39
台台台台台台台台台 Helioseismology (II) Global and Local Helioseismology (2010.08, 台台 ) 台台Dean-Yi Chou

Helioseismology (II) Global and Local Helioseismology

Embed Size (px)

DESCRIPTION

Helioseismology (II) Global and Local Helioseismology. 周定一. Dean-Yi Chou. 台灣清華大學 , 物理系. (2010.08, 北京 ). Helioseismolgy. Using solar p-mode oscillations (waves) measured on the solar surface to probe the solar interior. Basic Principle to probe Solar Interiors. - PowerPoint PPT Presentation

Citation preview

Page 1: Helioseismology  (II) Global and Local Helioseismology

台灣清華大學, 物理系

Helioseismology (II)

Global and Local Helioseismology

(2010.08, 北京 )

周定一 Dean-Yi Chou

Page 2: Helioseismology  (II) Global and Local Helioseismology

Helioseismolgy

Using solar p-mode oscillations (waves) measured on the solar surface to probe the solar interior.

Page 3: Helioseismology  (II) Global and Local Helioseismology

Basic Principle to probe Solar Interiors

Different modes penetrate into different depths.

Page 4: Helioseismology  (II) Global and Local Helioseismology

Observations in Helioseismology

Using solar p-mode oscillations (waves) measured on the solar surface to probe the solar interior.

Observations set r = R

But it still gives the same dispersion relation:

Page 5: Helioseismology  (II) Global and Local Helioseismology

Local Helioseismolgy

Using solar p modes measured on the solar surface to probe the local properties of the solar interior.

Global Helioseismolgy

Using solar p modes measured on the solar surface to probe the global properties of the solar interior.

The life time of p modes used in global helioseismology needs to be long enough to go around the Sun.

This gives a criterion: l < 150

It needs higher l (shorter wavelength).

Page 6: Helioseismology  (II) Global and Local Helioseismology

Examples of Important Achievements in Global Helioseismology

• Confirm and refine the standard model

• Depth dependence of sound speed

• Differential rotation pattern

• Wave excitation mechanism

• Solar-cycle variations of rotation and sound speed near the base of the convection zone ???

Page 7: Helioseismology  (II) Global and Local Helioseismology

Observations in Helioseismology

Using solar p-mode oscillations (waves) measured on the solar surface to probe the solar interior.

Observations set r = R

But it still gives the same dispersion relation:

Page 8: Helioseismology  (II) Global and Local Helioseismology

k-ω Diagram

Page 9: Helioseismology  (II) Global and Local Helioseismology

Sound Speed and Density Profile

Page 10: Helioseismology  (II) Global and Local Helioseismology

Internal Differential Rotation

Page 11: Helioseismology  (II) Global and Local Helioseismology

Internal Differential Rotation

(comparison of different methods)

Page 12: Helioseismology  (II) Global and Local Helioseismology

Local Helioseismolgy

Using solar p-mode oscillations measured on the solar surface to probe the local properties of the solar interior.

Local properties (local inhomegeneity):

1. magnetic fields

2. flows

3. thermal perturbation

4. other local properties

Page 13: Helioseismology  (II) Global and Local Helioseismology

> Fourier-Hankel decomposition (Braun et al. 1987)> Ring-diagram Analysis (Hill 1988)> Time-Distance Analysis (Duvall et al. 1993)> Acoustic Imaging (Chang et al. 1997)> Holography ? (Chou et al. 2007)> Direction Filter (Chou et al. 2009)

Techniques in Local Helioseismology

Page 14: Helioseismology  (II) Global and Local Helioseismology

Examples of Important Achievements in Local Helioseismology

• Flows around sunspots

• Flows in the convection zone (near surface)

• Sound-speed perturbation around sunspots

• Meridional flows in the convection zone (distribution and solar-cycle variations)

• Acoustic power in sunspots

Page 15: Helioseismology  (II) Global and Local Helioseismology

Ring-diagram Analysis (Hill 1988)

Basic principle:

1. Flows affect p-mode frequencies.

2. 2-d flow patterns can be derived from frequency shifts.

Page 16: Helioseismology  (II) Global and Local Helioseismology
Page 17: Helioseismology  (II) Global and Local Helioseismology
Page 18: Helioseismology  (II) Global and Local Helioseismology
Page 19: Helioseismology  (II) Global and Local Helioseismology

The average velocity over the region, (Ux, Uy), is determined by fitting power spectra to

It needs inversion to obtain depth distribution.

Page 20: Helioseismology  (II) Global and Local Helioseismology

Flow pattern from ring-diagram analysis

d = 7.1 Mm

Page 21: Helioseismology  (II) Global and Local Helioseismology

Time-Distance Analysis (Duvall et al. 1993)

Measuring changes in travel time due to inhomogeneity

Cross-correlation functions1

2

Page 22: Helioseismology  (II) Global and Local Helioseismology
Page 23: Helioseismology  (II) Global and Local Helioseismology

Fit cross-correlation functions to a Gabor wavelet

Page 24: Helioseismology  (II) Global and Local Helioseismology

Information from travel time

flow velocity

wave speed perturbation

Through inversion, the distributions of flow velocity and wave speed perturbation below the surface can be obtained.

Page 25: Helioseismology  (II) Global and Local Helioseismology

Time-Distance Analysis (Duvall et al. 1993)

Measuring changes in travel time due to inhomogeneity

Cross-correlation functions1

2

Page 26: Helioseismology  (II) Global and Local Helioseismology

Kosovichev et al. (2000) (MDI data)

flow velocity and wave-speed perturbation in an active region

from time-distance analysis

16 Mm

Page 27: Helioseismology  (II) Global and Local Helioseismology

wave-speed perturbation for an active region

Kosovichev et al. (2000) (MDI data)

Page 28: Helioseismology  (II) Global and Local Helioseismology

Kosovichev et al. (2000) (MDI data)

wave-speed perturbation for an emerging flux region

8 hour interval

1

2

3

Page 29: Helioseismology  (II) Global and Local Helioseismology

Acoustic Imaging (Chang et al., 1997)

Is it possible to image the solar interior with acoustic waves measured on the surface?

Page 30: Helioseismology  (II) Global and Local Helioseismology

imaging = adding signals in phase

Principle of imaging

There is no such a lens for the solar interior.

One needs a computational lens.

Page 31: Helioseismology  (II) Global and Local Helioseismology
Page 32: Helioseismology  (II) Global and Local Helioseismology
Page 33: Helioseismology  (II) Global and Local Helioseismology

Constructed Images from Acoustic Imaging

Page 34: Helioseismology  (II) Global and Local Helioseismology

Although the computation lens is focused on the target point, information along the ray path is contained in the signals used in reconstruction.

The phase and intensity information at a target point include information along the ray path.

One needs to do inversion to obtain more precise distribution of inhomogeneity.

Page 35: Helioseismology  (II) Global and Local Helioseismology
Page 36: Helioseismology  (II) Global and Local Helioseismology

Sound-speed perturbation from inversion of travel-time perturbation in acoustic imaging

vertical cut

measured inversion

measured inversion

(Sun & Chou, 2001)

54Mm

169 Mm

Page 37: Helioseismology  (II) Global and Local Helioseismology

Acoustic imaging technique has been used to map the far side of the Sun.

Application:

Page 38: Helioseismology  (II) Global and Local Helioseismology

Limits of local helioseimology

> Modes of longer wavelength penetrate deeper.

> β increases with depth rapidly.

1. Limit on spatial resolution

2. Limit on depth

Page 39: Helioseismology  (II) Global and Local Helioseismology

The EndThe End