31
High precision predictions for jet mass distribution Ding Yu Shao In collaboration with T. Becher & B. Pacjek ( JHEP12(2016)018 ) Related work done by Becher, Neubert, Rothen & DYS ( PRL116(16)192001, JHEP11(2016)019 ) University of Bern 17.12.2016 CLHCP Peking U. 1

High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

High precision predictions for jet mass distribution

Ding Yu Shao

• In collaboration with T. Becher & B. Pacjek ( JHEP12(2016)018 ) • Related work done by Becher, Neubert, Rothen & DYS

( PRL116(16)192001, JHEP11(2016)019 )

University of Bern

17.12.2016 CLHCP Peking U.

1

Page 2: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

2

报告人:邵鼎煜 李老师2014届博士研究生

感谢李老师!

Page 3: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

High Precision @ LHC

Z normalized-PT dis.3

[GeV]T

q0 50 100 150 200 250

Rela

tive u

nce

rtain

ty [%

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 (8TeV)-119.7 fbCMS

(Z)| < 2y0 < |

Statistical Total systematic

Efficiencies

Pileup MC stat

FSR Background

) scale+resol µ(pPolarization

Page 4: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

High precision challenges• Exact calculations at a fixed order in the coupling

• N3LO: 2->1; N2LO: 2->2; LO, NLO: automation; QCD+EW, etc.

• Parton Shower • NLO+PS: automation; NNLO+PS; EW PS, 2->4 shower, etc.

• Analytic resummation • For very simple observables (some event shapes, PT distribution,

etc.), In principle we know how to obtain any accuracy • some NLL and N2LL automation, a few selected N3LL results • Challenges:

• more “in principle”: resummation of more complex observables • more “in practice”: higher-order anomalous dimensions or

matching coefficient; better observable; automation . . .

4

Page 5: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

High precision challenges• Exact calculations at a fixed order in the coupling

• N3LO: 2->1; N2LO: 2->2; LO, NLO: automation; QCD+EW, etc.

• Parton Shower • NLO+PS: automation; NNLO+PS; EW PS, 2->4 shower, etc.

• Analytic resummation • For very simple observables (some event shapes, PT distribution,

etc.), In principle we know how to obtain any accuracy • some NLL and N2LL automation, a few selected N3LL results • Challenges:

• more “in principle”: resummation of more complex observables • more “in practice”: higher-order anomalous dimensions or

matching coefficient; better observable; automation . . .

5

Page 6: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

“Complex” Observables

T. Becher “QCD@LHC2016”

6

Missing factorization theorems

16

st

Non-global observables (e.g. phase-space cuts, jets, …)

forward scattering, Glauber gluons (pp scattering contains forward part)

Small masses (e.g. b-quarks in H production,

EW effects at large qT, …)

Power corrections (e.g. corrections to threshold limit,

next-to-eikonal corrections)

(a) (b) (c)

p

n

Figure 3: Example diagrams for the next-to-soft radiaive jet function, where the p leg has beenreplaced by a generalised Wilson line, and • denotes a next-to-soft emission vertex, arising fromEq. (2.8).

+

2

+ 4 + (8 +

2

)

2

2

+

2

14

3

3

1

r

n

µp . (3.5)

The first two terms in Eq. (3.3) are accompanied by a factor (2p · k), corresponding to thecollinear scale associated with radiation from a jet [39, 43]. The third term in Eq. (3.3), on theother hand, contains a different ratio of scales involving the auxiliary vector n. Note that for thechoices in Eq. (2.30) the ratio for both jets becomes

2p · n(2p · k)(2n · k)

!

