30
High Intensity Beams Issues in the CERN Proton Synchrotron S. Aumon EPFLCERN Aumon Sandra PhD Defense 1

High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

High  Intensity  Beams  Issues  in  the  CERN  Proton  Synchrotron  

S.  Aumon  EPFL-­‐CERN  

Aumon  Sandra  -­‐PhD  Defense   1  

Page 2: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Contents  •  Context-­‐IntroducCon  

 •  TransiCon  Energy  

 •  TransiCon  Studies  

a.  Fast  VerCcal  Instability  Measurements  b.  Macro  parCcles  SimulaCons  c.  Conclusions  TransiCon  Studies      

•  InjecCon  Studies  a.  Loss  experiments  with  BLMs  b.  Turn  by  turn  losses  c.  Monte  Carlo  SimulaCon  with  Fluka  d.  Coherent  Tune  ShiM  Measurements  e.  Conclusions  InjecCon  Studies  

Aumon  Sandra  -­‐PhD  Defense   2  

Page 3: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Context-­‐IntroducCon  •  Intensity  increase  limited  by  aperture  restric+on,  collec+ve  effects  (instabili+es,  space  charge)  

 •  Here,  studies  of  two  intensity  limitaCons  on  high  intensity  beams  

 

-­‐  at  injecCon  (aperture  restric+on  +  space  charge),  more  than  3%  of  the  beam  is  lost,  causing  high  radiaCon  doses  outside  the  ring  -­‐  at  transiCon  energy,  fast  ver+cal  instability  causing  large  losses  or  large  transverse  emiSance  blow  up,  even  with  gamma  transiCon  jump  (good  method  to  cure  the  instability).    

•  TransiCon  Studies  -­‐  Extensive  measurements  of  the  dynamics  of  the  instability,  with  and  without  gamma  transiCon  jump.  -­‐  Benchmark  of  the  measurements  with  macro-­‐parCcle  simulaCons  with  HEADTAIL.  -­‐  Deduce  a  effec+ve  impedance  model  (EsCmate  the  real  part  of  the  broad-­‐band  impedance).    -­‐  Find  possible  cures.    

•  InjecCon  Studies  -­‐  Measurements  of  proton  losses  with  Beam  Loss  Monitors  (BLMs)  to  idenCfy  when  the  losses  occur  -­‐  Losses  when  the  beam  goes  through  the  injecCon  septum  (exactly  at  injecCon)  AND  then  turn  by  turn  at  the  minimum  and  maximum  of  the  bump  (orbit  distorCon  at  during  1/2ms)  -­‐  Space  charge  is  making  worth  the  losses.  -­‐  Tune  shiM  measurements  with  intensity  :  deduce  the  imaginary  part  of  the  effec+ve  broad-­‐band  impedance.  

•  Studies  important  in  the  framework  of  the  PS  Upgrade  for  LHC  Injector  Upgrade  (High  Luminosity  LHC  beam)  

Aumon  Sandra  -­‐PhD  Defense   3  

Page 4: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

TransiCon  Energy  

Aumon  Sandra  -­‐PhD  Defense   4  

5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0-0.010

-0.005

0.000

0.005

0.010

Relativistic g

h

unpert.h»h»-jumph-jump

•  ParCcle  oscillate  around  (ΔΦ,δ)  in  the  bucket,  the  equaCon  of  moCon  for  small  angle  is  the  one  of  a  spring.  ParCcle  oscillate  with  a  angular  synchrotron  frequency  ωs          

•  Close  to  transiCon  energy,  the  longitudinal  moCon  is  frozen,  ωsà0,  non-­‐adiaba+c  regime  

•  η  defines  the  distance  in  energy  from  transiCon  energy  •  Stable  phase  shiM  to  keep  the  longitudinal  focusing  on  

both  side  of  transiCon  energy  •  In  the  PS,  the  use  of  a  gamma  transiCon  jump  is  

necessary  to  cross  faster  transiCon  energy  

d2��

dt2+ !2

s�� = 0

Chapter 1. Basic concepts of Beam Dynamics

1.3 Transition Crossing

The CERN Proton Synchrotron is the first accelerator in which transition energy was crossed.Two months after the first turn of the beam in the PS, the 16 of september 1959, a bunch withan intensity of about 1010 protons per pulse was accelerated through the critical transitionenergy [10]. The idea was to use the radial position signal from the beam to control the RFphase instead of the amplitude. The sign of the phase had to be reversed at transition energy.Since then similar phase control system are used in the AGS in the Brookhaven NationalLaboratory a few months later and in all synchrotron where transition has to be crossed. Thischapter is focused on the description of the longitudinal particle motion around transitionenergy since the synchrotron motion is no longer adiabatic and the usual equation of Chap. 1.2breaks down.

1.3.1 Transition Energy

In synchrotron, a relative energy error can be related to a relative change in revolutionfrequency. Many medium and high energy synchrotron have to cross an energy at whichthis derivative of the revolution frequency ¢ f / f with respect to the momentum error ¢p/pchanges sign and has to cross zero. This energy is called transition energy noted Etr .

Crossing transition energy changes the sign of the slip factor which related the frequencyspread in the beam to its momentum spread given by,

¢ ff

= ¥¢pp

with ¥= 1∞2 ° 1

∞2tr

(1.64)

with ∞tr is the relativistic mass factor at transition energy ∞tr = Etr /E0. Let remind the defini-tion of the momentum compaction factor which determines ∞tr ,

1

∞2tr

=Æp = dC /Cd p/p

= 1C0

ID(s)Ω(s)

d s (1.65)

where Æp is the momentum compaction factor , C0 is the path length in meter of a particulewith a nominal momentum p0 on the reference orbit, D(s) is the dispersion function in meterat the longitudinal position s, Ω(s) is the bending radius in meter in the magnet at the locations. Æp depends on the machine optics and a rough estimation of the relativistic transitionenergy mass factor ∞tr is given by,

Æp = 1C0Ω0

ID(s)d s

8<

:Ω = Ω0 in dipoles

Ω =1 anywhere else(1.66)

24

Stable  phase  shiM  at  transiCon  

Tc  non-­‐adiabaCc  Cme~2.2ms  |t|>Tc  adiabaCc  regime  |t|<Tc  non-­‐adiabaCc  regime  

ParCcle  are  turning  round  in  the  RF  bucket  

Page 5: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Fast  VerCcal  Instability  ObservaCon  

-­‐  InstrumentaCon:  Wide  band  pickup,  bandwidth  1GHz  -­‐  Travelling  wave  along  the  bunch  with  a  frequency  700MHz.  -­‐  OscillaCon  close  to  peak  density,  short  range  wake  field.  -­‐  Strong  losses  in  few  100  turns,  less  than  a  synchrotron  period.    

Instability  behavior  similar  to  Beam  Breakup  (Linac),  Transverse  Microwave  (coasCng  beam),  TMCI  (bunched  beam)    Favorable  condi+ons  to  develop  the  instability:  •  Slow  synchrotron  moCon:  no  exchange  of  parCcles  between  

head  and  tail  stabilizing  instabiliCes  •  No  chromaCcity:  no  tune  spread.  •  Lose  of  longitudinal  and  transverse  Landau  damping  

80 100 120 140 160 180!2

0

2x 10

4

Ver

tica

l D

elta

sig

nal

[U

.A.]

