31
HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for Automation in Nanobiotech Robotics & Mechatronics Research Lab., Monash University Dept of Micro-Nano Systems Eng., Nagoya University IEEE NANO 2007 Int’l Conf. on Nanotechnology Hong Kong, China August 2-5, 2007 www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Embed Size (px)

Citation preview

Page 1: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM

Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda

CAN Center for Automation in NanobiotechRobotics & Mechatronics Research Lab., Monash University

Dept of Micro-Nano Systems Eng., Nagoya University

IEEE NANO 2007 Int’l Conf. on NanotechnologyHong Kong, ChinaAugust 2-5, 2007

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 2: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

The new era of Nanotechnology is coming

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 3: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Medical Nanorobot Research Nanorobot Research Challenge

Research ObjectivesResearch Methodology

Computational AnalysisNanorobot Design

Sensing MethodologyControl Model

Verification MethodologiesNanorobot IC Layout

Conclusion

P r e s e n

t a t i o n o u

t l i n e :

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 4: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

1. MEDICAL NANOROBOT RESEARCH

- Quantum Dot new materials

- Genome analysis

- Biomedical Problems

- Microelectronics miniaturization nanoelectronics

New research subject:- Interdisciplinary focus

Natural result from:

Motivation:- Establish Methodologies

on System and Device Prototyping- Control and Architecture of Nanorobots for Medicine

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 5: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

2. NANOROBOT RESEARCH CHALLENGE

a. Architecture, sensing and actuation at nanoscale:- development of molecular nanomachine & systems

Possible applications: - Nanoassembly automation- Health care

b. An acceptable approach

i. Agents as assemblers sensory feedback intelligent control is indispensable for micro/nano manipulation

ii. Advanced analytical approach as a tool for exploration and design

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 6: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

3. RESEARCH OBJECTIVES

a. Methodology:

- Establish the necessary tools for the study of nanorobots

b. Control: - Identify methodology to control nanorobots

c. Architecture: - Investigate issues associated

with hardware requirements

d. Flow Signal: - Define the chemical / thermal blood flow signals

that interferes with sensing and actuation

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 7: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

4. RESEARCH METHODOLOGY

c. System Identification and Requirements:- System Modular approach

to validate nanorobot architecture analysis- Verification Hardware Description Language

(VHDL) to verify IC-Layout Architecture simulation

a. Characterization of sensor-based events: - Define protein anti-body based signals- Control modelling - nanorobot behaviours

b. Biomedical Flow Signal:

-Finite Element Method (FEM) to study flow patterns

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 8: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

5. COMPUTATIONAL ANALYSIS

b. Mobile nanorobot interaction and tasks - Perform molecular assembly manipulation - Biomedical engineering applications

c. Storage simulation data - Later analyses for nanodevices manufacturing - Serves on sensing/actuation device design- Layout for DNA based new ICs: nanobioelectronics

a. A 3D tool to simulate the nanorobot within the human body

- Enable fast nanorobots control investigation

- Provide physical parameters for

manufacturing evaluation- Nanorobot Control Design (NCD) system

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 9: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

6. NANOROBOT DESIGN

b. Nanorobot navigation: - Uses plane surfaces (three fins total) - Propulsion by bi-directional propellers: two simultaneously counter-rotating screw drives - navigational acoustic sensors

a. For Molecular Manipulationnanorobot uses actuators

nanorobot design

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 10: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

7. SENSING METHODOLOGY

a. Decision planning

Medical target delivery

Motion: random, chemical, thermochemical

Behaviour activation www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 11: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

b. Physical parameters in the simulator

Interactive simulation

Blood Flow Signal Analysis (FEM)

- velocity

- temperature

- shear stress

- molecular concentrations

7. SENSING METHODOLOGY

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 12: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

8. CONTROL MODELa. Nanorobots Collective Control Planning

tn

t

m

i

ti ywrfMax

1 1

)(

dQyts tt ..

LxQ ti

t

determines the kind of behaviour for r. ψ:

y: surplus/deficit to the desired protein/drug amount.w: chemical level of the medical target i at time t.

Q: total of protein captured by r in t.

d: desired protein compound rate.

x: substance amount injected in the medical target i.

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 13: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

8. CONTROL MODEL

xCvCD /2

b. Signal Sensor - Based Control Reaction

)2/()(

2),,( Dxrve

Dr

QzyxC

222 zyxr

Q : molecules per second

v: flow velocity

D: diffusion coeficient

C: molecules concentration per 3m

r: distance from the center of the vessel

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 14: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

9. VERIFICATION METHODOLOGIES - CASES STUDIES

Nanorobots searching for malignant tissues

a. Nanorobots for Cancer - Surgery / Drug Delivery / Early Diagnosis

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 15: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Constant signal diffusion from injury target

Genome Mapping - Chromosome 21

E-cadherin / bcl-2 gradient

changed by tumour

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 16: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

This high constant diffusion could be used as signals for robots.

target area

signal spreads further throughout vessel

E-cadherin / bcl-2: protein signals to detect cancer

Chemical & temperature signals activate nanorobots near target. www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 17: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

20microns diameter vessel

Comparative behaviors

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 18: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Such control activation parameters could be used for biomedical applications – e.g. Coronary Atherosclerosis

Blood temperature in the occluded region

b. Nanorobots for Cardiology Blood Pressure Monitoring / Drug Delivery

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 19: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Nanorobots and Red Blood Cells Near the vessel occlusion

sVCAM-1 chemical signal

concentration in the stenosis

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 20: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

c. Nanorobots for Diabetes - Glucose Monitoring

patients must take small blood samples many times a day to control glucose levels.