2p

1

· p2

(2p

1

· k)(2p

2

· k)

. (3.6)

This is the same dependence arising in (next-to-)soft webs connecting both external partons(shown for example in Fig. 1(d)). Terms with this scale dependence thus constitute the doublecounting of overlapping (next-to-)soft and collinear regions for the virtual gluon momentum,to be removed by the subtraction term A eJ

µ,a. In our present calculation, one may interpretthis overlap diagrammatically by defining a next-to-soft radiative jet function eJµ,a(p, k, n). Thisfunction appears in the subtraction term A eJ

µ,a instead of the full radiative jet function used inthe definition of AJi

µ,a, Eq. (2.11). By analogy with Eq. (2.11), we then write

A eJ1µ,a (p1, p2, k) =

eH (p

1

, p

2

, nj)eS (pj)

Q

2

k=1

eJ (pk, nk)

eJµ,a(p1, n1

, k) J(p

2

, n

2

) . (3.7)

The function eJµ,a can be obtained from the diagrams for the full radiative jet, by replacing theemission vertices on the p leg with the soft or next-to-soft Feynman rules arising from Eq. (2.8),and including at most one next-to-soft vertex. At tree-level (using the normalisation of Eq. (3.1))one simply finds eJ (0)

µ (p, n, k) = J

(0)

µ (p, n, k). At the one-loop level, one encounters diagrams suchas those in Fig. 3: in fact, only the diagrams in Fig. 3(a) and (b) are non-vanishing, By analogywith Eq. (3.3), one can write the result in the form

eJ (1)

µ = (2p · k)h

CFeJ (1)

µ,F + CAeJ (1)

µ,A,coll.

i

+

2p · n(2p · k)(2n · k)

CAeJ (1)

µ,A,soft , (3.8)

and one finds thateJ (1)

µ,F =

eJ (1)

µ,A,coll. = 0 ,

eJ (1)

µ,A,soft = J

(1)

µ,A,soft , (3.9)

so that the next-to-soft radiative jet function reproduces precisely the third term in Eq. (3.3):subtracting it from the full jet leaves only collinear contributions, as required.

According to Eq. (2.29), for the complete result one also needs the radiative next-to-softfunction eSµ at one-loop. The relevant diagrams are similar to those entering the next-to-soft

9

1

2

H

3

1

2

H

31

2

H

3

a) b) c)

1

2

H

3

1

2

H

3

1

2

H

3

d) e) f)

Figure 2. Two-loop diagrams contributing to the abelian double logarithmic corrections. Diagramsthat differ by the direction of the fermion flow are not shown.

whereas A(0),1c,s+++ = 0. At the same time, the vector contribution of region II vanishes due

to our choice of the polarization vector for the gluon g3, p2 · ϵ3 = 0. As the result, the total

vector contribution of the diagram Fig.1c is given by the double logarithmic integral over

the interval |u|/s < α < 1, m2b/|t| < β < 1 from region I. It reads

A(0),1c,v++± = ±L2

! 1−τu

0dη

! τt−η

0dξ = ∓L2 (1− τu)(1− 2τt − τu)

2. (3.22)

We are now in position to present the leading-order bottom-quark contribution to gg → Hg

helicity amplitudes in the double logarithmic approximation. We sum the contributions of

individual diagrams given in Eqs.(3.8,3.12,3.21,3.22) and obtain

A(0)+++ = L2

"

1−τ2

2

#

, A(0)++− = −L2

"

1 +τ2

2

#

, (3.23)

where we used τ = ln(m2b/p

2⊥)/L. These results coincide with the double logarithmic limits

of the one-loop amplitudes computed in Ref. [16] long time ago.4 Our analysis identifies

the origin of the double logarithmic enhancement of the gg → Hg amplitude mediated by a

light quark. With this understanding, it is straightforward to extend the above calculation

first to two loops and then to all orders in the strong coupling constant αs. We will describe

how to do this in the next sections.

4 Two-loop helicity amplitudes in the double logarithmic approximation

It is easy to convince oneself that a two-loop diagram contributing to gg → Hg can develop

leading O(mb) double logarithmic enhancement only if exactly one of its fermion lines is

4See also Ref. [15] for a recent discussion.