Time[ns]

80 100 120 140 160 180!4

!2

0x 10

4

Longit

udin

al b

eam

den

sity

sig

nal

[U

.A.]

Vertical Delta signal

Longitudinal beam density

Loss  of  parCcles  

Aumon  Sandra  -­‐PhD  Defense   5  

Vert.  Delta  signal  Hor.  Delta  signal  Longitudinal  signal  

20ns  

A.U.  

200 300 400 500 600 700 8000

50

100

150

Inte

nsity

[1010

pro

tons

]

Time[ms]200 300 400 500 600 700 800

−5000

0

5000

10000

Mag

netic

Fie

ld [G

auss

]

Page 6: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Goals  of  Measurements  •  Characterize  the  mechanisms  of  the  instability  by  varying  chromaCcity,  intensity,  

longitudinal  emiSance  (εl)  etc.  •  Study  behavior  of  instability  versus  intensity  to  compute  rise  Cme  •  Measurement  of  intensity  threshold  •  Momentum  compacCon  factor  threshold  (ηth)  to  idenCfy  the  longitudinal  regime:  adiaba+c/

non-­‐adiaba+c  and  define  ηth  as  done  for  the  longitudinal  microwave  instability  (1)  

•  First  mechanism  is  the  beam  interac+on  with  transverse  impedance,  for  the  PS,  unknown,  here  assumed  to  be  (BB)  broad-­‐band  (resonator).  

•  Find  an  effec+ve  transverse  impedance  model  with  the  support  of  macro-­‐parCcle  simulaCons.  

•  IdenCfy  mechanisms  able  to  damp  the  instability:  chromaCcity,  longitudinal  emiSance,  use  of  the  gamma  jump  

Defines  BB  model  

Aumon  Sandra  -­‐PhD  Defense   6  

Page 7: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Beam  CondiCons  Beam  parameters  

TransiCon  Energy   ~  6.1  GeV  

Number  of  bunches   1  

Harmonic   h=8  

Transverse  tunes  (Qx-­‐Qy)   ~  6.22-­‐6.28  (Set  by  PFWs)    

VerCcal  ChromaCcity  (2  different  sets)  around  transiCon  ξy  

0  and  ~  -­‐0.1  (Set  by  PFWs)  

RF  cavity  voltage  around  transiCon  

145  kV  

Full  bunch  length  around  transiCon  

20-­‐30  ns  

Longitudinal  emiSance  (εl)  at  2σ(1)  

1.3  -­‐2.5  eVs  

Beam  intensity   50e10  to  160e10  protons  

Transverse  EmiSance  (εx,ynorm  1σ)  

1.17  to  2.33  mm.mrad  

(1)  Measured  at  the  beginning  of  the  acceleraCon   Aumon  Sandra  -­‐PhD  Defense   7  

ReconstrucCon  of  the  longitudinal  phase  space  for  longitudinal  emiRance  measurements  

AcceleraCng  bucket  

δz  

δE  

Page 8: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Rise  Cme  

Ê

ÊÊ

Ê

Ê

Ê

Ê

ÊÊ ÊÊÊ

Ê ÊÊÊ

Ê

ÊÊÊÊ

Ê ÊÊÊÊ

Ê ÊÊÊ

ÊÊ

ÊÊ

ÊÊ

Ê

‡‡

‡ ‡‡ ‡

‡ ‡‡‡‡‡‡

‡‡‡

‡‡‡

‡ ‡‡ ‡ ‡‡ ‡‡‡‡‡

‡‡‡

‡‡‡

‡‡‡

‡‡‡

80 100 120 140 16050

100

150

200

250

300

350

400

Intensity @1010protonsD

Risetime@Tur

nsD

1.9eVs-xy<01.9eVs-xy~0

limI!Ith

⌧ = +1

linear/saturated  

non-­‐linear  

•  Rise  Cme  measurements  performed  for  different  longitudinal  emiSance  and  for  2  different  sets  in  verCcal  chromaCcity.  

•  Closer  the  beam  is  from  transiCon  energy,  less  reliable  is  the  measurement  of  the  chroma+city  •  Weak  reproducibility  of  the  machine  in  terms  of  longitudinal  emiSance  (20%)  •  Surprisingly,  rise  Cme  faster  in  linear  part  for  the  case  with  chromaCcity.  

Ilinear/Ith ' 1.3

ÊÊ

Ê

ÊÊ ÊÊÊÊÊ Ê Ê

Ê

Ê ÊÊ

Ê

‡ ‡

‡‡

‡‡

‡‡

‡‡ ‡

-20 -15 -10 -5 0 5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Time x=têTc

VerticalChromaticityxy

xy<0

xy=0

C h r om a C c i t y  measurements  n o t   r e l i a b l e  around  transiCon  

Aumon  Sandra  -­‐PhD  Defense   8  

Tc:  non-­‐adiabaCc  Cme  2.2ms  in  the  PS    

Page 9: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Threshold  in  Intensity    

Ê

Ê

Ê

Ê

Ê

1.2 1.4 1.6 1.8 2.0 2.2 2.440

60

80

100

120

140

160

elH2sL

Ithreshold@101

0protonsD

Fitted Ith xv~0Ith xv~0Fitted Ith xv<0Ith xv<0

•  Instability  with  threshold  in  intensity    

•  Ith  increases  linearly  with  the  longitudinal  emiSance  (here  peak  density),  predicted  by  the  coasCng  beam  theory  by  E.  Metral  for  zero  chromaCcity  

Ith

Ith =32

p2

3

Qy0|⌘|✏le�2c

⇥ fr|ZBB

y |•  ChromaCcity  (or  the  working  point)  increases  

the  instability  threshold:  changing  chromaCcity  in  the  PS  means  a  change  of  tune  and  non  linear  chromaCcity    

•  Non-­‐linear  chromaCcity  components  in  measurements  are  nevertheless  small      

•  Rise  Cme  are  faster  than  synchrotron  period    (no  headtail  instability)  

•  According  to  the  coasCng  theory  (microwave-­‐TMCI),  a  beam  crossing  transiCon  is  always  unstable,  because  ηà  0  

 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!!!

!

""

"" ""

""""

"

" "" ""

"" " """ ""

"

""""

""

"

"

"""

""""""

"

"

""

"""

""""""

1.0 1.2 1.4 1.6 1.8

0.005

0.010

0.015

0.020

0.025

0.030

I!Ith

!!T

s

"1.9eVs"#v$0

!1.9eVs"#v%0Curves  constant  

once  normalized  by  the  longitudinal  emiSance  

Minimum  due  to  synchrotron  period  Ts   Aumon  Sandra  -­‐PhD  Defense   9  

Page 10: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Eta  threshold  !!

!

!

!

!!

!

!

!!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

! !!

!

!

!

"

""

""

"

"

"

"

"

"

"

"

"

"

""" "

""

"

" "

"

"

"

"

"

"

"

"

"

"

"""

# #####

#

##

##

## ##

#

#

#

#

#

#

#

###

#

##

#

#

80 100 120 140 160

!0.0010

!0.0005

0.0000

0.0005

Intensity !1010protons"

"th

# 2.3eVs

" 1.9eVs

! 1.5eVs

#v$0

!!