Such procedures are uncomfortable and

extremely inconvenient

Nanorobots with nanobiochemosensors (hSGLT3) can be used for pervasive diabetes monitoring.

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 21: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

RF are proposed in our nanorobot architecture for:

Upload controlData communication

Tele-operation

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 22: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Human Genome Mapping

Chromosome 12 DNA Analysis provides antibody agent for CMOS Electro-Chemical biosensors.

is progressively advancing through integration of new materials for nanobiosensors and actuator for biomedical application.

New NanoCMOS IC Design

Can be applied for cerebral aneurysm with detection of iNOS (inducible Nitric Oxide Synthase)

Medical Nanorobots

d. Nanorobots for Brain Aneurysm Early Diagnosis / Nanowire Delivery

Brain Aneurysm Bulb

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 23: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Diagnosis and detection of vessels dilatation & deformation

in early stages is crucial

Nanorobots can enable precise delivery of nanowires to fill the aneurysm

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 24: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Nanorobots can be used with biosensors to detect iNOS

Signals for diagnosis before a stroke happens

iNOS (inducible Nitric Oxide Synthase)

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 25: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

10. Nanorobot IC Layout

* CMOS

Can be used as embedded nanodevice to build integrated sensors and actuator for nanorobots

CMOS achieved 10nm sizes functionality

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 26: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

* CMOS

RF-CMOS with wireless communication is a feasible way to interface with nanorobots – tracking, operation, diagnosis

Photonics + Q.D. + nanotubes:enable high performance to production of nanodevices

10. Nanorobot IC Layout

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 27: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

* CMOS

Nanorobot hardware integrated nanocircuit architecture

10. Nanorobot IC Layout

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Electromagnetic backpropagation waves are used to define the nanorobot positions

Page 28: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Selected Peer Reviewed Publications

Adriano Cavalcanti, Tad Hogg, Bijan Shirinzadeh, “Nanorobotics System Simulation in 3D Workspaces with Low Reynolds Number”, IEEE-RAS MHS Int’l Symposium on Micro-Nanomechatronics and Human Science, Nagoya, Japan, pp. 226-231, Nov. 2006.

Adriano Cavalcanti, Warren W. Wood, Luiz C. Kretly, Bijan Shirinzadeh, “Computational Nanomechatronics: A Pathway for Control and Manufacturing Nanorobots”, IEEE CIMCA Int’l Conf. on Computational Intelligence for Modelling, Control and Automation, IEEE Computer Society, Sydney, Australia, pp. 185-190, Nov. 2006.

JournalAdriano Cavalcanti, Bijan Shirinzadeh, Robert A. Freitas Jr., Luiz C. Kretly, “Medical Nanorobot

Architecture Based on Nanobioelectronics”, Recent Patents on Nanotechnology, Bentham Science, Vol. 1, no. 1, pp. 1-10, Feb. 2007. Adriano Cavalcanti, Robert A. Freitas Jr., “Nanorobotics Control Design: A Collective Behavior

Approach for Medicine”, IEEE Transactions on NanoBioscience, Vol 4., no. 2, pp. 133-140, Jun. 2005.

Conference

Adriano Cavalcanti, Lior Rosen, Bijan Shirinzadeh, Moshe Rosenfeld, “Nanorobot for Treatment of Patients with Artery Occlusion”, Springer Proceedings of Virtual Concept,

Cancun, Mexico, Nov. 2006.

Adriano Cavalcanti, “Assembly Automation with Evolutionary Nanorobots and Sensor-BasedControl applied to Nanomedicine”, IEEE Transactions on Nanotechnology, Vol. 2,

no. 2, pp. 82-87, Jun. 2003.

Arancha Casal, Tad Hogg, Adriano Cavalcanti, “Nanorobots as Cellular Assistants in Inflammatory Responses”, IEEE BCATS Biomedical Computation at Stanford 2003 Symposium, IEEE Computer Society, Stanford CA, USA, Oct. 2003.

Adriano Cavalcanti, Bijan Shirinzadeh, Declan Murphy, Julian A. Smith, “Nanorobot forLaparoscopic Cancer Surgery”, IEEE-ICIS Int’l Conf. on Computer and Information Science, Melbourne, Australia, pp. 738-743, Jul. 2007.

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 29: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Acknowledgments / Technical Collaboration

T. Hogg (HP US)

W. W. Wood (Michigan State University US)

R. A. Freitas Jr. (Inst. for Molecular Manufacturing US)

L. Rosen (Tel Aviv University IL)

A. Casal (Stanford University US)

L. C. Kretly (Campinas University BR)

D. Murphy (Guy’s Hospital UK)

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 30: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

11. CONCLUSION

b. Rapid Evaluation of Various Control Algorithms

First methodology for medical nanorobot investigation

CONTRIBUTIONS

First nanorobot architecture based on nanobielectronics

a. Real-time digital simulation as a valuable tool

for the better investigation of biomedical flow signals

c. Show a practical approach to investigatenanodevices manufacturing for nanorobots

e.g.: transducers/nanobiosensors prototyping

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com

Page 31: HARDWARE ARCHITECTURE FOR NANOROBOT APPLICATION IN CEREBRAL ANEURYSM Adriano Cavalcanti, Bijan Shirinzadeh, Toshio Fukuda, Seiichi Ikeda CAN Center for

Just a few quotes…

“There is nothing permanent except change.”Heraclitus of Ephesus (ca. 525-475 B.C.)

“A scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents

eventually die and a new generation grows up that is familiar with it.”

Max Plank (1858-1947)

“A pessimist sees the difficulty in every opportunity; An optimist sees the opportunity in every difficulty.”

Winston Churchill (1874-1965)

www.c a n b i o t e c h n e m s.com www.n a n o r o b o t d e s i g n.com