– 9 –

Page 7: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

7

e+e ! Z() ! X

Page 8: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Total cross section

Real and virtual corrections suffer from soft and collinear infrared divergences, e.g.

in . Divergences cancel in the sum! (Kinoshita 1962; Lee & Nauenberg 1964)

!

i

Qipi · ε

pi · k= Qtot

n · ε

n · k+ . . . (1)

pµi ≈ Ei nµ (2)

kµ ≈ ω nµ (3)

σ(δ,β) =

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

= σ0

#

1 +αs(µ)

$

−16 ln δ lnβ − 12 ln δ + 10−4π2

3+O(δ,β)

%&

σtot =

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

= σ0

#

1 +αs(µ)

π+O(α2

s)

&

2 2

!

i

Qipi · ε

pi · k= Qtot

n · ε

n · k+ . . . (1)

pµi ≈ Ei nµ (2)

kµ ≈ ω nµ (3)

σ(δ,β) =

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

= σ0

#

1 +αs(µ)

$

−16 ln δ lnβ − 12 ln δ + 10−4π2

3+O(δ,β)

%&

σtot =

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

= σ0

#

1 +αs(µ)

π+O(α2

s)

&

e+e− → qq (4)

!

i

Qipi · ε

pi · k= Qtot

n · ε

n · k+ . . . (1)

pµi ≈ Ei nµ (2)

kµ ≈ ω nµ (3)

σ(δ,β) =

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

= σ0

#

1 +αs(µ)

$

−16 ln δ lnβ − 12 ln δ + 10−4π2

3+O(δ,β)

%&

σtot =

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

+

"

"

"

"

"

= σ0

#

1 +αs(µ)

π+O(α2

s)

&

e+e− → qq (4)

e+e− → qqg (5)

virtual = 0↵s

2

µ2

Q2

4

2 6

16 +

72

3

d = 4 2

8

Page 9: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Inter-jet energy flow (IR safe, Non-Global Observables)

9

Page 10: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Inter-jet energy flow (NGLs)(Dasgupta & Salam ’02; Becher, Neubert, Rothen, DYS ’15)

Observables which are insensitive to emissions into certain regions of phase space involve additional NGLs not captured by the usual resummation formula

↵s

2

2CFCA

22

3+ 4Li2

e2

ln2

Q

Q

NGLs :JHEP03(2002)017

The subscript P on ΣΩ,P serves as a reminder that we have only taken into account primaryemissions and t is defined to be the following integral of αs,

t(QΩ, Q) =12π

! Q/2

dkt

ktαs(kt) =

14πβ0

lnαs(Q/2)αs(QΩ)

, (2.6)

where the second equality holds at the one-loop level and β0 = (11CA − 2nf )/(12π).

3. Leading order calculation of non-global effects

As well as dealing with primary emissions, it is necessary to account also for contributionsfrom (secondary) emissions coherently radiated into Ω from large-angle soft-gluon ensem-bles outside of Ω. We will denote the contribution from such non-global terms by thefunction S(t), such that to SL accuracy

ΣΩ(t(QΩ, Q)) ≡ S(t)ΣΩ,P(t) . (3.1)

To start with, we calculate the leading order contribution to S, i.e. S2, where we define thefollowing series expansion for S:

b a

2 1

∆η

Figure 2: The kind of diagram to be con-sidered for the calculation of S2 in thecase of a rapidity slice of width ∆η.

S(t) ="

n=2

Sntn . (3.2)

Since this kind of contribution only starts with sec-ondary emissions, there is no S1 term. In the cal-culation of S2, we shall be entitled to equate t withαs2π ln Q

2QΩ.

The exact value of S2 depends on the geometryof the patch Ω. Here we calculate it analyticallyfor the case where Ω is a slice in rapidity of width∆η. The kind of diagram to be considered is shown in figure 2, where a and b are quarks(they may be outgoing or incoming depending on whether for example we are dealing withe+e− or DIS in the Breit frame) and 1 and 2 are gluons. We introduce the followingfour-momenta

ka =Q

2(1, 0, 0, 1) , (3.3a)

kb =Q

2(1, 0, 0,−1) , (3.3b)

k1 = x1Q

2(1, 0, sin θ1, cos θ1) , (3.3c)

k2 = x2Q

2(1, sin θ2 sin φ, sin θ2 cos φ, cos θ2) , (3.3d)

where we have defined energy fractions x1,2 ≪ 1 for the two gluons. To our accuracy, wecan neglect the recoil of the hard particles against the soft gluons.