!

!

!

!!!

!

!!

!

!

!

!!!

!!

!

!

!

!

!

!

!

!

!!

!

!!

!!

! !!!

!

!

"

""

" "

"

"

""

"

""

"

"

"

""" "

"""

" ""

"

"

""

"""

"

""""

# ##### #

###

######

##

#

#

#####

###

#

#

1.0 1.2 1.4 1.6 1.8 2.0

!0.0010

!0.0005

0.0000

0.0005

I!Ith"th

# 2.3eVs" 1.9eVs! 1.5eVs#v$0

!

!!

!

!

!!

!

!

!

!!

!

!!

!

!

!

!!! !

!!!

! !!

!

!

!

!!!!

!

!!!!

""

"" ""

""

""

"

" "" ""

"

" " """""

"

""""

""

"

"

""""

"""""

"

"

""

"""

""""""

80 100 120 140 160!0.0015

!0.0010

!0.0005

0.0000

0.0005

0.0010

Intensity !1010 protons"

"th

" #v$0

! #v%01.9eVs

•  Instability  is  triggered  at  different  η,  namely  ηth  for  each  intensity.  

 

•  ηth  linear  with  beam  intensity.    

•  Minimum  ηth  :  -­‐  Meas.  0.0004  ,  zero  chromaCcity  -­‐  Meas.  0.001,  negaCve  chromaCcity  

•  Resul+ng  η  is  right  only  if  the  es+ma+on  of  transi+on  +me  is  good.  

 

•  With  chromaCcity,  possibility  to  accelerate  more  intensity  for  the  same  ηth  

Error  bar  contains  the  possible  error  on  the  transiCon  Cming  

Offset  

Aumon  Sandra  -­‐PhD  Defense   10  

Page 11: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Threshold  in  Intensity  with  gamma  jump  

Ê

Ê

Ê

Ê

ÊÊ

Ê

‡ ‡

‡‡

‡‡

1.4 1.6 1.8 2.0 2.2 2.4 2.6200

300

400

500

600

700

Longitudinal Emittance elH2sL

ThresholdinIntensity@101

0protonsD

Linear Fit R2=0.979

xy Set 2Linear Fit R2=0.994

xy Set 1

Ê

Ê

Ê

ÊÊÊÊÊÊ

Ê

Ê

ÊÊÊÊÊ

Ê

‡ ‡

‡‡

‡‡‡

‡‡‡‡

‡ ‡ ‡

4.0 4.5 5.0 5.5 6.0 6.5 7.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Relativistic g

VerticalChromaticity

‡ xy Set 2

Ê xy Set 1

5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0-0.010

-0.005

0.000

0.005

0.010

Relativistic g

h

unpert.h»h»-jumph-jump

•  Use  of  a  gamma  jump  allows  to  increase  considerably  Ith  

•  Instability  appears  around  ηth~0.005  •  Frozen  synchrotron  moCon  for  a  shorter  Cme  

allows  to  increase  by  a  factor  3  and  up  to  10,  Ith  according  to  the  working  point.  

•  NegaCve  large  chromaCcity  before  and  posiCve  chromaCcity  aMer  transiCon  helps  to  increase  intensity  threshold.  

•  Threshold  in  η  are  also  increased  by  a  factor  10.  

Aumon  Sandra  -­‐PhD  Defense   11  

ηth~0.005  

Page 12: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Conclusions  of  Experiments  •  First  +me  that  extensive  measurements  are  done  for  this  instability:  instability  measurements  for  zero  and  

small  negaCve  verCcal  chromaCcity  varying  the  longitudinal  emiSance  (peak  density)  and  the  beam  intensity.  

•  Instability  is  easily  developed  for  zero  (small)  chroma+city  (not  a  head-­‐tail  kind)  and  for  slow  synchrotron  mo+on  (BBU  or  coasCng  beam),  and  high  peak  density  (coasCng  beam).  

•  Chroma+city  is  a  way  to  increase  threshold  in  intensity  and  in  η.  •  Increase  synchrotron  mo+on  (η)  with  the  gamma  jump,  here  close  to  a  factor  10  with  a  good  set  in  

working  point.  •  ηth  ≠0  for  the  set  zero-­‐chromaCcity,  could  be  due  to  an  error  in  esCmaCon  of  the  transiCon  Cme  (~300  

turns  is  definiCvely  possible),  need  to  be  check  with  macro-­‐parCcle  simulaCons.  •  It  appears  that  fast  synchrotron  moCon  (large  η)  +  jump  in  chromaCcity  from  large  negaCve  value  to  large  

posiCve  value  is  a  way  to  cure  the  instability.  •  Need  of  macro-­‐parCcle  simulaCons  to  benchmark  the  measurements  and  understand  beSer  the  dynamics  

of  the  instability.  -­‐  Check  the  raCo  -­‐  threshold  in  η  and  in  intensity.  -­‐  Possibility  to  have  a  predicCve  model  

Ilinear/Ith ' 1.3

Aumon  Sandra  -­‐PhD  Defense   12  

Page 13: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

0 1 2 3 4 5 6!2

0

2

4

6

8

10

Position z behind the source !m"

Wak

efu

ncti

on!1

015

V#C#m"

Macro-­‐parCcle  SimulaCons  (HEADTAIL)  •  Use  of  a  transverse  broad-­‐band  impedance  model  

(resonator)  •  I  modified  the  code  to  adapt  it  as  close  as  possible  as  

the  measurement  condiCons  

ω  angular  revoluCon  frequency    ωr  resonator  frequency  Rs  shunt  impedance  (MΩ/m)  Q  quality  factor  

ICAP, Chamonix, 02.10.2006 Giovanni Rumolo 4/30

R&D and LHC Collective Effects Section

Interaction with animpedance

s

∫W(z-z‘)ρ(z‘)dz‘z

W

Z? =!r

!

Rs

1 + iQ⇣

!r! � !

!r

Simula+on  parameters  

RF  bucket     acceleraCng  

Momentum  rate   46  GeV/c/s  

Twiss    <βx,y>   16/16  m  

Qx,y   6.22/6.28  

Gamma  transiCon   ~  6.1  

Vacuum  chamber   flat  

Impedance  model   broad-­‐band  

Quality  factor  Q   1  

Resonator    frequency     1  GHz  

Shunt  impedance  Rs   To  be  matched  

Useful  outputs  to  consider  through  transi+on  •  Turn  by  turn  Δy  signal  •  VerCcal  normalized  emiSance  •  VerCcal  centroid  

Aumon  Sandra  -­‐PhD  Defense   13  

Page 14: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

SimulaCon  with  HEADTAIL  

14  

HEADTAIL  Instability  at  ηth  

HEADTAIL  

HEADTAIL,  Instability  well  above  ηth  

Measurement  

OscillaCon  Starts  at  the  maximum  peak  density  as  the  measurements  

Tc:  nonadiabaCc  Cme  ~2.2ms  

ξv  =0  

Aumon  Sandra  -­‐PhD  Defense  

Measurements  

Page 15: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Simulated  Rise  Cme  1.9  eVs  

