14
HIGH VOLTAGE DIRECT CURRENT (HVDC) Gunawan 111910201020 Nur Imanu Maulana 111910201021 Yudha M 111910201025

High Voltage Direct Current (Hvdc)

Embed Size (px)

Citation preview

  • HIGH VOLTAGE DIRECT CURRENT (HVDC)Gunawan111910201020Nur Imanu Maulana111910201021Yudha M111910201025

  • Latar BelakangPenggunaan arus searah untuk pemanfaatan energi listrik sehari-hari adalah lebih tua dibandingkan dengan arus bolak-balik. Adalah menarik untuk mengetahui mengapa arus bolak-balik mengantikan hampir semua intalasi arus searah, dan mengapa kini arus searah digunakan kembali untuk sejumlah saluran transmisi tegangan tinggi.Kemudian sering muncul pertanyaan, Mengapa menggunakan transmisi DC? Satu jawaban yang umum diberikan adalah bahwa rugi-ruginya lebih rendah, tetapi ini tidak benar. Tingkat rugi-rugi telah dirancang untuk suatu system transmisi dan diatur oleh ukuran penghantarnya.

  • Pengertian HVDCPemakaian High Voltage Direct Current transmission (HVDC) atau dalam istilah Bahasa Indonesia dikenal sebagai transmisi daya arus searah (TDAS) sebenarnya sudah dimulai sejak awal pertama kali listrik dikembangkan. Thomas Alva Edison berhasil membuat jaringan listrik berkapasitas 6 x 100kW untuk menyalakan 1200 bohlam lampu menggunakan arus searah pada tahun 1882. Walaupun pada perkembangannya, sistem dc yang dikembangkan Edison ternyata kalah bersaing dengan sistem ac yang diusulkan oleh Westinghouse dan Tesla namun sistem dc ini telah menandai dimulainya era baru, era listrik. Lebih dari 70 tahun kemudian, sistem transmisi dc mulai dipakai kembali setelah ditemukannya tabung mercury-arc di akhir tahun 1920-an. Proyek HVDC komersil pertama kali berhasil dibangun tahun 1950 menggunakan kabel laut untuk menghubungkan Swedia dengan P. Gotland dengan kapasitas 20MW pada tegangan 100kV.

  • Dimulai dari 20MW di Swedia, sekarang ini sudah lebih dari 100 jalur transmisi HVDC yang aktif di dunia dengan total kapasitas mencapai lebih dari 80GW (Gambar 2) tersebar mulai dari Amerika Utara, Skandinavia, Jepang, China, India, Brazil, dsb. Dimulai dari tegangan 100 kV hingga sekarang mencapai 500kV, dan 800kV sedang dalam tahap pembangunan. Beberapa proyek HVDC yang cukup terkenal diantaranya Gotland HVDC di Swedia selain HVDC pertama juga merupakan HVDC yang menggunakan thyristor pertama kali; Itaipu HVDC di Brazil (2 x 3150MW, +/- 500kV, 800 km) yang merupakan sistem HVDC terbesar saat ini, Kii-Channel HVDC di Jepang (1400MV, +/- 250kV) yang menggunakan thyristor light-triggered 8kV - 3500A.Perkembangan HVDC

  • Teknologi HVDCTerdapat 2 jenis teknologi konverter ac/dc/ac yang digunakan pada sistem HVDC saat ini. HVDC yang menggunakan Current source converter (CSC) komutasi jala-jala menggunakan thyristor dan HVDC yang menggunakan Voltage source converter (VSC) yang menggunakan IGBT.Teknologi CSC-HVDC sudah sangat mapan untuk konverter berdaya sangat besar. Untuk keperluan diatas 1000MW teknologi ini menjadi satu-satunya pilihan saat ini. Itaipu HVDC adalah sistem HVDC terbesar saat ini yang beroperasi secara komersil menggunakan CSC-HVDC. Proyek CSC-HVDC terbesar yang sedang dibangun saat ini adalah Xiangjiaba Shanghai HVDC yang mentransmisikan daya 6400MW pada 800kV sejauh 2071 km.VSC-HVDC merupakan perkembangan terbaru dari teknologi HVDC. Hampir sejak satu dekade terakhir, beberapa proyek VSC-HVDC berhasil dibangun dan mencapai tahap komersil. Keunggulan VSC-HVDC dibanding CSC-HVDC adalah kemampuannya untuk komutasi tanpa bergantung kondisi jala-jala, pengaturan daya aktif dan reaktif yang independen, serta kemampuan untuk black-start.