– 4 –

Q

Q

exp

"4CF

Z ↵(Q)

↵(Q)

d↵

(↵)

2

#= 1 + 4

↵s

2CF ln

Q

Q

+

↵s

2

28C2

F2 22

3

CFCA +

8

3

CFTFnf

ln

2 Q

Q

GLs :

10

Page 11: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

!• The operator for the emission from an amplitude with m hard

partons !!!!

!

Factorization

S1(n1)S2(n2) . . . Sm(nm)|Mm(p)iMm

soft Wilson lines along the directions of the energetic particles (color matrices)

hard scattering amplitude with m particles (vector in color space)

11

(Becher, Neubert, Rothen, DYS ’15, ’16; Caron-Huot ’15)

Page 12: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Light-jet(hemishpere) mass12

Page 13: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Hemisphere mass observables

~nT

ML MR

Heavy-jet mass:

Light-jet mass:

h =

1

Q2max(M2

L,M2R)

` =1

Q2min(M2

L,M2R)

13

Page 14: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Heavy-jet mass v.s. Light-jet mass

• Heavy-jet mass: global observable, N3LL accuracy (Chien &

Schwartz ’13) !

• Light-jet mass: non-global observable • NLL global logs (coherent branching formalism) (Burby &

Glover ’01) • LL non-global logs (Dasgupta & Salam ‘02)

!• Left-jet mass

d

d`= 2

d

dL d

dh

L=h=`

ML MR Q

14

Page 15: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Factorization theorem for left-jet mass

15

d

dM2L

=X

i=q,q,g

Z 1

0d!L Ji(M

2L Q!L)

1X

m=1

Him(n, Q) Sm(n,!L)

Hard function : m hard parton in the right hemisphere, a single parton in the left one; !

Soft function : Z

Xs

Xh0|S†

0(n)S†1(n1) . . .S

†m(nm) |Xsi

hXs|S0(n)S1(n1) . . .Sm(nm) |0i (!L n · PL)

Him

Sm

ML MR~Q<<

Page 16: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

NNLO results

16

1

0

d

d`= (l)

1 +

↵s

2

3CF

2+

↵s

2

2B

+

↵s

2

2B+(l)

l

+

+ · · ·

B+() =C2F

" 4 ln3 9 ln2 +

59

6+

42

3+ 4 ln2 2 5 ln 3

2+ 8Li2

1

2

ln

+15

2+ 22 +

80936

+88 ln3 2

3+ 8 ln 2 ln2 3 +

5 ln2 3

2 24 ln2 2 ln 3 +

27 ln2 2

2

28 ln 2 ln 3 +487 ln 3

24 20

32 ln 2 88 ln 2

3+ 43Li2

1

2

16Li2

1

2

ln 3

+ 96Li2

1

2

ln 2 8Li3

3

4

+ 176Li3

1

2

8 I2

#

+ CFCA

" 1

3 22 4 ln2 2 +

5 ln 3

2 8Li2

1

2

ln 407

72 132

18 3893

3 8 ln3 3

3

52 ln3 2 12 ln 2 ln2 3 15 ln2 3

4+ 52 ln2 2 ln 3 +

43 ln2 2

12 11

2ln 2 ln 3

917 ln 3

24+ 62 ln 2 +

212 ln 2

3+ 20Li3

3

4

+

235

6Li2

1

2

+ 24Li2

1

2

ln 3 88Li2

1

2

ln 2 + 16Li3

1

3

112Li3

1

2

8 I1

#

+ CFTFnf

" 13

9+

102

9+

4

3ln2 2 5

6ln 3 +

8

3Li2

1

2

#,

Page 17: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

NNLO results

17

1

0

d

d`= (l)