Ê

ÊÊÊ

Ê Ê

Ê Ê Ê

ÊÊ

ÊÊ Ê Ê ÊÊ Ê

Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê

ÊÊÊ

ÊÊ

ÊÊÊÊ

Ê

ÊÊÊÊ

Ê Ê

ÊÊ

ÊÊ ÊÊÊ

ÊÊ

ÊÊ

ÊÊ

Ê

50 100 150 2000

50

100

150

200

250

300

350

Beam Intensity @Nb protons 1010D

RiseTimet@Nb

turnsD

Asymptote y=31.36

f2HxL=81.6 - 1417.3

76.6 - x

Measurements

fHxL=14.63+ 10719

31.36 - x

Simulations Rs=0.7MWêm

2.3  eVs  

Ê

Ê

Ê

Ê

ÊÊÊÊÊÊÊ

Ê

ÊÊ

Ê

Ê

Ê

ÊÊÊÊÊÊÊ Ê

Ê

ÊÊÊ

ÊÊ

Ê

Ê

Ê ÊÊÊÊÊ

‡‡

‡‡

‡‡‡‡ ‡‡‡ ‡

‡ ‡‡

‡‡ ‡ ‡

‡ ‡‡ ‡ ‡ ‡ ‡

Ï

Ï

ÏÏÏ

ÏÏ

ÏÏÏ

Ï

Ï

ÏÏÏ

ÏÏÏÏÏÏÏ

ÏÏ

Ï

Ï ÏÏ Ï Ï Ï

Ï

50 100 150 200 250 300

100

200

300

400

500

Beam Intensity @Nb protons 1010D

RiseTimet@Nb

turnsD

el = 1.5eVs

Headtail-Rs=0.5MWêmHeadtail-Rs=0.7MWêmMeasurements

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

1.2 1.4 1.6 1.8 2.0 2.2 2.4

40

60

80

100

120

140

160

elH2sL

Ithreshold@101

0protonsD

1.5  eVs  Measurements  SimulaCons  

fr=1GHz  Rs=0.7MΩ/m  Q=1  

Ê

Ê Ê

Ê

Ê

Ê

ÊÊ Ê Ê Ê

Ê ÊÊÊ Ê Ê Ê

Ê Ê Ê Ê ÊÊ

Ê Ê Ê Ê Ê

‡‡‡

‡‡

‡‡‡‡‡

‡‡‡‡ ‡‡‡‡‡ ‡‡‡‡ ‡

100 150 200 250 300

100

200

300

400

500

Beam Intensity @Nb protons 1010D

RiseTimet@Nb

turnsD

el = 2.3eVs

Headtail-Rs=0.7MWêmMeasurements

Ilinear/Ith ' 3� 5

Aumon  Sandra  -­‐PhD  Defense   15  

Page 16: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Dynamics  with  chromaCcity  

•  ImplementaCon  in  the  code  of  a  chromaCcity  change  with  acceleraCon  

•  Delta  verCcal  signal  shows  that  the  oscillaCon  of  the  instability  is  dumped  with  chromaCcity  compared  to  the  same  profile  with  the  same  energy  with  zero  chromaCcity.  

•  Not  the  same  dumping  at  the  intensity  threshold  as  in  the  measurements  for  the  same  chromaCcity  .  

•  EffecCve  impedance  between  0.5  and  0.7  MOhm/m  

Aumon  Sandra  -­‐PhD  Defense   16  

ÊÊ

Ê

ÊÊ

Ê

ÊÊ

Ê

Ê

Ê Ê Ê

4.0 4.5 5.0 5.5 6.0 6.5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Relativistic g

VerticalChromaticityxv

Headtail

Measurements

Ê Ê Ê

Ê

ÊÊ Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê

‡ ‡‡ ‡

‡‡ ‡

‡‡ ‡ ‡ ‡ ‡

ÏÏ Ï Ï

Ï ÏÏ Ï Ï

Ï ÏÏ Ï Ï Ï ÏÏ Ï

ÏÚÚÚÚÚÚÚÚ

ÚÚÚÚÚÚÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚÚÚÚÚ Ú

Ú

ÚÚÚ ÚÚÚ ÚÚ

Ú

ÚÚÚÚÚÚ

Ú

Ú ÚÚÚÚÚÚÚ

80 100 120 140 160 180 2000

100

200

300

400

500

600

Intensity@1010protonsD

RiseTimet@N

bturnsD Ú Measurements-xv~-0.1

Ï Rs=0.7MWêm-xv=0‡ Rs=0.5MWêm-xv~-0.1Ê Rs=0.7MWêm-xv~-0.1

Page 17: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Threshold  in  Eta  No  Chroma+city  

Ê Ê Ê Ê ÊÊ Ê

ÊÊ Ê Ê

ÊÊÊ Ê Ê

‡ ‡ ‡‡

‡ ‡

‡‡

‡ ‡

‡ ‡‡ ‡ ‡ ‡

‡‡ ‡

‡ ‡ ‡‡ ‡

ÏÏ Ï Ï

Ï Ï Ï Ï Ï Ï Ï Ï

Ï ÏÏÏ Ï Ï

ÏÏ Ï

Ï ÏÏ Ï

ÏÏ

Ï

Ê

ÊÊ

ÊÊ

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ

Ê Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊ

0.5 1.0 1.5 2.0 2.5 3.0-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

IêIth

h

Measurements

el=2.3eVs

el=1.5eVs

el=1.9eVs

Small  Nega+ve  Chroma+city  

ÊÊ Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê

‡ ‡ ‡‡ ‡ ‡

‡ ‡ ‡ ‡‡ ‡ ‡ ‡ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

ÊÊ

ÊÊ ÊÊ

ÊÊ

ÊÊ

Ê

ÊÊÊ ÊÊ

Ê

ÊÊÊÊÊÊÊÊ

ÊÊÊÊ

ÊÊ

Ê

Ê

ÊÊÊÊÊÊÊ

0.5 1.0 1.5 2.0 2.5 3.0

0.0000

0.0005

0.0010

0.0015

IêIth

h

Measurements -xv<0

el=1.9eVs -xv=0

el=1.9eVs -xv<0

Agreement  with  measurements:  •  ηth  increases  with  chromaCcity,  allows  to  

accelerate  more  intensity  with  non  zero  ξy  •  Offset  between  ηth(ξy=0)  and  ηth(ξy<0)  •  Linear  behavior  eta  th  with  intensity  

Disagreement  with  measurement  and  simulaCons:  •  Not  the  same  ηth  close  to  the  intensity  threshold  •  Not  the  same  linear  behavior  about  the  slope  •  Offset  in  η  of  0.0002  in  simula+ons  ,  0.0006  in  

measurements  

≠  ηth   ≠  ηth  

Offset  

Best  impedance  model  found  Rs=0.7MΩ/m  Q=1,  short  range  wake  field  Fr=1GHz    

Aumon  Sandra  -­‐PhD  Defense   17  

Not  Same  Scale  

Page 18: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Conclusions  a)  Conclusions  of  the  study  