  • Konfigurasi HVDCPemilihan konfigurasi sangat bergantung pada kondisi lokal, tujuan, dan faktor ekonomi. Baik VSC ataupun CSC-HVDC dapat menggunakan konfigurasi yang sama, modifikasi dapat dilakukan bergantung kondisi lokal masing-masing.Back to backMonopolarBipolarMultiterminal

  • Back to BackKonfigurasi ini ditunjukkan pada Gambar 5. Pada konfigurasi ini gardu induk konverter berada pada lokasi yang sama dan tidak menggunakan saluran arus searah jarak jauh. Umumnya konfigurasi ini berfungsi sebagai interkoneksi frekuensi antara dua sistem arus bolak-balik yang berdekatan, walaupun konfigurasi ini juga bisa dipakai pada interkoneksi dua sistem arus bolak-balik yang memiliki frekuensi yang sama.

  • Monopolar Konfigurasi ini ditunjukkan pada Gambar 6. Pada konfigurasi ini dua gardu induk konverter dipisahkan menggunakan satu saluran arus searah berjarak jauh, berbeda dengan konfigurasi back-to-back yang hanya membutuhkan satu lokasi saja. Saluran arus searah yang dipakai hanya memiliki 1 kutub tegangan, bisa positif saja atau negatif saja, sehingga tanah diperlukan sebagai saluran balik arus.

  • BipolarKonfigurasi ini ditunjukkan pada Gambar 7. Pada konfigurasi ini dua gardu induk konverter dipisahkan menggunakan dua saluran arus bolak-balik yang berbeda kutub tegangan, satu positif dan satu lagi negatif. Relatif terhadap tanah, konfigurasi bipolar merupakan dua buah konfigurasi monopolar yang berbeda kutub tegangan, sehingga masing-masing monopolar dapat dioperasikan secara independen.

  • MultiterminalKonfigurasi ini ditunjukkan pada Gambar 8. Konfigurasi ini adalah perluasan dari konfigurasi bipolar dengan menempatkan gardu konverter baru di tengah-tengah saluran bipolar. Jumlah saluran masuk di tengah-tengah konfigurasi bipolar tidak dibatasi hanya satu, melainkan bisa banyak sesuai dengan keperluan.

  • Pemanfaatan HVDCTransmisi jarak jauhPada transmisi daya besar dengan jarak yang jauh, HVDC memberikan alternatif yang kompetitif secara ekonomi terhadap sistem transmisi arus bolak-balik Terlepas dari adanya tambahan rugi-rugi akibat penggunaan konverter dibandingkan pada sistem arus bolak-balik, rugi-rugi saluran pada transmisi HVDC bisa lebih kecil 30%-50% dari ekuivalen saluran arus bolak-balik pada jarak yang sama.

    Penggunaan kabelpenggunaan HVDC memberikan keuntungan lebih secara ekonomis daripada penggunaan kabel arus bolak-balik. Permasalahan lain pada penggunaan kabel dengan sistem arus bolak-balik adalah penurunan kapasitas daya kabel karena jarak yang jauh akibat daya reaktif yang cukup tinggi.

  • 3.Interkoneksi frekuensiInterkoneksi antara 2 area yang berbeda frekuensi hanya bisa dilakukan dengan menggunakan HVDC untuk menjamin kelangsungan operasi yang handal. Contohnya adalah gardu induk Shin-Shinano 600 MW yang menghubungkan Jepang bagian barat yang berfrekuensi 60 Hz dengan Jepang bagian timur yang berfrekuensi 50 Hz. Tidak hanya pada kasus seperti Shin-Shinano yang beda frekuensi operasi diantara dua terminalnya, beberapa kasus lain menggunakan konverter frekuensi HVDC untuk menghubungkan antara dua perusahaan listrik yang berbeda.

  • Kesimpulan 1. Terdapat dua keadaan teknis penggunaan transmisi tegangan tinggi arus searah. Untuk koneksi sistem sistem yang besar melalui link link berkapasitas kecil. Penggunaan kabel kabel tegangan tinggi diperlukan untuk jarak cukup jauh.2. Keuntungan penggunaan transmisi DC adalah rugi-rugi yang muncul pada saluran menjadi jauh lebih kecil, biaya investasi pembuatan saluran transmisi lebih rendah, serta masalah stabilitas sistem yang lebih terjamin.3. Kelemahan - kelemahan dari transmisi DC adalah permasalahan switcing yang tidak dapat dilakukan pada transmisi arus searah sehingga harus dilakukan pada arus bolakbalik, mahalnya biaya pembuatan gardu konverter, serta masalah transformasi tegangan.4. Saluran transmisi tegangan tinggi arus searah diklasifikasikan menjadi; saluran monopolar, saluran bipolar dan saluran homopolar.