27
1 IF { UFRJ { 2004/1 ³sica 1 { IFA (prof. Marta) GUIA DE ESTUDO 5 odulo 5: Sistema de Part¶ ³culas: Momento Linear e sua Lei de Conservac » ~ ao, Centro de Massa e Colis ~ oes 1. INTRODUC » ~ AO Neste m¶ odulo, daremos in¶ ³cio μ a descri» c~ ao de um sistema de part¶ ³culas, cor- respondendo μ a descri» c~ ao de sistemas f¶ ³sicos que n~ ao podem ser tratados como objetos pontuais. Come» caremos de¯nindo o momento linear de um sistema de part¶ ³culas e vendo como aplicar e generalizar a segunda lei de Newton para este sistema. Estudaremos em que situa» c~ oes o momento linear de um sistema de part¶ ³culas ¶e conservado. Veremos que no estudo de um sistema de part¶ ³culas um conceito fundamental ¶e o de centro de massa do sistema, ao qual associaremos a for» ca externa total agindo sobre o sistema. Leituras indispens¶ aveis: Os t¶ opicos citados acima correspondem aos cap¶ ³tulos 8 (se» c~ oes 8.1 a 8.4) e 9 do livro texto, H.M. Nussensveig, Curso de F¶ ³sica B¶ asica, Vol. 1 { Mec^ anica, 3 a edi» c~ ao, Editora Edgard Blucher Ltda. 2. ATIVIDADES EM SALA DE AULA Atividade 1 Discuss~ ao | da de¯ni» c~ ao de momento linear para um sistema de duas ou mais part¶ ³culas (se» c~ oes 8.1 e 8.2); | da lei de conserva» c~ ao do momento linear (se» c~ ao 8.3). Atividade 2 Resolu» c~ ao do problema 26 da lista de exerc¶ ³cios 13 (sobre Sistema de part¶ ³culas: momento linear, centro de massa, conserva» c~ ao do momento, e colis~ oes). Este problema corresponde μ a primeira atividade experi- mental do M¶ odulo 5, feito no laborat¶ orio; pense as condi» c~ oes que a

GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

Embed Size (px)

Citation preview

Page 1: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

1

IF { UFRJ { 2004/1F¶³sica 1 { IFA (prof. Marta)

GUIA DE ESTUDO 5

M¶odulo 5: Sistema de Part¶³culas:Momento Linear e sua Lei de Conservac»~ao,

Centro de Massa e Colis~oes

1. INTRODUC» ~AO

Neste m¶odulo, daremos in¶³cio µa descri»c~ao de um sistema de part¶³culas, cor-respondendo µa descri»c~ao de sistemas f¶³sicos que n~ao podem ser tratados comoobjetos pontuais. Come»caremos de¯nindo o momento linear de um sistemade part¶³culas e vendo como aplicar e generalizar a segunda lei de Newtonpara este sistema. Estudaremos em que situa»c~oes o momento linear de umsistema de part¶³culas ¶e conservado. Veremos que no estudo de um sistemade part¶³culas um conceito fundamental ¶e o de centro de massa do sistema,ao qual associaremos a for»ca externa total agindo sobre o sistema.

Leituras indispens¶aveis:Os t¶opicos citados acima correspondem aos cap¶³tulos 8 (se»c~oes 8.1 a 8.4) e 9do livro texto, H.M. Nussensveig, Curso de F¶³sica B¶asica, Vol. 1 { Mecanica,3a edi»c~ao, Editora Edgard Blucher Ltda.

2. ATIVIDADES EM SALA DE AULA

Atividade 1

Discuss~ao

| da de¯ni»c~ao de momento linear para um sistema de duas ou maispart¶³culas (se»c~oes 8.1 e 8.2);

| da lei de conserva»c~ao do momento linear (se»c~ao 8.3).

Atividade 2

Resolu»c~ao do problema 26 da lista de exerc¶³cios 13 (sobre Sistema depart¶³culas: momento linear, centro de massa, conserva»c~ao do momento,e colis~oes). Este problema corresponde µa primeira atividade experi-mental do M¶odulo 5, feito no laborat¶orio; pense as condi»c~oes que a

Page 2: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 2

experiencia deve ser realizada para que haja conserva»c~ao do momentolinear.

Atividades extras 1

1. Leia as se»c~oes 8.1, 8.2 e 8.3 do cap¶³tulo 8 do livro texto.

2. Resolva os exerc¶³cios 6 e 8 da lista de exerc¶³cios 13.

3. Demonstre (com o livro fechado) que para um sistema depart¶³culas

d~P

dt= ~F ext

onde ~P ¶e o momento linear total e ~F ext ¶e a resultantedas for»cas externas aplicadas sobre o sistema.

Atividade 3

Discuss~ao (novamente) dos conceitos apresentados na aula anterior,com a resolu»c~ao dos exerc¶³cios 5 e 2 da lista 13.

Atividade 4

Discuss~ao do conceito de centro de massa, obtendo a equa»c~ao que des-creve o movimento deste ponto (se»c~ao 8.3); e c¶alculos de alguns centrosde massa para sistemas simples (se»c~ao 8.4).

Atividades extras 2

1. Leia novamente as se»c~oes 8.1, 8.2 e 8.3 do livro texto.

2. Leia a se»c~ao 8.4 do livro texto.

3. Resolva os exerc¶³cios 1,2,3,7,8,9,11,14 e 16 da lista 13.

Atividade 5

Discuss~ao dos conceitos envolvidos na an¶alise de colis~oes usando oExemplo A a seguir.

Exemplo A

Consideremos a colis~ao de duas bolas de borracha numa mesasem atrito. As duas bolas tem massas m1 e m2 , e supomosconhecidas as suas velocidades iniciais ~v1i e ~v2i . Durante um

Page 3: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 3

curto intervalo de tempo as duas bolas permanecem em contato,e depois se afastam com velocidades ¯nais ~v1f e ~v2f .

Esquematicamente, podemos ver como se d¶a a \evolu»c~ao tem-poral" deste sistema, como na ¯gura abaixo.

As duas part¶³culas antes, durante e depois da colis~ao.

¡¡

¡¡

¡

¡¡

¡¡

¡

v©* v©¼

m1

~v1im2

~v2i

¡¡

¡¡

¡

¡¡

¡¡

¡

t1 t2

vv¡

¡¡

¡¡

¡¡

¡¡

¡

t3

v@I v@R

m1 m2

~v1f

~v2f

Nosso problema fundamental ¶e encontrar as velocidades ¯nais~v1f e ~v2f . Podemos fazer um gr¶a¯co das for»cas que agem sobreos dois corpos como fun»c~ao do tempo. Este gr¶a¯co tem a formamostrada abaixo.