 -­‐  Equivalent  broad-­‐band  impedance  found  Rs=0.7MΩ/m,  fr=1GHz,  Q=1  -­‐  Intensity  threshold  predictable  at  50%  -­‐  Possible  cure  of  the  instability:  adequate  chromaCcity  (working  point)  +  gamma  jump.  Limita+ons    -­‐  Impedance  model  is  the  biggest  unknown  of  the  study.  -­‐  Ilinear/Ith  ~  1.3-­‐1.5  (Measurements)  versus    Ilinear/Ith  ~  3-­‐5  (HEADTAIL)  -­‐  ηth  close  to  the  threshold  in  intensity  are  very  different,  partly  explained  the  sezng  of  the  transiCon  Cming  in  measurements.  -­‐  Different  offset  in  ηth  ,  but  behavior  comparable  to  coasCng  beam  theory  -­‐  The  effect  of  chromaCcity  is  less  important  in  the  simulaCons  than  in  the  measurements  (strong  effect  !)    -­‐  Not  presented  here,  but  the  simulaCons  with  gamma  jump  show  travelling  wave  frequency  higher  than  in  the  measurements.    -­‐  Influence  of  space  charge  not  included  in  simulaCons.  -­‐  Non-­‐lineariCes  generated  by  PFWs.  -­‐  linear  and  non-­‐linear  coupling  not  included  in  simulaCons.  Outlooks  –  Future  works    -­‐  Complete  impedance  model  -­‐  Studies  of  ChromaCcity  jump  -­‐  CollaboraCon  with  GSI:  similar  studies  are  carried  out  at  GSI  and  measurements  at  the  CERN  PSBooster  and  PS  will  be  made  in  June.    -­‐  Octupoles  

Aumon  Sandra  -­‐PhD  Defense   18  

Page 19: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Studies  of  losses  at  InjecCon  

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1959

19

60

1961

19

62

1963

19

64

1965

19

66

1967

19

68

1969

19

70

1971

19

72

1973

19

74

1975

19

76

1977

19

78

1979

19

80

1981

19

82

1983

19

84

1985

19

86

1987

19

88

1989

19

90

1991

19

92

1993

19

94

1995

19

96

1997

19

98

1999

20

00

2001

20

02

2003

20

04

2005

20

06

2007

20

08

2009

Prot

on In

tnes

ity [E

10]

Year

PS Proton Intensity Evolution Over 50 Years

Typical Intensity [E10]

Peak Intensity [E10]

Record Intensity [E10] PS Booster

1 GeV

PS Booster 1.4 GeV RF change h=5 to h=1

For LHC Beam Production

Double Batch Injection 4.2E13 inj. 3.55E13 ej.

PS Shutdown Magnet

renovation

Aumon  Sandra  -­‐PhD  Defense   19  

Facts  •  Large  losses  of  proton  while  the  beam  is  injected  into  the  PS.  •  Strongly  dependent  of  the  beam  intensity,  therefore  high  intensity  beams  most  concerned    

(ToF,  CNGS),  at  least  3-­‐4%  of  losses.  •  High  radiaCon  dose  outside  the  ring  (the  so-­‐called  Route  Goward)  •  Later  moCvaCon,  injec+on  energy  upgrade  from  1.4  to  2  GeV  kine+c,  the  radiaCon  dose  will  be  

increased  by  a  factor  ?  (1)  with  the  same  scenario  of  losses.  

Aims:  find  the  mechanisms  of  the  protons  beam  losses.  

(1)  Work  of  S.  Damjanovic  

Beam  intensity  conCnuously  increases  since  its  commissioning  

Page 20: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Single  Turn  InjecCon  System  Septum

BSM40 BSM42 BSM43 BSM44

x’

xs xsbump

!k

"#

$s

s

Transferline

Fast Kicker

Closedorbit

Bump

%s

$k

%k

Aumon  Sandra  -­‐PhD  Defense   20  

BSM40 BSM42 BSM43

BSM44

Kicker

230 240 250 260 270 280

!0.03

!0.02

!0.01

0.00

0.01

0.02

0.03

Longitudinal position s!m"

X!m"

Booster  4  superposed  rings  

Cross  SecCon  InjecCon  Septum  

InjecCon  bump  

Possible  opCcs  mismatch?  

Aperture  restricCon?  

Page 21: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Loss  Experiments  •  BLMs  located  at  the  maximum  (SS42)  and  minimum  

(SS43)  of  the  bump,  i.e.  where  the  available  aperture  is  minimum.  

•  Measurements  done  while  the  beam  is  injected  (first  turn)  on  single  bunch  ToF  and  mulC-­‐bunch  CNGS  beam.  

•  Losses  while  the  beam  is  going  through  the  injecCon  septum,  the  beam  is  injected  at  the  maximum  of  the  bump.  

•  The  BLM  are  able  to  disCnguish  the  losses  bunch  to  bunch.  

Conclusions:  Losses  occur  while  the  beam  is  going  through  the  septum  and  then  turn  by  turn  

Aumon  Sandra  -­‐PhD  Defense   21  

InjecCon,  transit  through  the  septum  

BLM  at  minimum  of  the  bump  

BLM  at  maximum  of  the  bump  

Beam  composed  by  8  bunches  

Beam  from  Ring  2  

1  turn  

1turn   2turn   3turn  

Page 22: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

0 10 20 30 40 50 60 700

2

4

6

8

10

12

14

s@mD

VerApertureêVe

rEnvelop 3sigma

RMS

!!

!

!

!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!

!

!!

!

!!

!

! !

!

!

!!

!

! !

!

0 100 200 300 400 500 6000

1

2

3

4

5

6

Longitudinal position s!m"

Hor.Dispersion!m"

Periodic DxMADX Dx

! Meas.Dx BT1

Septum  losses  •  Betatron  and  dispersion  matching  measurements  in  order  

to  idenCfy  a  possible  mismatch  between  the  injecCon  line  and  the  PS:  determinaCon  of  iniCal  condiCons,  in  parCcular  for  the  horizontal  dispersion.  

•  Good  agreement  with  the  opCcs  model  computed  with  PTC-­‐MADX:  -­‐  No  large  mismatch  was  found  expect  on  dispersion  for  Ring  3.  -­‐  Beam  size  measurements  right  at  injecCon:  tail  of  the  beam  are  cut  on  the  septum  blade  (~1%)  

•  It  was  found  that  the  beam  is  pushed  as  close  as  possible  of  the  septum  blade  to  decrease  the  angle  given  to  the  beam  by  the  injecCon  kicker:  compromise  between  losses  and  kicker  strength.  

Aumon  Sandra  -­‐PhD  Defense   22  

�x(s) = D(s)�p/p

Losses due to the incoming beam

ToF beam full intensity800e10eHor(RMS)=12mm.mrad

MD beam100e10eHor(RMS)=5mm.mrad

1% of the beam

3% of the beam

Septum Aperture [A.U] [A.U]Horizontal Beam Profile Septum Aperture

Horizontal Position[m] Horizontal Position[m]

Thursday, April 5, 12

0 10 20 30 40 50 60 700

2

4

6

8

10

12

14

s@mD

HorApertureêHo

rEnvelop 3sigma

RMS

Page 23: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Turn  by  Turn  losses  

Aumon  Sandra  -­‐PhD  Defense   23  

0.0 0.1 0.2 0.3 0.4

0.0

0.5

1.0

1.5

2.0

Time !ms"

Sig

nal!V"

BSM44BSM43BSM42BSM40

Friday, April 6, 12

•  Turn  by  turn  losses  while  the  injecCon  bump  is  decreasing.  

