38
Dynamic Programming for Portfolio Problems Kenneth L. Judd, Hoover Institution Yongyang Cai, Hoover Institution May 27, 2012

KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Dynamic Programming for Portfolio Problems

Kenneth L. Judd, Hoover InstitutionYongyang Cai, Hoover Institution

May 27, 2012

Page 2: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Proportional Transaction Cost and CRRA Utility

I Separability of wealth W and portfolio fractions x .I If u(W ) = W 1−γ/(1− γ), then Vt(Wt , xt) = W 1−γ

t · gt(xt).I If u(W ) = log(W ), then Vt(Wt , xt) = log(Wt) + ψt(xt).I “No-trade” region: Ωt = xt : (δ+t )∗ = (δ−t )∗ = 0, where

(δ+t )∗ ≥ 0 are fractions of wealth for buying stocks, and (δ−t )∗ ≥ 0are fractions of wealth for selling stocks.

Page 3: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Examples with two stocks

We first look at simple examples:I Two stocks and one bondI Investment begins at t = 0 and is liquidated at t = 6

Page 4: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

i.i.d. returns (uniform distribution on [0.87,1.27])

0.5 0.55 0.6 0.65 0.7 0.75 0.80.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

Sto

ck 2

fra

ctio

nNo−trade region at stage t=0

Page 5: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.5 0.55 0.6 0.65 0.7 0.75 0.80.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=3

Page 6: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.5 0.55 0.6 0.65 0.7 0.75 0.80.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=5

Page 7: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Correlated returns (discrete)

I Return: R1 = 0.85, 1.08, 1.25; R2 = 0.88, 1.06, 1.2;

I Joint Probability Matrix:

0.08 0.10.12 0.4 0.12

0.1 0.08

0.3 0.4 0.5 0.6 0.7 0.8 0.9−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=0

Page 8: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.3 0.4 0.5 0.6 0.7 0.8 0.9−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=3

Page 9: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.3 0.4 0.5 0.6 0.7 0.8 0.9−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=5

Page 10: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Stochastic mean return

I Log-normal return: N(µi − σ2

i /2, σ2i

)with µi = 0.06 or 0.08 and

σi = 0.2, for i = 1, 2

I Transition probability matrix of µ:[

0.75 0.250.25 0.75

]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=0

Page 11: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=3

Page 12: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Stock 1 fraction

Sto

ck 2

fra

ctio

n

No−trade region at stage t=5

Page 13: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Three stocks

I Problem: 3 stocks + 1 bond.I Investment begins at t = 0 and is liquidated at t = 6I Log-normal return: N

(µ− σ2/2, ΛΣΛ

)with σ = (0.16, 0.18, 0.2)>,

µ = (0.07, 0.08, 0.09)>, Λ is the diagonal matrix of σ, and

Σ =

1 0.2 0.10.2 1 0.3140.1 0.314 1

.I degree-7 complete Chebyshev approximationI product Gauss-Hermite quadrature rule with 9 nodes in each

dimension

Page 14: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

Page 15: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

Page 16: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

Page 17: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Portfolio with Transaction Costs and Consumption

I Problem: 3 stocks + 1 bond, 50 periodsI No-trade regions:

Ω49 ≈ [0.16, 0.33]3,Ω48 ≈ [0.14, 0.24]3, . . . ,

Ωt ≈ [0.19, 0.27]3, for t = 0, . . . , 15,

I Merton’s ratio: x∗ = (ΛΣΛ)−1(µ− r)/γ = (0.25, 0.25, 0.25)>

Page 18: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Σ12 = Σ13 = 0.2, Σ23 = 0.04

Σ12 = Σ13 = 0.2, Σ23 = 0.04

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Page 19: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Page 20: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Page 21: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

More correlation: Σ12 = Σ13 = 0.4, Σ23 = 0.16

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Page 22: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Page 23: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Page 24: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Portfolios with options

I Problem: 1 stock, 1 put option on the stock, and 1 bondI Investment begins at t = 0 and is liquidated at t = 6 monthsI Proportional transaction costs in stock and option tradesI Return of option is based on pricing of the option.