- t

F1(t)

F2(t)

t± t1 t2 t3´¦¦

¥EEEµ³

EE§ ¦¦¦¦

Podemos escrever a segunda lei de Newton para cada um dosdois corpos; tanto antes quanto depois da colis~ao, se ~p1 e ~p2

s~ao os momentos lineares dos corpos,

d ~p1

dt= 0 ;

d ~p2

d t= 0

nos intervalos de tempo t0 < t < t1 e t2 < t < t3 . Poroutro lado, durante a colis~ao | isto ¶e, no intervalo de tempot1 < t < t2 , a segunda lei de Newton nos diz que

d ~p1

d t= ~F1 ;

d~p2

d t= ~F2 :

Page 4: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 4

Se conhecessemos estas for»cas, poder¶³amos (tentar) resolver oproblema de encontrar as velocidades ¯nais dos corpos. Masna maioria dos casos de colis~oes a forma destas for»cas nos ¶edesconhecida. Sabemos, por¶em, pela terceira lei de Newton,que elas constituem um par a»c~ao e rea»c~ao,

~F1 + ~F2 = 0 :

Embora n~ao tenhamos uma solu»c~ao completa, podemos usaresta propriedade para obter informa»c~oes ¶uteis sobre o que est¶aacontecendo com o sistema considerado.

Se somarmos as duas equa»c~oes, obteremos uma rela»c~ao que ser¶av¶alida antes, durante e depois da colis~ao:

d ~p1d t

+d ~p2

d t=d (~p1 + ~p2)

dt= 0

Podemos de¯nir uma nova grandeza, a qual chamaremos demomento linear total do sistema, ou quantidade de movimentototal do sistema, como sendo a soma do momento de cada umadas part¶³culas que comp~oem o sistema

~P = ~p1 + ~p2

e, olhando para a equa»c~ao anterior, temos

d ~P

d t= 0

Esta equa»c~ao signi¯ca que o momento linear total do sistema| que ¶e \isolado" | ¶e uma grandeza conservada; isto ¶e, seuvalor ¶e sempre o mesmo, antes, durante e depois da colis~ao:

(~p1 + ~p2)inicial = (~p1 + ~p2)final

Duas quest~oes s~ao fundamentais.

A primeira: o momento linear total de um sistema de part¶³culas¶e sempre conservado? A resposta ¶e n~ao! Se tivermos for»cas

Page 5: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 5

externas atuando sobre o sistema (por exemplo, atrito) n~ao te-remos o valor nulo para a soma das duas equa»c~oes anteriores.

A segunda: a energia cin¶etica ¶e conservada nesta colis~ao? Aresposta ¶e n~ao necessariamente! Discutiremos a seguir o porquedesta a¯rma»c~ao.

Um ¶ultimo coment¶ario: o que discutimos aqui se aplica emgeral. N~ao ¯zemos nenhuma restri»c~ao sobre a for»ca interna queatua entre as part¶³culas durante a colis~ao (a ¶unica restri»c~ao foiexigir que ela satis¯zesse ao princ¶³pio de a»c~ao e rea»c~ao). Assim,qualquer que seja a for»ca interna, o momento linear total de umsistema isolado ¶e conservado.

Atividade 6

Discuss~ao

| do conceito de impulso de uma for»ca (se»c~ao 9.2), ilustrando com oexerc¶³cio 22;

| e do que ocorre com o momento linear total e com a energia cin¶eticanum processo de colis~ao (se»c~ao 9.3), classi¯cando as colis~oes em el¶asti-cas e inel¶asticas;

| e resolu»c~ao do caso geral de uma colis~ao el¶astica unidimensional.

Atividades extras 3

1. Leia as se»c~oes 9.1, 9.2 e 9.3 do livro texto.

2. Resolva os exerc¶³cios 21 e 22 da lista 13.

3. Leia a se»c~ao 9.4.

4. Com o livro fechado, obtenha as equa»c~oes (9.4.11) dolivro texto e aplique estas equa»c~oes ao caso particularem que as duas massas s~ao iguais.

5. Escreva um modelo te¶orico que descreva a atividade 2da experiencia do laborat¶orio - colis~ao el¶astica entre doiscorpos de mesmas massas - e compare com a observa»c~aofeita no laborat¶orio.

6. Resolva os exerc¶³cios 23 e 24 da lista 13.

Page 6: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 6

Atividade 7

Discuss~ao do problema das colis~oes unidimensionais n~ao el¶asticas, e emparticular o caso da colis~ao totalmente inel¶astica (se»c~ao 9.5); e resolu»c~aodo exerc¶³cio 41 (pendulo bal¶³stico).

Atividade 8

Rediscuss~ao de conceitos relacionados µa lei de conserva»c~ao do momentolinear de um sistema de part¶³culas e ao conceito de centro de massausando o Exemplo B a seguir.

Exemplo B

Consideremos agora o caso de dois corpos (part¶³culas) de mas-sas m1 e m2. Esses dois corpos n~ao est~ao, como no caso doExemplo A, isolados. Sobre eles, atuam tanto for»cas internas |a intera»c~ao de um com o outro, como no caso anterior, quantofor»cas externas | por exemplo, a for»ca peso, o atrito, etc.

Podemos, para cada um dos dois corpos, separar a for»ca resul-tante em duas partes: uma, correspondente µas for»cas internasao sistema, e outra correspondente µas for»cas externas. Assim,sobre os corpos 1 e 2 a resultante das for»cas ¶e escrita como

~F1 = ~F int1 + ~F ext

1 ; ~F2 = ~F int2 + ~F ext

2

e a segunda lei de Newton ¯ca

d ~p1d t

= ~F int1 + ~F ext

1 ;d ~p2

d t= ~F int

2 + ~F ext2 :

A \for»ca interna" que atua sobre o corpo 1 deve-se µa intera»c~aodeste corpo com outros corpos do sistema; no caso, o outrocorpo do sistema ¶e o corpo 2. O mesmo ¶e v¶alido para o corpo2. As for»cas ~F int

1 e ~F int2 constituem um par a»c~ao-rea»c~ao, e a

terceira lei de Newton nos d¶a

~F int1 + ~F int

2 = 0 :

De¯nimos o momento linear total de nosso sistema de part¶³cu-las como sendo

~P ´ ~p1 + ~p2 :

Page 7: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 7

Ent~ao podemos escrever

d ~P

dt=d (~p1 + ~p2)

d t=³~F int

1 + ~F int2

´+³~F ext

1 + ~F ext2

´

Se ~F ext = ~F ext1 + ~F ext

2 ¶e a resultante das for»cas externas queatuam sobre as part¶³culas de nosso sistema,

d ~P

d t= ~F ext :

Desta express~ao, podemos ver imediatamente sob que condi»c~oeso momento linear total de um sistema ¶e conservado. Todas asvezes que a resultante das for»cas externas ¶e nula, o sistematem momento linear constante | e n~ao apenas quando o sis-tema ¶e isolado. Por este motivo, um sistema de duas part¶³culasem colis~ao sobre uma superf¶³cie horizontal sem atrito pode sertratado como sendo isolado: as for»cas externas, pesos e normais,se anulam, dando uma resultante externa nula e conservando omomento total.