•  The  losses  occurs  at  the  maximum  and  at  the  minimum  of  the  bump:  tails  of  the  horizontal  distribuCon  are  cut  around  3  sigma.  

•  Presence  of  direct  space  charge  at  injecCon    •  Preliminary  tune  footprint  simulaCon  with  PTC-­‐

Orbit  show  the  possibility  that  parCcles  cross  the  integer  resonance  

•  It  can  cause  emiSance  blow  up  and  high  amplitude  oscillaCon  which  hit  the  vacuum  chamber  at  the  first  aperture  restricCon  

ArCficial  offset  to  disCnguish  the  different  signal    

Integer  tune  

Page 24: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Fluka  SimulaCons  

Dose equivalent (pSv /lost proton)

Z (cm)

Y (cm)

Injection septum

PS magnet

Beam direction

BLM source

Z(cm)

X(cm)

SS41 SS42 SS43 SS44

Aumon  Sandra  -­‐PhD  Defense   24  

0 1 2 3 4 5 60

20

40

60

80

100

120

140

Measured

Fluka

BLM41

BLM42

BLM

Nor

mal

ized

resp

onse

BLM43

BLM44

BLM45

Goal:  Reproduce  the  signal  of  the  BLM  at  injecCon  (Supervision  of  a  student)  

Chapter 5. High intensity beams issues at Injection

5.6 FLUKA simulations of beam losses at injection

As explained earlier in Sec. 5.2, beam losses are observed when the beam is injected in themachine. In order to verify that the high radiation levels observed at Rue Goward, which arecorrelated with the PS BLMs, are related directly to the injection losses, a shower simulationwith the code FLUKA [61, 62, 95] has been performed.

FLUKA is a Monte Carlo code that tracks a given distribution of source particles, called primary,through a geometry programmed by the user. Interactions between the primary particles andthe different materials in the geometry are sampled and all secondary particles are tracked.Both the hadronic and the electromagnetic shower are simulated. The simulation output aredifferent quantities specified by the user, for example the energy deposition. in given parts ofthe geometry or a full record of all particle tracks and interactions.

A geometry of the region around the injection septum has already been implemented inFLUKA [96]. The existing input file has been adopted for this particular study through theaddition of BLMs. The FLUKA geometry is shown in Fig. 5.40. The BLMs, of the type ACEM,are described in detail in Sec. 5.2

The primary particles are started at the surface of the inside of the beam pipe at the longitudi-nal locations with the smallest normalized aperture as calculated with MAD-X. These locationscorrespond approximately to the maximum and minimum of the PS injection bump and theyare shown in Fig. 5.40. Several simulations were performed, and the relative weights of thelocations of the source particles were empirically adjusted in order to fit with the measure-ments. This was done to see if the loss locations are compatible with the aperture restrictions.The different positions with their relative weights are also described in Table 5.9. The particlesare assumed to be at their maximum amplitude and therefore have a zero angle towards thelongitudinal beam axis. An example of a starting distribution in the transverse plane is shownin Fig. 5.41.

Injection 30% At Septum 42, an electrostatic dipole in the straight section 42 to deflect theincoming beam form the PSB into the PS. The tail of the beam is hitting onthe inside at the end of the septum

Maximum ofthe bump

10% At the beginning on the outside of Septum 42, the tail of the beam is cut atthe blade

Minimum ofthe bump

60% On the inside on the first metre of Magnet 43. Spread on three equally spacedspots (30%,20%,10%)

Table 5.9: Location of the different sources in FLUKA

In order to gain in CPU time, 33 simulations were launched in parallel on a cluster and the

234

Page 25: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Coherent  tune  shiM  measurements  

25  

-3¥ 1010 -2¥ 1010 -1¥ 1010 1¥ 1010 2¥ 1010 3¥ 1010w

-1.5¥ 106

-1.0¥ 106

-500000

500000

1.0¥ 106

1.5¥ 106Zt

Im(Z?) Re(Z?)

Real  Tune  shie  measurements  Es+ma+on  of  this  part  

Instability  rise  +me  measurements  (Transi+on  study)  

Aumon  Sandra  -­‐PhD  Defense  

MoCvaCon    •  Impedance  effects  (wall,  space  charge)  are  

important  issues  at  injecCon  •  First  step  toward  a  more  complete  PS  impedance  

model  

ï150 ï100 ï50 0ï2

ï1.5

ï1

ï0.5

0

0.5

1

1.5

Time[ns]

Hor

izon

tal D

elta

Sig

nal [

U.A

.]

AD

2.5! 10"7 3.! 10"7 3.5! 10"7 4.! 10"7 4.5! 10"7 5.! 10"7

"0.02

"0.01

0.00

0.01

0.02

Time!s"

#x$U.A.

HI-­‐LHC  

Page 26: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Coherent  tune  shiM  at  injecCon  

26  Aumon  Sandra  -­‐PhD  Defense  

Injection

Extraction

Measurements

0 200 400 600 8000

500

1000

1500

Time @msD

Mag

net

icFiel

d@Ga

ussD

Ê

Ê Ê

Ê

ÊÊ

1.0¥ 1012 1.5¥ 1012 2.0¥ 1012 2.5¥ 1012 3.0¥ 1012

0.208

0.210

0.212

0.214

Nb

qx

R2=0.9396QxHNbL=-2.2145 10-15Nb+0.2149FitMeas

Ê

ÊÊ

Ê

Ê

Ê

1.0¥ 1012 1.5¥ 1012 2.0¥ 1012 2.5¥ 1012 3.0¥ 10120.225

0.230

0.235

0.240

0.245

0.250

0.255

Nb

qy

R2=0.9935

QyHNbL=-7.6024 10-15Nb+0.2559FitMeasurements

•  KineCc  energy  1.4GeV  •  Tune  measurements  all  along  the  energy  

plateau  

Page 27: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Beam  parameters  at  LHC  extracCon  energy  

•  Almost  no  coherent  tune  shiM    in  the  horizontal  plane.  

27  Aumon  Sandra  -­‐PhD  Defense  

ÊÊ

Ê Ê

Ê

Ê

Ê

1¥1012 2¥1012 3¥1012 4¥1012 5¥1012

0.258

0.260

0.262

0.264

0.266

0.268

Nb

qy

R2=0.9532QyHNbL=-1.0545 10-15Nb+0.2674FitMeasurements

Ê

ÊÊ Ê

ÊÊ

Ê

1¥1012 2¥1012 3¥1012 4¥1012 5¥10120.2280

0.2285

0.2290

0.2295

0.2300

Nb

qx

R2=0.750QxHNbL=-1.1635 10-16Nb+0.229FitMeasurements

�Qx

coh

' 0

Page 28: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

EffecCve  Impedance  

KineCc  Energy  K   1.4  GeV  

Bunch  length   ~  180  ns  

βrel 0.91  

γrel   2.47  

ω0   2728  e3  rad.s-­‐1  

Horizontal  Zeff   3.5  MΩ/m  

VerCcal  Zeff   12.5  MΩ/m  

(1)  From  Sacherer  formula  (CERN/PS/BR  76-­‐21)  

Momentum  p   26GeV/c  

Bunch  length   ~  50  ns  

βrel   0.9993  

γrel   27.729  

ω0   2996  e3  rad.s-­‐1  

Horizontal  Zeff   <  1  MΩ/m  

VerCcal  Zeff   6.1  MΩ/m  

28  Aumon  Sandra  -­‐PhD  Defense  

Chapter 5. High intensity beams issues at Injection

5.8.3 Effective generalized inductive impedance estimation

The detailed of the theory of transverse bunched beam instabilities and the beam-impedanceinteraction developed by Sacherer can be found in Ref. [23, 104].

