44
1 ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ 1 ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ 1 1.1 Η Μικρομηχανική Ερμηνεία του Τανυστή των Τάσεων 3 1.1.1 Η Αρχή των ∆υνατών Έργων (Α..Ε.) στα κοκκώδη μέσα 3 1.1.2 Ο μικρομηχανικός ορισμός της τάσεως κατά Love 8 1.2 Οι Αναλλοίωτες του Τανυστή των Τάσεων 11 1.3 Αξονοσυμμετρικές Εντατικές Καταστάσεις 17 1.4 Η Φυσική Ερμηνεία των Αναλλοίωτων του Τανυστή των Τάσεων 20 1.5 Ζώνες ∆ιατμήσεως 22 1.6 Μέγιστη, Μέση και Οκταεδρική ∆ιατμητική Τάση 24 1.7 Κριτήρια Αστοχίας κατά Tresca και von Mises 27 1.8 Κριτήριο Αστοχίας κατά Mohr-Coulomb 30 1.9 Παράρτημα: Ο κύκλος Mohr των τάσεων 32 Στο εισαγωγικό αυτό κεφάλαιο ξεκινάμε με μία αναφορά στη μικρομηχανική των κοκκωδών υλικών και στη συνέχεια συνοψίζουμε τις βασικές έννοιες και ορισμούς σχετικά με τις έννοιες της εντάσεως και της αντοχής όπως αυτές απαντώνται στην «Αντοχή των Υλικών».

HPl Sect-01-09

Embed Size (px)

DESCRIPTION

HPl Sect-01-09

Citation preview

  • 1 1 1

    1.1 3 1.1.1 (...) 3 1.1.2 Love 8

    1.2 11 1.3 17 1.4 20 1.5 22 1.6 , 24 1.7 Tresca von Mises 27 1.8 Mohr-Coulomb 30 1.9 : Mohr 32

    .

  • . (2008) , . 1 2

    1. , 2009

    . , Dr-Ing., ..

    .. 144, 190-02, http://geolab.mechan.ntua.gr/, [email protected]

  • . (2008) , . 1 3

    1.1 1.1.1 (...) 1

    . 1-1:

    , 2,3. , 4 (REV). 30 5,6 (. 1-1). . , n

    m , ( , )c m n , ( , )m n , nc mck kn n= ,

    c . , nc mck kF F= , (. 1-2). () (. 1-3). . , .

    1 Bardet, J.-P. and Vardoulakis (2001). The asymmetry of stress in granular media. Int. J. Solids Struct.,38, 353-367. 2 Christoffersen, J., M. M. Mehrabadi, S. Nemat-Nasser (1981), A micromechanical description of granular material behavior, Journal of Applied Mechanics, ASME, Vol. 48, pp. 339-344. 3 Rothenberg, L., and A. P. S. Selvadurai (1981). Micromechanical definition of the Cauchy stress tensor for particulate media, In: Mechanics of Structured Media (edited by A.P.S. Selvadurai), Elsevier, pp. 469-486. 4 . Representative Elementary Volume (REV). 5 . Discrete Element Method (DEM) 6 Cundall P.A., Strack O.D.L. (1979). A discrete numerical model for granular assemblies, Gotechnique 29, No 1, 47-65.

  • . (2008) , . 1 4

    . 1-2: ( )REV .

    . 1-3: :

    . 1-4:

  • . (2008) , . 1 5

    ( )REV , N , ( )REV . ( )REV . ( )REV ,

    { } { }1, , , , 1, , ,a NB a N = = (1.1) ( )REV M ,

    { } { }1, , , , 1, , , ,s MC e e e s M= = (1.2) I C ( )REV , E C ( )REV :

    { }{ }

    1

    1

    , , {1, , }

    , { 1, }

    ,

    M

    M M

    I e e M

    E e e M M

    I E C I E

    +

    = == = + = =

    (1.3)

    a aI a aE a ( )REV ( )REV , a aC ,

    ,

    ,

    a a a aa B

    a aa B a B

    C C C I E

    I I E E

    = = = =

    (1.4)

    a b { },a b a b c a bE E I I e B = = (1.5) , . ,

    0a

    aci

    c CF

    = (1.6)

    ( ) 0a

    c a acijk j j k

    c Cx x F

    = (1.7)

    aix cix

    .

  • . (2008) , . 1 6

    a ( ) aiu

    ai (. 1-5).

    . 1-5: .

    (1.6) (1.7) aiu ai ( )REV ,

    ( )( ) 0a

    ac a c a ac ai i ijk j j k i

    a c CF u x x F

    + = (1.8)

    aC . ,

    c ac bci i iF F F= = (1.9) ...