A equa»c~ao que de¯ne o momento linear total do sistema nosinspira para uma outra observa»c~ao. Como ~p1 = m1 ~v1 e ~p2 =m2 ~v2, o momento total ¶e dado por

~P = (m1 ~v1 +m2~v2)

Esta express~ao nos faz pensar que talvez fosse conveniente de-¯nir um ponto especial de nosso sistema. Este ponto mover-se-ia com uma velocidade que ¶e uma \m¶edia ponderada" dasvelocidades dos corpos

~V =m1

m1 +m2

~v1 +m2

m1 +m2

~v2 :

Os pesos nesta m¶edia s~ao as massas dos corpos envolvidos. Aeste ponto damos o nome de centro de massa do sistema depart¶³culas.

Este ponto especial tem algumas propriedades interessantes eque se tornam bastante ¶uteis para a discuss~ao de sistemas de

Page 8: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 8

part¶³culas. Sua posi»c~ao ¶e de¯nida como um ponto do espa»coque tem coordenadas dadas por

~Rcm ´m1

m1 +m2~r1 +

m2

m1 +m2~r2 :

Se escrevemos para a massa total do sistema M = m1 +m2,temos das de¯ni»c~oes acima

~Rcm =m1

M~r1 +

m2

M~r2

~Vcm =m1

M~v1 +

m2

M~v2

e observamos (primeira propriedade interessante!) que

~P = M ~Vcm :

Este ponto especial tem uma velocidade que corresponde aomomento total do sistema dividido pela massa total do sistema| ou seja, tem a velocidade que teria um corpo de massa Mque possu¶³sse um momento linear ~P .

Tamb¶em a equa»c~ao que escrevemos acima para a conserva»c~aodo momento linear pode ser reescrita. A acelera»c~ao do centrode massa ¶e

~Acm =m1

M~a1 +

m2

M~a2 :

Temos que

d ~P

d t=d ~p1

d t+d ~p2

dt= m1~a1 +m2~a2 ;

ou seja,~F ext =M ~Acm :

A¶³ temos mais uma propriedade interessante do centro de massa:sua acelera»c~ao corresponde µa raz~ao entre a for»ca externa resul-tante sobre o sistema e a massa total do sistema | a acelera»c~aode uma part¶³cula de massaM sobre a qual agisse uma for»ca ~F ext.

Com esta discuss~ao, podemos ver que o centro de massa ¶eum ponto bastante ¶util na discuss~ao do movimento de um sis-tema de part¶³culas, ou de um corpo constitu¶³do de mais de uma

Page 9: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 9

\part¶³cula". Este ponto nos permite fazer uma an¶alise global domovimento do sistema, independente do movimento interno dascomponentes do sistema em rela»c~ao umas µas outras. Este ponto¶e tal que tudo se passa como se sobre ele estivesse concentradatoda a massa do sistema e agissem todas as for»cas externas aosistema. Ele ¶e um auxiliar bastante ¶util na discuss~ao de cor-pos mais complexos, dos quais n~ao temos muitas indica»c~oes (outemos e s~ao complicadas) de como s~ao as intera»c~oes dentro dosistema, como num corpo r¶³gido, etc. Ele nos permite de umaprimeira maneira intuitiva entender porque colocamos a for»capeso agindo sobre o \centro" dos corpos, e a for»ca gravitacionalde um objeto sobre a Terra agindo sobre o centro da Terra, etc,resultados que ser~ao formalizados com mais clareza e exatid~aoposteriormente em nosso curso.

Atividade 9

Discuss~ao

| de como a descri»c~ao de uma colis~ao pode ser feita usando tanto oreferencial do laborat¶orio quanto o referencial do centro de massa dosistema, usando as transforma»c~oes galileanas de velocidade para passarde um sistema de referencia inercial para o outro; e

| e aplica»c~ao ao Exemplo C a seguir.

Exemplo C

Duas bolas de bilhar de massas m1 e m2 movendo-se comvelocidades ~v1 e ~v2 no referencial do laborat¶orio colidem.

A colis~ao ¶e totalmente inel¶astica, isto ¶e, as duas bolas saemjuntas ap¶os a colis~ao.

1. Calcule a velocidade do centro de massa do sistema antese depois da colis~ao no referencial do laborat¶orio.

2. Calcule as energias cin¶eticas inicial e ¯nal do sistema noreferencial do laborat¶orio.

3. Calcule as velocidades ~u1 e ~u2 de cada uma das duasbolas antes da colis~ao no referencial do centro de massa dosistema.

Page 10: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 10

4. Descreva a colis~ao para um observador que anda junto como centro de massa.

5. Calcule as energias cin¶eticas inicial e ¯nal do sistema noreferencial do centro de massa.

Atividades extras 4

1. Leia as se»c~oes 9.1 a 9.4 do livro texto.

2. Resolva os exerc¶³cios 27, 28, 29 da lista 13.

3. Resolva os exerc¶³cios 30, 31 e 32 da lista 13.

Atividade 10

Discuss~ao sobre colis~oes no caso geral, bidimensional (se»c~oes 9.6 e 9.7)tanto el¶asticas quanto inel¶asticas, exempli¯cando com o problema 36da lista 13.

Atividade 11

Discuss~ao de um processo de colis~ao do ponto de vista do referencialdo laborat¶orio e do ponto de vista do referencial do centro de massa dosistema, resolvendo com o problema 39 da lista 13.