1 +

↵s

2

3CF

2+

↵s

2

2B

+

↵s

2

2B+(l)

l

+

+ · · ·

B+() =C2F

" 4 ln3 9 ln2 +

59

6+

42

3+ 4 ln2 2 5 ln 3

2+ 8Li2

1

2

ln

+15

2+ 22 +

80936

+88 ln3 2

3+ 8 ln 2 ln2 3 +

5 ln2 3

2 24 ln2 2 ln 3 +

27 ln2 2

2

28 ln 2 ln 3 +487 ln 3

24 20

32 ln 2 88 ln 2

3+ 43Li2

1

2

16Li2

1

2

ln 3

+ 96Li2

1

2

ln 2 8Li3

3

4

+ 176Li3

1

2

8 I2

#

+ CFCA

" 1

3 22 4 ln2 2 +

5 ln 3

2 8Li2

1

2

ln 407

72 132

18 3893

3 8 ln3 3

3

52 ln3 2 12 ln 2 ln2 3 15 ln2 3

4+ 52 ln2 2 ln 3 +

43 ln2 2

12 11

2ln 2 ln 3

917 ln 3

24+ 62 ln 2 +

212 ln 2

3+ 20Li3

3

4

+

235

6Li2

1

2

+ 24Li2

1

2

ln 3 88Li2

1

2

ln 2 + 16Li3

1

3

112Li3

1

2

8 I1

#

+ CFTFnf

" 13

9+

102

9+

4

3ln2 2 5

6ln 3 +

8

3Li2

1

2

#,

Reproduce all logs !!!!!!

Page 18: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Numerical results: Left-jet mass @ NLL

18

ALEPH!NLL’ (global)!NLL

Many paper resume NG observables to NNLL up to NGLS

Page 19: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Heavy-jet mass v.s. Light-jet mass

• Non-perturbative effects: shift the peak to right position19

ALEPH!NLL’ (global)!NLL

Page 20: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Conclusion• We derived a factorization formula for left(light)-jet mass distribution !!!• We checked the factorization up to NNLO and reproduce full QCD

results !• All the scales are separated RG evolution can be used to resum

all large logarithms !

• We apply Monte-Carlo method to solve the RG equations at NLL level (N2LL work in progress)

!• Numerous possible applications: photon isolation, jet substructure, jet

veto,……

d

dM2L

=X

i=q,q,g

Z 1

0d!L Ji(M

2L Q!L)

1X

m=1

Him(n, Q) Sm(n,!L)

20

Page 21: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

21

Thank you

Page 22: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Backup

22

Page 23: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

resummationEvolution equation:

Solution:Hn(t) = Hn(t1)e

(tt1)Vn +

Z t

t1

d t0Hn1(t0)Rn1e

(tt0)Vn

d

dtHn(t) = Hn(t)Vn +Hn1(t)Rn1

t =

Z ↵(µs)

↵(µh)

d↵

(↵)

4

23

Page 24: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Non-perturbative effects in thrust or heavy-jet mass, etc.

Sfull =

Zd!0SNP(!

0)SP(! !0)

=SP(!)dSP

d!

Zd!0 !0SNP(!

0)

=SP(! ) + · · ·

NP soft function Perturbative soft function

24

Page 25: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Soft Radiation

Large-angle soft radiation off a jet of collinear particles does not resolve individual energetic patrons

X

i

Qipi · pi · k

Qtot

n · n · k

This approximation breaks down for soft radiation collinear to the jet!!!

kµ = !nµ

Typically this small region of phase space does not give an contribution. However it does in some observables, eg. light-jet mass

O(1)

25

Page 26: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Leading-Log resummationBanfi, Marchesini & Smye 2002

• The leading logarithms arise from configuration in which the emitted gluons are strongly ordered

!!• In the large-Nc limit, multi-gluon emission amplitudes become simple: !!!