I We use the binomial lattice method to price the optionI Stock price will be one exogenous state variable

I Separability of wealth W and portfolio fractions x and stock price SI If u(W ) = W 1−γ/(1 − γ), then Vt(Wt , St , xt) = W 1−γ

t · gt(St , xt).I If u(W ) = log(W ), then Vt(Wt ,St , xt) = log(Wt) + ψt(St , xt).

Page 25: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 stock and 1 at-the-money put option at t = 0 (liquidate at t = 6months)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1No−Trade Region, Option Price=0.0462351K

Stock fraction

Option fra

ction

I Put option: strike K , expiration time T , payoff max(K − ST , 0)

I stock price S , utility u(W ) = −W−2/2

Page 26: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Dependence on transaction costs1 at-the-money put option at t = 0

transaction cost ratios: τ1 = 0.01, τ2 = 0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

Option fra

ction

Page 27: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option at t = 0transaction cost ratios: τ1 = 0.01, τ2 = 0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

Option fra

ction

Page 28: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option at t = 0 (liquidate at t = 6)transaction cost ratios: τ1 = 0.005, τ2 = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

Option fra

ction

Page 29: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option at t = 0transaction cost ratios: τ1 = 0.005, τ2 = 0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

Option fra

ction

Page 30: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Dependence on horizon1 at-the-money put option (τ1 = 0.01, τ2 = 0.01)

expiration time: T = 1 month

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock fraction

Option fra

ction

Page 31: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option (τ1 = 0.01, τ2 = 0.01)expiration time: T = 2 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock fraction

Option fra

ction

Page 32: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option (τ1 = 0.01, τ2 = 0.01)expiration time: T = 3 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock fraction

Option fra

ction

Page 33: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option (τ1 = 0.01, τ2 = 0.01)expiration time: T = 4 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock fraction

Option fra

ction

Page 34: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

1 at-the-money put option (τ1 = 0.01, τ2 = 0.01)expiration time: T = 5 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock fraction

Option fra

ction

Page 35: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Dependence on strike price (K = 0.8S0)

1 put option at t = 0 (liquidate at t = 6, τ1 = τ2 = 0.01)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02No−Trade Region, Option Price=0.00266625K

Stock fraction

Option fra

ction

Page 36: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

K = 1.2S0

1 put option at t = 0 (liquidate at t = 6, τ1 = τ2 = 0.01)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2No−Trade Region, Option Price=0.154645K

Stock fraction

Option fra

ction

Page 37: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Social value of optionsValue functions with/without options at t = 0 (liquidate at t = 6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.483

−0.482

−0.481

−0.48

−0.479

−0.478

−0.477

−0.476

−0.475

−0.474

Value Functions V0(W,S,x,y) at W=1, S=1 and y=0

Stock fraction x

Valu

e

Option unavailableOption available, τ

2=0.02

Option available, τ2=0.01

Option available, τ2=0.005

I (x , y): fractions of money in stock and optionI τ1 = 0.01 and τ2: transaction cost ratios of stock and option

Page 38: KennethL.Judd,HooverInstitution YongyangCai ...ice.uchicago.edu/2012_presentations/Faculty/Judd...Dynamic Programming for Portfolio Problems KennethL.Judd,HooverInstitution YongyangCai,HooverInstitution

Summary

I Developed a NDP method with shape-preservingapproximation, stabler

I Developed a NDP method with Hermiteinterpolation, more accurate and more time-saving

I Developed a parallel NDP algorithm, running overhundreds of computers, almost linear speed-up

I Solved arbitrary-number-of-period and many-assetdynamic portfolio problems with transaction costs

I Solved arbitrary-number-of-period dynamicportfolio problems with options and transactioncosts