Atividades extras 5

1. Leia as se»c~oes 9.6 a 9.7 do livro texto.

2. Releia a se»c~ao 13.1 do livro texto (transforma»c~oes deGalileu).

3. Refa»ca exerc¶³cios da lista 8, sobre mudan»ca de sistemade referencia.

4. Resolva os exerc¶³cios 37, 38, 39 da lista 13.

Atividade 12

Demonstra»c~ao de que podemos escrever a energia cin¶etica de um sis-tema de duas part¶³culas como sendo

Ec =1

2M V 2

cm +1

2

m1m2

m1 +m2(~v1 ¡ ~v2)2

e discuss~ao do exerc¶³cio 28 em vista desta equa»c~ao.

Page 11: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 | p. 11

Atividades extras 6

1. Releia todo o guia, e todo o cap¶³tulo 9.

2. Fa»ca tudo que voce ainda n~ao fez.

Atividade 13

Resolu»c~ao de problemas da lista 13 e dos cap¶³tulos 8 e 9 do livro texto,a crit¶erio do professor.

3. ATIVIDADES FINAIS DO M¶ODULO 5

1. Releia os cap¶³tulos 8 e 9 do livro texto.

2. Releia a se»c~ao 13.1 do livro texto.

3. Refa»ca todos os exemplos deste guia e do livro texto.

4. Fa»ca todos os exerc¶³cios da lista 13 que voce ainda n~ao fez.

Page 12: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 12

IF { UFRJ { 2004/1F¶³sica 1 { IFA (prof. Marta)

Lista de exerc¶³cios 13

Sistema de Part¶³culas:Momento Linear, Centro de Massa,Conservac»~ao do Momento, Colis~oes

1. Um corpo de massa m1 est¶a sobre o eixo x no ponto x1. Outro corpode massa m2 est¶a sobre o eixo x no ponto x2. Determine o valor dadistancia entre o centro de massa do sistema constitu¶³do pelos doiscorpos e o corpo de massa m1. Aplique este resultado aos casos em quem2 =m1 e m2 = 2m1.

2. Um sistema de part¶³culas ¶e composto de dois objetos de massas m1 em2. Demonstre que o centro de massa est¶a deste sistema est¶a sobrea linha que une os dois, entre os dois, e a raz~ao entre a distancias d1

e d2 de cada um dos dois corpos ao centro de massa ¶e inversamenteproporcional µa raz~ao entre as massas: d1=d2 =m2=m1.

w1 u2­cm

d1 d2

3. Obtenha a posi»c~ao do centro de massa de um sistema de duas part¶³cu-las, de massas m1 = 1 kg e m2 = 3 kg, em repouso nas posi»c~oes~r1 = 5 ³ + 2^ e ~r2 = ³¡ 3^. Calcule a distancia de cada uma das massasao centro de massa do sistema. As posi»c~oes est~ao dadas em metros.

4. Um n¶ucleo de r¶adio 226 (com 88 pr¶otons e 128 neutrons, 22688 Ra) sofre

decaimento radioativo, emitindo uma part¶³cula ® (que corresponde aon¶ucleo do ¶atomo de h¶elio, com 2 pr¶otons e 2 neutrons, 4

2He). As mas-sas do pr¶oton e do neutron s~ao aproximadamente iguais. Se o n¶ucleooriginal estiver inicialmente em repouso, a part¶³cula ® ¶e emitida comvelocidade de 1; 5£ 107 m/s. Qual ¶e a velocidade do n¶ucleo residual?

Page 13: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 13

5. Um proj¶etil ¶e lan»cado com velocidade inicial de 400 m/s numa dire»c~aoque faz um angulo de 60± com a horizontal. No ponto mais alto desua trajet¶oria, ele explode em dois fragmentos iguais, um dos quais caiverticalmente, levando 20 s para chocar-se com o solo. A que distanciado ponto de queda do primeiro cai o outro fragmento, supondo-se osolo horizontal?

6. Um n¶ucleo radioativo, inicialmente em repouso, desintegra-se, emitindoum el¶etron e um neutrino em dire»c~oes perpendiculares entre si. Om¶odulo do momento linear do el¶etron ¶e 1; 2 £ 10¡22 kg m/s e o doneutrino 6; 4£ 10¡23 kg m/s.

(a) Ache a dire»c~ao e o m¶odulo do momento adquirido pelo n¶ucleo aorecuar.

(b) A massa do n¶ucleo residual ¶e de 5; 8£10¡26 kg. Qual a sua energiacin¶etica de recuo?

7. Um corpo de massa igual a 8,0 kg desloca-se com velocidade de 2,0 m/ssem in°uencia de qualquer for»ca externa. Num certo instante, ocorreuma explos~ao interna e o corpo divide-se em dois fragmentos, de 4,0 kgcada. Com a explos~ao, uma energia cin¶etica de transla»c~ao de 36 J ¶etransmitida ao sistema formado pelos dois fragmentos. Nenhum dosdois deixa a linha do movimento inicial. Determine a velocidade e osentido do movimento de cada fragmento depois da explos~ao.

8. Duas part¶³culas P e Q est~ao inicialmente em repouso, separadas poruma distancia de 1 m. A part¶³cula P tem massa m1 = 3; 0 kg, e Qtem massa m2 = 5; 0 kg. Elas atraem-se mutuamente com uma for»caconstante de m¶odulo 0,35 N. Nenhuma for»ca externa atua sobre estesistema.

(a) Descreva o movimento do centro de massa do sistema.

(b) A que distancia da posi»c~ao original de P as part¶³culas v~ao colidir?

9. Um homem de massa m est¶a pendurado numa escada de corda, sus-pensa por um bal~ao de massa M. O bal~ao est¶a estacion¶ario em rela»c~aoao solo.

Page 14: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 14

(a) Se o homem come»car a subir pela escada com velocidade de m¶o-dulo v (em rela»c~ao µa escada), em que dire»c~ao e com que velocidade(em rela»c~ao µa Terra) o bal~ao mover-se-¶a?

(b) Como se mover¶a o bal~ao depois que o homem parar de subir?

10. Um avi~ao, cuja massa total ¶e M, em voo horizontal planado (com motordesligado) com velocidade de m¶odulo v0 dispara para frente um foguetede massa m. O foguete sai com velocidade horizontal de m¶odulo vc emrela»c~ao ao avi~ao (medida pelo piloto ap¶os o lan»camento). Calcule asvelocidades do avi~ao e do foguete em rela»c~ao µa Terra imediatamenteap¶os o disparo.