The beam-impedance interaction generates a complex tune shift¢! of the betatron frequency.The real part of¢!measured at injection and extraction energy corresponds to the interactionof the beam with the imaginary part of the transverse impedance Z? that is supposed broad-band. Chap. 4 has shown that the measurements of the fast transverse instability rise timescan be compared to HEADTAIL simulations assuming a broadband impedance. However,growth rates are the interaction of the beam with the real part of the impedance, meaningthat Re(Z?) measuring at transition energy can be considered as broadband. With tune shiftmeasurements, Im(Z?) is evaluated and as it will be seen this paragraph, this value is notabsolute. This is why we defined Ze f f , the effective impedance, i.e. the impedance weightedby the transverse bunch spectrum h(!) centered at the chromatic frequency !ª as shown inFig. 5.54,

Ze f f =

1Pp=°1

Z (!0)h(!0 °!ª)

1Pp=°1

h(!0 °!ª)

8>>><

>>>:

!0 =!0p +!Ø!ª = ª!Ø/¥

h(!) = e°!2æ2/c2

(5.49)

with !0 the angular revolution frequency, ª the chromaticity, !Ø the betatron frequency, ¥ themomentum compaction factor, h(!) the bunch spectrum, which a line spectrum within theenvelope h(!0°!ª) and then for a single bunch!0 = (p+Q)!, with p is an integer °1< p <1.Since the beam is assumed Gaussian, h(!0) is also a Gaussian spectrum. Im(Z?) is assumedconstant all over the spectrum of the oscillation mode at least for the lowest mode consideredherein (m=0). Such simplification is generally valid for long proton bunches. The real tuneshift is related to the effective generalized impedance developed by the Sacherer for a bunchedbeam [104]

¢Qm =° 11+m

j

2Q0!20

eØI∞m0øb

Im

0

BB@

1Pp=°1

Z (!0)h(!0 °!ª)

1Pp=°1

h(!0 °!ª)

1

CCA (5.50)

with m the oscillation mode, Q0 the transverse tune,!0 the revolution frequency, e the electroncharge in Coulomb, Ø and ∞ the relativistic parameters, m0 the proton mass in kg, I theintensity in A and øb the full bunch length in meter. The computation gives an effectivegeneralized transverse impedance. Effective since its value is not absolute and might changedaccording the energy and the length of the beam.

For asymmetric structures as in the PS and as explained in Ref [105] and briefly in Sec. 1.4.1,the impedance is transformed as a Taylor expansion and can be expanded into a power seriesin the offset of the trailing particles behind a source particle, which then normalized to a

252

Chapter 5. High intensity beams issues at Injection

5.8.3 Effective generalized inductive impedance estimation

The detailed of the theory of transverse bunched beam instabilities and the beam-impedanceinteraction developed by Sacherer can be found in Ref. [23, 104].

The beam-impedance interaction generates a complex tune shift¢! of the betatron frequency.The real part of¢!measured at injection and extraction energy corresponds to the interactionof the beam with the imaginary part of the transverse impedance Z? that is supposed broad-band. Chap. 4 has shown that the measurements of the fast transverse instability rise timescan be compared to HEADTAIL simulations assuming a broadband impedance. However,growth rates are the interaction of the beam with the real part of the impedance, meaningthat Re(Z?) measuring at transition energy can be considered as broadband. With tune shiftmeasurements, Im(Z?) is evaluated and as it will be seen this paragraph, this value is notabsolute. This is why we defined Ze f f , the effective impedance, i.e. the impedance weightedby the transverse bunch spectrum h(!) centered at the chromatic frequency !ª as shown inFig. 5.54,

Ze f f =

1Pp=°1

Z (!0)h(!0 °!ª)

1Pp=°1

h(!0 °!ª)

8>>><

>>>:

!0 =!0p +!Ø!ª = ª!Ø/¥

h(!) = e°!2æ2/c2

(5.49)

with !0 the angular revolution frequency, ª the chromaticity, !Ø the betatron frequency, ¥ themomentum compaction factor, h(!) the bunch spectrum, which a line spectrum within theenvelope h(!0°!ª) and then for a single bunch!0 = (p+Q)!, with p is an integer °1< p <1.Since the beam is assumed Gaussian, h(!0) is also a Gaussian spectrum. Im(Z?) is assumedconstant all over the spectrum of the oscillation mode at least for the lowest mode consideredherein (m=0). Such simplification is generally valid for long proton bunches. The real tuneshift is related to the effective generalized impedance developed by the Sacherer for a bunchedbeam [104]

¢Qm =° 11+m

j

2Q0!20

eØI∞m0øb

Im

0

BB@

1Pp=°1

Z (!0)h(!0 °!ª)

1Pp=°1

h(!0 °!ª)

1

CCA (5.50)

with m the oscillation mode, Q0 the transverse tune,!0 the revolution frequency, e the electroncharge in Coulomb, Ø and ∞ the relativistic parameters, m0 the proton mass in kg, I theintensity in A and øb the full bunch length in meter. The computation gives an effectivegeneralized transverse impedance. Effective since its value is not absolute and might changedaccording the energy and the length of the beam.

For asymmetric structures as in the PS and as explained in Ref [105] and briefly in Sec. 1.4.1,the impedance is transformed as a Taylor expansion and can be expanded into a power seriesin the offset of the trailing particles behind a source particle, which then normalized to a

252

(1)  

Important  Conclusions  

�Qx

coh

' 0

�Qx

coh

' �Qx

dip

+�Qx

quad

�Qx

coh

' 0 ! Zx

dip

+ Zx

quad

= 0

Increase  by  a  factor  2  with  respect  to  measurements  done  in  1990  and  2000  

From  the  measured  tune  shiM  with  intensity,  the  effecCve  impedance  can  be  deduced  from  the  Sacherer  formula  of  the  interacCon  of  the  bunch  spectrum  in  frequency  with  a  broad-­‐band  impedance:   Zeff  

Zeff  depends  of  bunch  length  

Page 29: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Space  Charge  Tune  ShiM  EsCmaCon  

1.0! 1012 1.5! 1012 2.0! 1012 2.5! 1012 3.0! 1012

"0.020

"0.015

"0.010

"0.005

0.000

Nb protons

Ver

tica

lT

un

esh

ift#

Qv

#Qv SC 26 GeV!c

#Qv SC 1.4 GeV

Total Vert. #Qv

Aumon  Sandra  -­‐PhD  Defense   29  

Chapter 5. High intensity beams issues at Injection

5.8.4 Estimation of the Tune Shift due to Space charge

The measured tune shift at injection and extraction energy is the sum of a the contributionfrom space charge ¢Qsc and from the impedance ¢Qz . Let consider the vertical effectiveimpedance at the two energies. If the coherent tune shift due to space charge is assumednegligible at 26 GeV, it does not mean that the value of the imaginary part of the broadbandimpedance is the difference between Z e f f

y (26 GeV )°Z e f fy (1.4 GeV ) = 13°6.1 = 6.9 M≠/m,

since the bunch length at the two energies were different.

