Hasler IIT Lecture01 A

Embed Size (px)

Citation preview

  • 8/10/2019 Hasler IIT Lecture01 A

    1/27

  • 8/10/2019 Hasler IIT Lecture01 A

    2/27

    .?@ ;0)#1'1("0 A*0'%):"#

    8/B9 %14

    C500*#(

    @5D(=0*1="&,

    !E F4GHIHF

    9"E J4KJFL3M0.4 0.5 0.6 0.7 0.8 0.9

    1A

    Gate voltage (V)

    Draincurrent(A)

    10nA

    1nA

    10pA

    100nA

    100pA

    .'1/)(

  • 8/10/2019 Hasler IIT Lecture01 A

    3/27

    Diffusion of Charge over Barrier

    V 4UT)

    (Saturation, IR~0, Vds> Von)

    I = %f

    %r

  • 8/10/2019 Hasler IIT Lecture01 A

    6/27

    Measured Channel Current

    0.4 0.450.5 0.550.6 0.650.70.750.8 0.850.910-11

    10-10

    10-9

    10-8

    10-7

    10-6

    Gate voltage (V)

    Draincurrent(A)

    !E F4GHIHF

    9"E J4KJFL3M

    0.6 0.65 0.7 0.75 0.8 0.85 0.910-12

    10-11

    10-10

    10-9

    10-8

    10-7

    Source voltage (V)

    Draincurrent(A)

    _;E KG4HL/-

    C500*#( 3"0 7)(* @`**U C500*#( 3"0 @"50

  • 8/10/2019 Hasler IIT Lecture01 A

    7/27

    Measured Channel Current

  • 8/10/2019 Hasler IIT Lecture01 A

    8/27

    .?@^V; ;*/U .",*&'#8 3"0 C'0

  • 8/10/2019 Hasler IIT Lecture01 A

    9/27

    View of Scaling FET Devices

    2F

    F

    6F

    2F

    F

    6F

    Key steps to Shrinking an FET

    Shrink lateral dimensions (lithography)

    To keep gain constant (VA constant),

    decrease size of depletion regions (x2)

    increase substrate doping (x4)

    Then, to keep !(sub VT slope) constant,

    decrease size of gate oxide

    F minimum channel length

    Tox (min) ~ 2nm (FET)

    ~ 5-6nm (FG FET)

    (multiple oxides available)

    Classic Scaling (1971 )

    Shrink

    x2

    What if we dont follow the steps?

    !decreases.

    If starting != 0.75,

    for x2 shrink, != 0.67

    for x3 shrink, != 0.5

    for x6 shrink, != 0.33

    Decreased gain (effective L changes),

    punchthrough (effective L ~ 0)

  • 8/10/2019 Hasler IIT Lecture01 A

    10/27

    .*/"0> ;*

  • 8/10/2019 Hasler IIT Lecture01 A

    11/27

    @]M. C*&& W)1'

    c

    c

    c

    c

    c

    c

    c

    c

    9#J

    9#K

    9#e

    9#L

    ]*), C'0

  • 8/10/2019 Hasler IIT Lecture01 A

    12/27

    W)1'< d)(

  • 8/10/2019 Hasler IIT Lecture01 A

    13/27

    A]M. C*&& W)1'

  • 8/10/2019 Hasler IIT Lecture01 A

    14/27

    W)1'< ]?. C"#

  • 8/10/2019 Hasler IIT Lecture01 A

    15/27

    W)1'< V2]?. C"#

  • 8/10/2019 Hasler IIT Lecture01 A

    16/27

    Floating-Gate Circuit BasicsCapacitor-Based Circuit Design

    Resistors and Inductors define the

    circuit dynamics

    Capacitors are the natural elements

    on silicon ICs

    GND

    9"5(

    -8

    GND

    9"5(

    -)

    -D

    CJ

    CK

    -8

    GND-8%

    GND-8 %

    -)

    -D

    CJ

    CK

    Basic MOSFET Transistor

    Basic FG MOSFET Transistor

  • 8/10/2019 Hasler IIT Lecture01 A

    17/27

    ;>U*1 "3 9#(*80)(*, C)U)

  • 8/10/2019 Hasler IIT Lecture01 A

    18/27

    _- 2="("'#b*

  • 8/10/2019 Hasler IIT Lecture01 A

    19/27

    V&*Y 3

    JFH/-

    @

  • 8/10/2019 Hasler IIT Lecture01 A

    20/27

    Creates a DC Measurement

    of classic C-V curves

    Gain = "Vout/ "V1

    = - C1/ Cf

    V1

    V2

    V3

    V4

    C4

    C1

    C2

    C3

    Cf

    Vref

    Vout

    -1.5 -1 -0.5 0 0.5 10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    Gate-to-well voltage (V)

    Capaci

    tance(pF)

    Accumulation

    Depletion

    6"` ("

  • 8/10/2019 Hasler IIT Lecture01 A

    21/27

    VV2]?. C*&&1(EEPROM = Electrically Erasable PROM)

    Modification of the cell for programming

    Eliminate need for UV

    Early cells: Tunneling to program and erase (80s, early 90s)

    Flash EEPROM: Tunneling to program, and

    Injection for block erase

    Most current cells use injection and tunneling

    p-substrate

    n+n

    +p+

    bulkcontact

    drainsource gate

  • 8/10/2019 Hasler IIT Lecture01 A

    22/27

    Electron Transport in a subthreshold nFET

  • 8/10/2019 Hasler IIT Lecture01 A

    23/27

    .*)150*/*#(1 )#, .",*&'#8 "3 6"($

    V&*

  • 8/10/2019 Hasler IIT Lecture01 A

    24/27

    f0':#8 9#,'%',5)& A*%'

  • 8/10/2019 Hasler IIT Lecture01 A

    25/27

    U^V; 6"($V&*

  • 8/10/2019 Hasler IIT Lecture01 A

    26/27

    Scaling of EEPROM devices

    [1] N. Shibata, et. al, A 70 nm 16 Gb 16-Level-Cell NAND flash Memory, JSSC, vol. 43, no. 4, 2008 (ScanDisk / Toshibha)

    [2] T. Futatsuyama1, et. al, A 113mm2 32Gb 3b/cell NAND Flash Memory, ISSCC 2009.

    [3] C. Trinh1, et. al, A 5.6MB/s 64Gb 4b/Cell NAND Flash Memory in 43nm CMOS, ISSCC 2009 (ScanDisk / Toshibha)

    [4] R. Zeng1, et. al, A 172mm2 32Gb MLC NAND Flash Memory in 34nm CMOS, ISSCC 2009 ( Intel & Micron)

    Wide use: Memory Sticks, Flash Cards (i.e. SD), etc.

    Most approaches store multiple levels per cell (2, 4, 8, 16!1-4 bits/ cell)

    Typical Densities: 70nm Flash 1-2 G cells / cm2 (production)

    45nm Flash 6-7 G cells / cm2 (production)

    32nm Flash ~ 10 G cells / cm2 (development)

    (densities include all support infratructure / readout / programming)

    All cells report > 10 year lifetime for storage,

    consistant with 5-6nm oxide thicknesses (and our FG measurements as well)

    (45nm and below has some modified dielectrics),

    with ns read access times and ms (or less) individual cell write times

    (consistant with our history of FG devices)

  • 8/10/2019 Hasler IIT Lecture01 A

    27/27

    .*/"0> ;*