11. Um cachorro de 5,0 kg est¶a de p¶e, parado dentro de um barco cujoextremo encontra-se a 6 m da margem, como mostrado na ¯gura. Eleanda 2,4 m sobre o barco em dire»c~ao µa margem, e depois p¶ara. O barcotem uma massa de 20 kg, e sup~oe-se n~ao haver atrito entre ele e a ¶agua.A que distancia da margem estar¶a o barco no ¯nal da caminhada docachorro?

12. Um casal passeia num bote a remo de 100 kg e 3 m de comprimento emuma lagoa de ¶aguas calmas. Em um dado momento, o homem cai forado barco, perdendo o remo, e ¯ca a uma distancia de 1,5 m da popado barco na dire»c~ao de seu comprimento. Como nenhum dos dois sabenadar, a mulher, de 50 kg, resolve andar em dire»c~ao µa proa do barco, a¯m de salvar seu companheiro. Desconsiderando o atrito entre o barcoe a ¶agua, determine se a mulher ser¶a ou n~ao bem sucedida. Suponhaque o centro de massa do barco est¶a em seu centro geom¶etrico.

13. Um homem de massa M , em repouso, de p¶e com patins sobre umasuperf¶³cie supostamente sem atrito, atira uma bola de massa m ho-rizontalmente, com velocidade de m¶odulo v, para outro patinador demesma massa, em repouso, que a apanha e a devolve com a mesmavelocidade v. (A velocidade dada corresponde µa velocidade em rela»c~aoao patinador antes dele lan»car a bola.)

Page 15: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 15

(a) Calcule a velocidade do primeiro patinador logo ap¶os lan»car abola.

(b) Calcule a velocidade do segundo patinador logo ap¶os receber abola.

(c) Calcule a velocidade do segundo patinador ap¶os lan»car a bola devolta.

14. Determine o centro de massa de um sistema composto por tres part¶³-culas de massas 1,0 kg, 3,0 kg e 6,0 kg, localizadas nos v¶ertices de umtriangulo equil¶atero de 2 m de lado.

15. Num instante particular, tres part¶³culas move-se como mostrado na¯gura. Elas est~ao sujeitas apenas µas suas intera»c~oes m¶utuas. Ap¶osum certo tempo, elas s~ao novamente observadas; ve-se que m1 move-secomo mostrado na ¯gura, enquanto m2 est¶a parada. Ache a velocidadede m3. Considere m1 = 2 kg, m2 = 0; 5 kg, m3 = 1 kg, v1 = 1 m/s,v2 = 2 m/s, v3 = 4 m/s e v01 = 3 m/s.

x

yI N

Í C I O

1vr 2vr1

2

030

33vr

x

yF I M

'v1

r

2

?

1

3

16. Um conjunto de part¶³culas possui massa total M = 2 kg. O momentolinear do sistema ¶e dado por ~P = b t ³ + c t2^, onde b = 2 kg m/s2,c = 4 kg m/s3 e t ¶e dado em segundos. Todas as massas permanecemconstantes.

(a) Determine a velocidade do centro de massa em fun»c~ao do tempo.

(b) Obtenha uma express~ao para a for»ca que atua sobre o sistemacomo fun»c~ao do tempo.

(c) Calcule o m¶odulo da for»ca externa para t = 1 s.

Page 16: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 16

17. A posi»c~ao do centro de massa de um sistema constitu¶³do de 4 part¶³culasde massas m1 = 1 kg, m2 = 2 kg, m3 = 3 kg e m4 = 4 kg ¶e dadapor XCM = ¡0; 4 m e YCM = ¡0; 1 m. Sabendo que as tres primeiraspart¶³culas est~ao localizadas nas posi»c~oes (1; 0), (¡1;¡1) e (¡1; 1), ondeas coordenadas est~ao dadas em metros, determine a posi»c~ao da quartapart¶³cula.

18. Um observador mede as velocidades de duas part¶³culas de massas m1

e m2 e obt¶em os valores ~v1 e ~v2. Determine:

(a) a velocidade do centro de massa das duas part¶³culas;

(b) a velocidade de cada uma das part¶³culas em rela»c~ao ao centro demassa do sistema;

(c) o momento linear de cada part¶³cula em rela»c~ao ao centro de massado sistema.

19. Em uma mesa horizontal, um sistema formado por duas massas m1 =1 kg e m2 = 3 kg ligadas por uma haste r¶³gida de massa desprez¶³vele comprimento igual a 20 cm est¶a em repouso na posi»c~ao indicada na¯gura. Num certo instante t = 0, passam a atuar as for»cas ~F1 = 3^ e~F2 = ¡4 ³ (dadas em Newtons) respectivamente sobre as massas 1 e 2.Despreze o atrito com a mesa.

- x (cm)-5 5 10 15

6y (cm)

w y(a) Encontre a acelera»c~ao do centro de massa do sistema.

(b) Calcule a posi»c~ao do centro de massa do sistema como fun»c~ao dotempo.

(c) Que tipo de trajet¶oria descrever¶a o centro de massa?

(d) Responda aos itens anteriores no caso em que a haste r¶³gida forsubstitu¶³da por uma mola de comprimento natural 20 cm e cons-tante el¶astica k = 0; 1 N/cm.

Page 17: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 17

20. Considere uma chapa homogenea de massa M , na forma de um trian-gulo equil¶atero de lado a, sobre uma mesa horizontal sem atrito. De-termine o vetor posi»c~ao do centro de massa da chapa como fun»c~ao dotempo, sabendo que as for»cas constantes ~F1 e ~F2 mostradas na ¯guras~ao aplicadas na chapa e que esta parte do repouso na posi»c~ao indicadana ¯gura. De sua resposta em fun»c~ao dos parametros M , a e F , onde

F = j~F1j= j ~F2j :

- x

6y

¢¢

¢¢

¢¢

¢¢

¢¢

AA

AA

AA

AA

AA

6~F1

HHHY

~F2

21. Um taco atinge uma bola de bilhar, exercendo sobre ela uma for»ca de50 N durante um intervalo de tempo de 0,010 s. Se a massa da bola ¶ede 0,20 kg, que velocidade ela ter¶a ap¶os o impacto?

22. Uma bola de 1,0 kg cai verticalmente sobre o solo, com velocidadede 25 m/s. Ela ¶e rebatida para cima e volta com uma velocidade de10 m/s.

(a) Que impulso age sobre a bola, durante o contato com o solo?

(b) Se a bola ¯cou em contato com o solo durante 0,020 s, qual a for»cam¶edia exercida sobre o solo?