Very small coherent tune shift at 26 GeV were measured, assuming that the contribution fromthe space charge is negligible,

¢Qxcoh ' 0 (5.53)

It does not mean that Z e f fx , the horizontal impedance is zero. As explained previously, the

tune shift is the sum of the dipolar part and an incoherent part

¢Qxcoh =¢Qx

di p +¢Qxquad

in term of impedance,

¢Qxcoh ' 0 ! Z x

di p +Z xquad = 0

therefore the dipolar part compensates the quadrupolar part of the impedance in the horizon-tal plane. In the case of a vacuum chamber assume to two parallel conductive infinite plates,the force seen by a tralling particle behind a source particle will not depends neither on theposition of the source nor the position of the test particle. The coupling term are neglected.The vacuum chamber of the PS is elliptical with the half width being twice the half height.With such dimensions, the results of the two parallel conductive plates is found in the PS. Thedifferent contributions of the dipolar and quadrupolar parts of the impedance in the PS arenot known. 2-wire technique is required to obtain the dipolar part of the impedance [105, 107].

Z xdi p =°Z x

quad (5.54)

Concerning the vertical plane, the space charge has be taken into account

¢Q ycoh =¢Qsc

coh + (¢QZy

di p +¢QZy

quad ) (5.55)

The coherent tune shift due to space charge depends on the magnetic and electric contributionwith the environment, here the wall. It can be evaluated thanks to the Laslett coefficients

¢Qcoh =° NbRr0

ºQy∞Ø2

µ≤1

h2 + ≤2

g 2 + ª1

h2

1°Ø2

B 2

∂(5.56)

256

Chapter 5. High intensity beams issues at Injection

5.8.4 Estimation of the Tune Shift due to Space charge

The measured tune shift at injection and extraction energy is the sum of a the contributionfrom space charge ¢Qsc and from the impedance ¢Qz . Let consider the vertical effectiveimpedance at the two energies. If the coherent tune shift due to space charge is assumednegligible at 26 GeV, it does not mean that the value of the imaginary part of the broadbandimpedance is the difference between Z e f f

y (26 GeV )°Z e f fy (1.4 GeV ) = 13°6.1 = 6.9 M≠/m,

since the bunch length at the two energies were different.

Very small coherent tune shift at 26 GeV were measured, assuming that the contribution fromthe space charge is negligible,

¢Qxcoh ' 0 (5.53)

It does not mean that Z e f fx , the horizontal impedance is zero. As explained previously, the

tune shift is the sum of the dipolar part and an incoherent part

¢Qxcoh =¢Qx

di p +¢Qxquad

in term of impedance,

¢Qxcoh ' 0 ! Z x

di p +Z xquad = 0

therefore the dipolar part compensates the quadrupolar part of the impedance in the horizon-tal plane. In the case of a vacuum chamber assume to two parallel conductive infinite plates,the force seen by a tralling particle behind a source particle will not depends neither on theposition of the source nor the position of the test particle. The coupling term are neglected.The vacuum chamber of the PS is elliptical with the half width being twice the half height.With such dimensions, the results of the two parallel conductive plates is found in the PS. Thedifferent contributions of the dipolar and quadrupolar parts of the impedance in the PS arenot known. 2-wire technique is required to obtain the dipolar part of the impedance [105, 107].

Z xdi p =°Z x

quad (5.54)

Concerning the vertical plane, the space charge has be taken into account

¢Q ycoh =¢Qsc

coh + (¢QZy

di p +¢QZy

quad ) (5.55)

The coherent tune shift due to space charge depends on the magnetic and electric contributionwith the environment, here the wall. It can be evaluated thanks to the Laslett coefficients

¢Qcoh =° NbRr0

ºQy∞Ø2

µ≤1

h2 + ≤2

g 2 + ª1

h2

1°Ø2

B 2

∂(5.56)

256 •  “Non  penetraCng  field”  •  LasleS  coefficients  for  ellipCcal  

chamber  a  centered  beam  in  the  vacuum  chamber  valid  for  h/w  <  0.7  (B.  ZoSer  CERN  ISR-­‐TH/72-­‐8)  

EsCmaCon:  ΔQ-­‐Space  charge  ~  ¼  Total  measured  ΔQ  at  injecCon.  Space  charge  for  beam  used  for  

measurement   29  

✏V1 = �0.156

✓h

w

◆2

+ 0.21

✏V2 = 0.41⇣ ⇢

R

⇠V1 = �0.10

✓h

w

◆2

+ 0.617

Page 30: High%Intensity%Beams%Issues%in% …...Rise%Cme% Ê Ê Ê Ê Ê Ê Ê Ê ÊÊ ÊÊ Ê ÊÊÊ Ê ÊÊ Ê Ê ÊÊ Ê Ê Ê Ê ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡‡ ‡ ‡

Conclusions  InjecCon  Studies  •  Large  beam  losses  were  measured  on  high  intensity  beams  (more  than  3%),  which  induce  also  high  radiaCon  

outside  of  the  ring.  The  goal  of  this  study  was  to  idenCfy  the  loss  process,  limited  an  intensity  increase.  •  BLM  experiments  measuring  the  proton  losses  while  the  beam  is  going  through  the  injecCon  septum+  matching  

measurements:  -­‐  combinaCon  of  large  beam  size  for  high  intensity  beam,  aperture  restricCon.  -­‐  the  beam  is  placed  close  to  the  septum  blade  to  save  some  strength  of  the  injecCon  kicker.  -­‐  tails  of  transverse  distribuCon  are  cut  at  least  at  3  sigma,  explaining  1-­‐2%  of  losses.  

•  Turn  by  turn  losses  while  the  injecCon  bump  is  decreasing:  measured  losses  at  the  maximum  and  minimum  of  the  bump  (minimum  of  available  aperture).  

•  Direct  space  charge  repopulated  the  transverse  phase  space  extending  the  duraCon  of  the  losses.  •  Tune  shiM  measurements  with  intensity  in  order  to  evaluate  the  imaginary  part  of  the  impedance  and  esCmate  the  

LasleS  tune  shiM  due  to  space  charge  (about  ¼  of  the  total  tune  shiM)  

•  Possible  cures    -­‐  For  space  charge:  increasing  the  injecCon  energy  to  2GeV  is  a  gain  of  63%  in  the  tune  spread  (PS-­‐LIU  Project)  -­‐  2GeV  injecCon  energy  is  a  gain  in  beam  size  due  the  shrinking  of  the  transverse  emiSance.  -­‐  New  opCcs  in  the  transfer  line  to  make  a  small  beam  size  at  the  injecCon  point  in  both  x,y  planes-­‐(2  different  opCcs  for  LHC  and  for  high  intensity  beams)  -­‐  The  PS  opCcs  has  to  adapted  (QKE  opCcs)  to  avoid  opCcal  mismatch  -­‐  Impedance  model  also  needed  to  predict  instabiliCes  at  injecCon,  mostly  head-­‐tail  kind  

Aumon  Sandra  -­‐PhD  Defense   30