• Based on this structure, Banfi, Marchesini & Smye derive an integral-differential equation for resuming NG logarithms at LL level in the large-Nc limit:

E1 E2 · · · Em

Nmc g2m

X

(1···m)

pa · pb(pa · p1)(p1 · p2) · · · (pm · pb)

@LGab(L) =

Zdj

4W j

ab

nn

in (j)Gaj(L)Gjb(L)Gab(L)

BMS equation:

26

Page 27: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Some recent progress• Resummation of LL NGLs beyond large Nc Hatta Ueda ’13 + Hagiwara ’15;

• Fixed-order results • two-loop hemisphere soft function Kelley, Schwartz, Schabinger & Zhu

’11; Horning, Lee, Stewart, Walsh & Zuberi ’11 • with jet-cone Kelley, Schwartz, Schabinger & Zhu ’11; von Manteuffel, Schabinger & Zhu ’13

• LL NGLs (5-loop large Nc & 4-loop finite Nc) Schwartz, Zhu ’14; Delenda, Khelifa-Kerfa ’15

• Color density matrix (two-loop anomalous dimension) Caron-Huot ’15

• Expansion in dressed gluons Larkoski, Moult & Neill ’15; Neill ’15; Laroski, Moult ’15

• Avoid NGLs Dasgupta, Fregoso, Marzani & Powling ’13; Dasgupta, Fregoso, Marzani & Salam ’13; Larkoski, Marzani, Soyez & Thaler ’14; Frye, Larkoski, Matthew & Yan ’16; ……

27

Page 28: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

• We renormalise the bare hard function !! e.g. !!!• The Z-factor has the form !!

!

Renormalization

Hm(n, Q, , ) =mX

l=2

Hl(n, Q, , µ)ZHlm(n, Q, , , µ)

H2() = H2(µ)ZH22(, µ)

H3() = H2(µ)ZH23(, µ) +H3(µ)Z

H33(, µ)

ZH(n, Q, , , µ) =

0

BBBBB@

Z22 Z23 Z24 Z25 . . .Z32 Z33 Z34 Z35 . . .Z42 Z43 Z44 Z45 . . .Z52 Z53 Z54 Z55 . . ....

......

.... . .

1

CCCCCA

0

BBBBB@

1 ↵s ↵2s ↵3

s . . .0 1 ↵s ↵2

s . . .0 0 1 ↵s . . .0 0 0 1 . . ....

......

.... . .

1

CCCCCA

Hm O(↵m2s )

28

Page 29: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Renormalization

S2(µ) = ZH22 S2() + ZH

23 S3() + ZH24 1 +O(↵3

s)

We verify that ZH renormalises the two-loop soft function

and the general one-loop soft function

↵s

4z(1)m,m(n, Q, , , µ) +

↵s

4

Zd(nm+1)

4z(1)m,m+1(n, nm+1, Q, , , µ)

+ Sm(n, Q, , ) = finite

• By consistency, matrix ZH must render the soft function finite

Sl(n, Q, , µ) =1X

m=l

ZHlm(n0, Q, , , µ) Sm(n0, Q, , )

29

Page 30: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Resummation

US(n, , µs, µh) = P exp

Z µh

µs

µH

(n, , µ)

with the formal evolution matrix

Therefore the resumed cross section

(, ) =1X

l=2

Hl(n, Q, , µh)X

ml

USlm(n0, , µs, µh) Sm(n0, Q, , µs)

30

Page 31: High precision predictions for jet mass distributionindico.ihep.ac.cn/event/6062/session/2/contribution/159/...High precision predictions for jet mass distribution DingYuShao • In

Leading Log Resummation

Vm : div. of one-loop virtual correction to m-legs amplitude

Rm : div. from additional radiation

At LL level,

(1) =

0

BBBBB@

V2 R2 0 0 . . .0 V3 R3 0 . . .0 0 V4 R4 . . .0 0 0 V5 . . ....

......

.... . .

1

CCCCCAST = (1, 1, · · · , 1) H = (0, 0, · · · , 0)

LL(,) = 0

S2(n, n, Q, , µh)

↵= 0

1X

m=2

US

2m(n, , µs, µh) 1↵

The symbol indicates that one has to integrate over the additional directions present in the higher-multiplicity anomalous dimensions Rm and Vm

31