23. Uma bola de borracha de massa 1 kg, que move-se sobre uma mesaplana sem atrito com velocidade constante de 2 m/s, colide frontal-mente com um bloco de massa 100 kg, em repouso. O choque ¶e per-feitamente el¶astico. Quais as velocidades da bola e do bloco depois dochoque?

24. Uma massa m1, com velocidade de m¶odulo v , choca-se frontalmentecom uma massa m2. Ap¶os a colis~ao, m2 possui velocidade de m¶odulou2. A massa m1, chocando-se com a mesma velocidade de m¶odulo vcom a massa m3, faz com que esta adquira uma velocidade de m¶odulo

Page 18: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 18

u3. Os choques s~ao el¶asticos e as massas m2 e m3 est~ao inicialmenteem repouso.

(a) Calcule m1 e v em termos de m2, m3, u2 e u3.

(b) Em 1932, num hist¶orico trabalho de pesquisa, James Chadwickobteve um valor para a massa do neutron, estudando colis~oesel¶asticas de neutrons r¶apidos com n¶ucleos de hidrogenio e de ni-trogenio. Ele encontrou que a m¶axima velocidade ¯nal do n¶ucleode hidrogenio inicialmente em repouso era 3; 3 £ 107 m/s e quea m¶axima velocidade ¯nal do n¶ucleo de nitrogenio 14 era 4; 7 £106 m/s. A massa do n¶ucleo de hidrogenio ¶e uma unidade demassa atomica (u.m.a.) e a do n¶ucleo de nitrogenio 14 ¶e de 14u.m.a.. Queremos saber, em u.m.a., qual a massa do neutron, e avelocidade inicial dos neutrons utilizados na rea»c~ao.

25. Num reator de ¯ss~ao nuclear, os neutrons produzidos pela ¯ss~ao de umn¶ucleo de uranio devem ser freados, de forma que possam ser absorvidospor outros n¶ucleos e produzam mais ¯ss~oes. Esta frenagem ¶e obtidapor meio de colis~oes el¶asticas com n¶ucleos, na regi~ao de modera»c~aodo reator. Se desejarmos frear os neutrons com o m¶³nimo de colis~oesposs¶³vel, que elementos devem ser usados como material moderador?Por que?

26. Considere dois blocos A e B, de massas iguais a 1 kg e 2 kg, respectiva-mente, colocados sobre uma mesa sem atrito. Uma mola de constanteel¶astica k = 3 N/cm e de massa desprez¶³vel est¶a presa ao bloco B.Prende-se o bloco A ao bloco B por meio de um ¯o, e neste processocomprime-se a mola de 10 cm. Num dado momento o ¯o se rompe.Determine a velocidade de cada bloco ap¶os a separa»c~ao.

A

A γγγγγγγγ γγγγγγγγ

γγγγγγγγγγγγγγγγ

B

B

a n t e s

depo i s

Page 19: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 19

27. Considere um choque el¶astico unidimensional de um corpo A que seaproxima de um corpo B inicialmente em repouso. Como voce escolhe-ria a massa de B, em rela»c~ao µa massa de A, para que ap¶os o choque Btenha:

(a) a m¶axima velocidade poss¶³vel;

(b) o maior momento linear poss¶³vel;

(c) a m¶axima energia cin¶etica?

28. Uma part¶³cula de massa m1 e energia cin¶etica inicial T1 colide elastica-mente com uma part¶³cula de massa m2 inicialmente em repouso. Qual¶e a energia m¶axima que a primeira part¶³cula pode perder durante estacolis~ao? (Sugest~ao: use o referencial do centro de massa do sistema.)

29. Dois corpos de massas m1 = 4 kg e m2 = 2 kg, com velocidades dem¶odulos v1 = 5 m/s e v2 = 2 m/s, como indicado na ¯gura, colidem epermanecem juntas ap¶os o choque.

m1

m2

v2

v1

(a) Calcule a velocidade das part¶³culas ap¶os o choque e a varia»c~ao naenergia cin¶etica total durante o choque.

(b) Calcule as velocidades iniciais e ¯nais dos corpos num referencialligado ao centro de massa do sistema. Fa»ca o esquema da colis~aoneste referencial.

(c) Calcule a varia»c~ao da energia cin¶etica no referencial do centro demassa do sistema.

30. Como mostrado na ¯gura, observa-se um bloco de madeira com massaM = 0; 49 kg em repouso num plano horizontal. O coe¯ciente de atritoentre o bloco e o plano ¶e ¹ = 0; 25. Uma bala de massa m = 0; 01 kg ¶eatirada contra o bloco, atingindo-o horizontalmente com velocidade de500 m/s, ¯cando nele engastada.

Page 20: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 20

(a) Calcule a velocidade do conjunto imediatamente ap¶os o impacto.

(b) Ache a distancia que o conjunto percorre at¶e parar.

M-m~v0

31. Um bloco de madeira de massa m2 repousa sobre uma superf¶³cie hori-zontal, como mostra a ¯gura. O coe¯ciente de atrito entre o bloco e asuperf¶³cie ¶e ¹. Uma extremidade de uma mola, de constante el¶astica k,est¶a ligada ao bloco, e a outra extremidade est¶a presa a uma parede.Inicialmente a mola n~ao est¶a distendida. Uma bala de massa m1 atingeo bloco e ¯ca grudada nele. Se a de°ex~ao m¶axima da mola for x,obtenha a velocidade da bala em fun»c~ao de m1, m2, k, ¹, g e x.

°°°°°°° m2t¾ m1

32. Um vag~ao de massa m desce uma colina de altura h. Ao ¯nal da colinao solo ¶e horizontal, e o vag~ao colide com um vag~ao igual inicialmenteem repouso. Os dois se engatam e come»cam a subir uma outra colina.Que altura eles alcan»cam?

Considere o atrito desprez¶³vel.

h

33. Considere o sistema da ¯gura, formado por um conjunto de n massassuspensas por ¯os de massas desprez¶³veis de forma a n~ao existir contatoentre elas. A primeira massa tem um valor f m0, a segunda f2m0,a terceira f3m0 e assim sucessivamente at¶e a n-¶esima, f nm0. Umapart¶³cula de massa m0 e velocidade ~v0 choca-se com a primeira massa.

