QNB(BA$!() %# &2(#+#"() %=CQ(/&% & " ! & =)

!# %() ##&%4(S(G# $$$(S(# %$# 2 # $% $ 2 #() % $% ! !$# !# %(3

Page 14: Groundwater redox conditions and conductivity in a contaminant

! "#"$"

4 & % $ & $ ( Q N4( ( Q NB(BA $!() $ $ # ! $ # $# # % %$&$( $ ! % L # %' $ % % % #!!$#% $(9 # % $$ ! ()%$() #

! ! $63(4(.+#2 # & & $&##& * # <#.6 3( ( ) ! # & # # ! # # # %( ) $ % #%(=) % $ %$$&# ! () % %3(4$; $ # $; $! # % #%( 9! # %#% $ $# #() # $ # NH & && # $# #% $ % $ (=)% #$$ # $(

) %$$# #+$ !$ () $ $! # $# 2 # %(=& & &% $() #+$$ &! "$ #+$ % =CQ(B% # *$ & () # *$ !## #+$ &$ % &# $$(.*$$& * # # $ ( !! &

# 45+!$ %=CQ(/% !# # & ( ) # # 2 # # ! $ 4 $(H $$# # ! % % $ # $ %&($$ #+$ & $ $!$ #& ! # $ $& # "( ) $ # #+$ *#$ % & " +&* *$ #+$ !*(

) #1 "# # (3 $$&.51 < 5 0(9 ,9= & 1U= @ 9.,+V FA/4.(=!&.,W##5(&.(=!"%(6( "# $$5(1(<# $ #(6 X3()## # V&# 7:<<7 : <<$$ +.+.&9.$4(

34 "-/ 5 # # !"#$$2/6+

45*7 !!!'###%&&'(& ) ,261!

8 "-." 9##!(!(*+$".!6 !-

738:; !! << *#%),("/,6"2-

7="--. * '(",,,-6,.

7'8>'45??#'8 !! 4**# !/.16/.2

7 3 ? @ !!" 3 %&&'(& )$""6 1

Page 15: Groundwater redox conditions and conductivity in a contaminant

5>7A;?7=BC8>3 >*B !!!< $ %(),("+26 /"

5> @A ; 7A ;? B '?B77>*B>3 !!" 7 &&'( +2-6,".

4 "-.2 = < <'(& )!$"! !6"!1/

8"--!5 * #'( +!('(& )$$*+!-,"(!=>:4= 4$35(@D=" ,6"/2

'4 !! ?&EEEF&E.* $",

'B$?5B*? !! * %),(",16".2

"-.-=;###9 G;;**'H'(& )#(&+/,6++.

>I>833>>"--, = * 9 %+!('(& ) "612

@B@7C> !! #485F#%),(" 26"/+

?C>7C8'"--+8*F# # F*J'(& )#(&$"1"6"2

7?=B7?8;'8B87=:' !!1 ,!!( !+!( (/ /0&(! , /((!,!(,&&! + *!+!$(" (!3D' !!1 =;>1"7*!/+

J 8# 7 B*K 7E ; !!18 * =; $'(& )*.$ !-"9"!"! -% !!13?!".!-+

J84(CB? !! ' * ## C%),( 2.6 ,

JF B4 4 !! = *9 C # .,!,//+6/2"

; 3 !!! = * #"&&'(& )12,61.

8# ? ? = J B "--.4 # %'(& )* 1- 26 1-1+

8#=>?;'"---= 5%'(& )* !! 16 !!/.

8#>'< 8 ? B*37E 3 5 !! = * # $'(& )*.9"!"! -% !!"3?!"/ -/

8#JJ<B; !!1; *C*("*"""/9"!"!-% !!":8!!!-"+

= > "-+! 5 *'(& )! +6 /-

=*4D> 5 !!! 8$; 5 = > 9 *,(1",$#($,&&!!(B=L>'=<:8 B7M :>'A#4=73 2"

5?84=>>'47'8?';@=B?#' !! > "2!( ((). "6. 2

5M; !!"5$ 9 # $%'( 1&(""26" ,

5# @ K @#C ; ?#C !! 4C < 9%),( !,6 "+

!! <$ ,+*(" !16 "-

K8;'"---= #( )& &&!!( (/'(& )!(!!,+!(#("/6".=344;

B*'7=B*;:7B*K*=? !!" +!(! (/+,26/+,-

: = K !! = ##$A*("*" -19"!"! -% !!":8!!!1//

:$>=?B"-+.4*%(#$"!,6"

:"-.-= *#5 ; ' = ;."(! !3*;C4' = ;=>3"!-6" !

KD !!!3$C %&&'(& )"."6"-+