Page 21: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 21

kfm0

k k k¢ ¢ ¢ kfnm0

{ -~v0

m0

(a) Supondo todas as colis~oes entre as massas perfeitamente el¶asticas,mostre que a ¶ultima massa ¶e ejetada com velocidade

~vn =

"2

1 + f

#n~v0 :

(b) Mostre que, para valores de f pr¶oximos da unidade (f = 1 + »,» ¿ 1), este sistema pode ser usado para transferir praticamentetoda a energia cin¶etica da part¶³cula incidente para a ¶ultima massasuspensa, mesmo para grandes valores de n.

(c) Calcule, para f = 0; 9 e n = 20, a massa, a velocidade e a energiacin¶etica da ¶ultima massa suspensa em fun»c~ao de m0 e de ~v0 dapart¶³cula incidente. Compare com o resultado que seria obtidonuma colis~ao direta entre a part¶³cula incidente e a ¶ultima part¶³culasuspensa.

34. Um ¶atomo de deut¶erio (cujo n¶ucleo, o deuteron, cont¶em um pr¶oton eum neutron) com energia cin¶etica de 0; 81 £ 10¡13 J colide com um¶atomo similar em repouso. Ocorre uma rea»c~ao nuclear, e ¶e emitido umneutron cuja velocidade faz um angulo reto com a dire»c~ao da velocidadedo primeiro ¶atomo. Nesta rea»c~ao, ¶e liberada uma energia de 5; 31 £10¡13 J, que ¶e transformada em energia cin¶etica das part¶³culas emitidas.Determine a energia cin¶etica do neutron, dado que o outro produto ¶eum ¶atomo de H¶elio 3 e que as massas do neutron, do deut¶erio e do 3Hes~ao respectivamente 1,67 , 3,34 e 5,00 em unidades de 10¡27 kg.

35. Uma part¶³cula de massa m0 com velocidade de m¶odulo v0 atinge umapart¶³cula estacion¶aria de massa 2m0. Como resultado, a part¶³cula demassa m0 tem a dire»c~ao de seu movimento de°etida de um angulo de45± e o m¶odulo de sua velocidade passa a ser v0=2. Ache o vetor ve-locidade da part¶³cula de massa 2m0 ap¶os a colis~ao. Houve conserva»c~aoda energia cin¶etica do sistema?

Page 22: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 22

36. Mostre que em uma colis~ao el¶astica n~ao frontal de duas esferas identi-cas, em que uma delas est¶a inicialmente em repouso, o angulo formadopelas dire»c~oes das velocidades ¯nais das duas esferas ¶e sempre ¼=2.

37. Uma part¶³cula de massa m1 e velocidade u1 atinge uma part¶³cula emrepouso de massa m2. O choque ¶e perfeitamente el¶astico. Observa-seque depois do choque as part¶³culas tem velocidades iguais e opostas.Ache:

(a) a rela»c~ao m2m1

;

(b) a velocidade do centro de massa do sistema;

(c) a energia cin¶etica total das part¶³culas no referencial do centro demassa do sistema, em fun»c~ao da energia cin¶etica inicial de m1,T1 = 1

2 m1 u21 ;

(d) a energia cin¶etica ¯nal de m1 no sistema de laborat¶orio.

38. Uma part¶³cula de massa m movendo-se com velocidade v sobre umamesa plana sem atrito incide sobre outra part¶³cula de massa 2m, emrepouso. Ap¶os o choque, observa-se que a massa m tem velocidadede m¶odulo 2v=3 fazendo um angulo de 60± com a dire»c~ao original domovimento, do ponto de vista de um observador no laborat¶orio.

(a) Qual a velocidade do centro de massa do sistema antes e depoisdo choque?

(b) Qual a velocidade, vista do referencial do centro de massa dosistema, da part¶³cula de massa 2m ap¶os o choque?

39. Uma part¶³cula de massa m, que move-se com velocidade de m¶odulo v,choca-se com uma part¶³cula em repouso de massa 2m. Em consequenciadisto, a part¶³cula de massa m ¶e desviada de 30± da sua dire»c~ao deincidencia, e ¯ca com uma velocidade ¯nal de m¶odulo v=2. Obtenhaa velocidade ¯nal da part¶³cula de massa 2m (em m¶odulo, dire»c~ao esentido) depois desta colis~ao. A energia cin¶etica se conserva durantea colis~ao? Resolva este mesmo problema no referencial do centro demassa do sistema. Observe que angulos medidos em referenciais que semovem um em rela»c~ao ao outro n~ao s~ao necessariamente iguais.

Page 23: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 23

40. Uma bola de a»co de massa 0,5 kg est¶a presa a um cord~ao de 70 cm decomprimento e ¶e abandonada quando o cord~ao est¶a na horizontal. Naparte mais baixa de sua trajet¶oria, a bola atinge um bloco de a»co demassa 2,5 kg, inicialmetne em repouso sobre uma superf¶³cie lisa, comomostrado na ¯gura. A colis~ao ¶e el¶astica. Determine as velocidades dabola e do bloco ap¶os a colis~ao.pw p

w41. O arranjo da ¯gura ¶e chamado de pendulo bal¶³stico. Ele ¶e usado para

determinar a velocidade de um proj¶etil, atrav¶es da medida da altura hque o bloco sobe ap¶os ter sido atingido pelo proj¶etil.

Mtm -~v

AA

AAM

h

(a) Prove que a velocidade do proj¶etil ¶e dada por

v =q

2 g hm+M

m;

onde m ¶e a massa da bala e M a massa do bloco.

(b) Calcule a energia gasta pelo proj¶etil para penetrar no bloco.

42. Uma bala de massa m e velocidade v passa atrav¶es do bulbo de umpendulo de massa M e emerge com velocidade v=2. O ¯o que suporta obulbo tem comprimento `. Qual ¶e o menor valor de v para que o bulbodo pendulo gire uma volta completa?

m

v v /2M

Page 24: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex. 13 | p. 24

43. Demonstre que, para um sistema de part¶³culas, a varia»c~ao da energiacin¶etica total ¶e igual µa soma do trabalho total das for»cas internas e dotrabalho total das for»cas externas.

44. Considere duas part¶³culas de massas m1 e m2 sujeitas apenas µa in-tera»c~ao m¶utua do tipo newtoniano (satisfazendo µa terceira lei de New-ton). Escreva a segunda lei de Newton para cada uma das part¶³culas.Subtraia uma das equa»c~oes da outra e mostre ent~ao que \o movimentorelativo de duas part¶³culas, sujeitas apenas µas suas intera»c~oes m¶utuas,¶e equivalente, em rela»c~ao a um observador inercial, ao movimento deuma part¶³cula de massa ¹ = m1m2=(m1 +m2) | a massa reduzida dosistema | sob a a»c~ao de uma for»ca igual µa for»ca de intera»c~ao".

45. Seja um sistema de duas part¶³culas de massas m1 e m2 e velocidades~v1 e ~v2.

(a) Mostre que para um observador que se move com o centro demassa do sistema a energia cin¶etica vale

Tcm =1

2¹v02 ;

onde ¹ = m1m2=(m1 + m2) ¶e a massa reduzida do sistema e~v0 = ~v1 ¡ ~v2 ¶e a velocidade relativa das duas part¶³culas.

(b) Mostre que para um observador num sistema de referencia qual-quer a energia cin¶etica do sistema ¶e

T = Tcm +1

2M V 2

cm ;

onde M = m1+m2 ¶e a massa total do sistema e ~Vcm ¶e a velocidadede seu centro de massa.

(c) Qual ¶e o maior valor da energia que pode ser perdida atrav¶es decolis~oes das duas part¶³culas? Suponha o sistema isolado.

Page 25: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex.13 | p. 25

IF { UFRJ { 2004/1F¶³sica 1 { IFA (prof. Marta)

Respostas { Lista de exerc¶³cios 13

Sistema de Part¶³culas:Momento Linear, Centro de Massa,Conservac»~ao do Momento, Colis~oes

1. d1 = m2m1+m2

(x2 ¡ x1); se m1 = m2, d1 = 12 (x2 ¡ x1).

w1 u2­cm

d1 d2

2. Se d = j~r1 ¡ ~r2j ¶e a distancia entre os dois objetos, d1 = m2m1+m2

d,d2 = m1

m1+m2d, e portanto d1=d2 =m2=m1.

3. ~R = 2 ³¡ 74 ^; d1 = 4; 8 m, d2 = 1; 6 m.

4. 0; 66£ 105 m/s.

5. 60 m.

6. (a) Fazendo um angulo de 118± com a dire»c~ao do momento do el¶etron,com m¶odulo 1; 36£ 10¡22 kg.m/s.

(b) 1; 6£ 10¡19 kg.

7. Um dos fragmentos tem velocidade igual a 5 m/s com a mesma dire»c~aoe o mesmo sentido da velocidade inicial do corpo; o segundo fragmentotem velocidade de 1 m/s, com a mesma dire»c~ao e sentido oposto aosentido da velocidade inicial do corpo.

8. (a) O centro de massa est¶a em repouso inicialmente, e permanece emrepouso.

(b) A 0,75 m de P (sobre o centro de massa do sistema).

Page 26: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex.13 | p. 26

9. (a) A velocidade do homem em rela»c~ao µa Terra vale u = v + V (emm¶odulo), e V ¶e o m¶odulo da velocidade do bal~ao em rela»c~ao µaTerra; ent~ao V = mv= (M ¡m) { o bal~ao sobe em rela»c~ao µa Terrase sua massa for maior do que a massa do homem, e desce se suamassa for menor.

(b) Ficar¶a em repouso.

10. Avi~ao: (M ¡m)v±=(M ¡ 2m); foguete: mv±=(2m ¡M ), onde o sinalpositivo corresponde ao movimento no mesmo sentido original do avi~ao.

11. A 6,6 m da margem.

12. N~ao (supondo que o bra»co do homem mede menos de 0,5 m).

13. (a) u1 = mv=M , com sentido oposto ao da bola.

(b) u2 = mv=(M +m), com o mesmo sentido da velocidade da bola.

(c) u4 = (m=M)m v=(M +m), com sentido oposto ao da velocidadeda bola.

14. Usando um sistema de eixos coordenados onde a dire»c~ao x ¶e de¯nidapelas posi»c~oes das massas de 1,0 kg e de 3,0 kg, com a origem colocadasobre a posi»c~ao da massa de 1,0 kg, e com a posi»c~ao da massa de 6,0 kgcom coordenadas positivas, ~R = 1; 2 ³ + 1; 0^ (em metros).

15. ~v 03 = 4; 5 ³¡ ^ (em m/s).

16. (a) ~V = t ³ + 2 t2 ^ (em m/s).

(b) ~FEXTRES = 2 ³ + 8 t ^ (em N).

(c) F (t = 1) = 8; 2 N.

17. (0;¡0; 5).

18. (a) ~V = (m1~v1 +m2~v2)=(m1 +m2).

(b) ~v¤1 = m2 (~v1 ¡ ~v2) =M e ~v¤2 = ¡m1 (~v1 ¡ ~v2)=M , onde M =m1 +m2

(c) ~p¤1 = ¡~p¤2 =m1m2 (~v1 ¡ ~v2)=M

19. (a) ~A = ¡ ³ + 0; 75^.

Page 27: GUIA DE ESTUDO 5 M¶odulo 5: Sistema de Part¶³culas:

F¶³s1 { 04/1 { G.5 { Ex.13 | p. 27

(b) Considerando a massa 1 como sendo a que est¶a em x1 = ¡5 cm,~R(t) = (0; 1 ¡ 0; 5 t2) ³ + 0; 38 t2^.

(c) Uma reta; a equa»c~ao da trajet¶oria ¶e X = 0; 1 ¡ (4=3) Y , ou Y =3=4 (0; 1 ¡X).

(d) Todas as respostas anteriores ¯cam iguais, pois o movimento docentro de massa n~ao depende de for»cas internas ao sistema.

20. ~R(t) =³a2 ¡

p3

4FM t2

´³ +

³a

2p

3+ 3

4FM t2

´^

21. 2; 5 m/s.

22. (a) 35 N.s.

(b) 1; 75 £ 103 N.

23. vbola = 4=101 = 0; 04 m/s; vbloco = ¡99=101 = ¡0; 98 m/s.

24. (a) m1 = (m3u3 ¡m2 u2) = (u2 ¡ u3);

v = 0; 5 [(m3 ¡ 2m2) u3 +m2 u2] = (m3 u3 ¡m2 u2).

(b) m = 1; 16 u.m.a., v = 0; 8£ 106 m/s.

25.

26. v1 = 1; 4 m/s, v2 = 0; 7 m/s, na mesma dire»c~ao e em sentidos opostos.

27. (a) mB >>> mA, ou mA=mB ! 0 (e nesse caso, vB = 2v±, com v± avelocidade inicial do corpo A).

(b) mB <<mA, ou mB=mA ! 0 (e nesse caso, pB = 2mBv±).

(c)

28.

29. (a) ~vf = 8=3 v1 (em m/s); ¢T = ¡ 98=3 J.