    ( , ) ( ,int)D ext DW W = (1.10) ( , )D extW ( ,int)DW 7: ) ,

    ( , )D ext e ei ie

    W F u

    = (1.11) eiu e

    eiF ) :

    ( ,int)D c ci ic

    W F u

    = (1.12) ciu c a b (. 1-6),

    7 D (. discrete)

  • . (2008) , . 1 7

    ( ) ( )( )c b a b c b a c ai i i ijk j k k j k ku u u x x x x = + (1.13)

    . 1-6:

    . :

    a ai i ij ju a b x = + +" (1.14)

    a ai i ij jx = + +" (1.15) ,i ija b ,i ij , :

    ( ) ( ) ( ) ( )( )c b a b a b c b a c ai ij j j j ijk k k jl ijk l k k l k ku b x x x x x x x x x x = + +" (1.16)

    ( )

    ( ) ( )e a a e aei i ijk j k k

    ae e ae ae e aei ij j ijk j k k ijk jl l k k

    u u x x

    a b x x x x x x

    = + += + + + +

    ""

    (1.17)

    aekx a a e .

    :

    ( ,int) ( ) ( )D c b a c b aij i j j j ijk i k kc c

    W b F x x F x x

    = + " (1.18) ( , ) ( )D ext e e ae e e aei i ij i j j ijk i k k

    e e eW a F b F x F x x

    = + + + " (1.19)

    ..., . (1.10) :

  • . (2008) , . 1 8

    0 , 0 , 0

    0

    eij i i i i

    ee

    ie

    b a F a

    F

    = = = =

    (1.20)

    . (1.20) ( )REV . ,

    0 , 0 , ( )

    ( )

    c b a e aei i ij i j j ij i j ij

    c ec b a e ae

    i j j i jc e

    a b F x x b F x b

    F x x F x

    = = = =

    (1.21)

    0 , 0 , ( ) ( )

    ( ) ( )

    c b a e e aei ij j ijk i k k j ijk i k k j

    c ec b a e e ae

    ijk i k k ijk i k kc e

    a b F x x F x x

    F x x F x x

    = = = =

    (1.22)

    ( )e aek kx x

    ( )e aek k gx x O R = (1.23)

    (1.22) ,

    ( ) 0c b aijk i k kc

    F x x

    = (1.24) 1.1.2 Love 8 Cauchy . ( )REV , ,

    0ij k REVi

    x Vx = (1.25)

    ij i j k REVn t x V = (1.26) ( )REV 9: . (1.25) kx ( )REV , ,

    8 Froiio, F., Tomassetti, G. and Vardoulakis, I. (2006). Mechanics of granular materials: the discrete and the continuum descriptions juxtaposed, Int. J. Solids Structures, 43, 76847720. 9 L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Vol.7, sect. 2, p.7, Pergamon Press, 1959.

  • . (2008) , . 1 9

    ( )0

    0REV REV REV

    REV REV

    REV REV

    ij kij kk ij

    i i iV V V

    ij k i ij kiV V

    j k kjV V

    x xx dV dV dV

    x x x

    x n dS dV

    t x dS dV

    = = =

    =

    (1.27)

    1

    REV

    ij ijREV V

    dVV

    = (1.28) . (1.22) (1.27)

    ( )REV REV

    ae e b a ck i ki k i k k i

    e cV V

    x t dS dV x F x x F

    = = (1.29) (REV) 10,

    1 ( )b a cij i i jcREV

    x x FV

    (1.30)

    1 c cij i jcREV

    FV

    A (1.31)

    b ai i ix x= A (1.32) . , .(1.31), Love11 . . (1.24) (1.31) ()

    0 0c cijk i k ijk kic

    F

    A (1.33)

    312 23 213 32 23 321: 0j = + ... (1.34)

    10 e.g. information stemming from a DEM simulation of the mechanical description of a granular medium. 11 A.E.H. Love, A Treatise of the Mathematical Theory of Elasticity, Cambridge University Press, 1927.

  • . (2008) , . 1 10

    ij ji (1.35) Love ,

    ( )12 c c c cij i j j icREV F FV + A A (1.36)

    . 1-7:

    1-1: (. 1-7)

    Love , . (1.36), : , , [ / ]F kN m , . 1-7. ( a ) , (1) (6). ( 1-1) Love :

    ( )621

    12

    c c c cij i j j i

    cS S = + A AA (1.37)

    (a) :

    [ ] 0 1/ 41/ 4 0

    F = A (1.38)

  • . (2008) , . 1 11

    1.2

    . 1-8:

    Cauchy 1 2 3( , , )O x x x (. 1-8.),

    [ ] 11 12 1321 22 2331 32 33

    = (1.39)

    12,

    13ij kk ij ij

    s = + (1.40)

    11 22 33kk = + + (1.41)

    ( )11 11 22 33 12 121 2 , , . . .3s s = = (1.42) . (;).

    1 2 3( , , )O x x x

    [ ] [ ]1 12 23 3

    0 0 0 00 0 , 0 00 0 0 0

    ss s

    s

    = = (1.43)

    12 . deviator

  • . (2008) , . 1 12

    [ ]ijA (;)

    3 20 0ij ij A A AA I II III = + = (1.44) AI , AII AIII 3 3[ ] XA , [ ] [ ]ijA A= ( 1,2,3)i i = : 11 22 33 1 2 3AI A A A = + + = + + (1.45)

    22 23 11 1311 12 1 2 2 3 3 132 33 31 3321 22

    A

    A A A AA AII

    A A A AA A = + + = + + (1.46)

    11 12 13

    21 22 23 1 2 3

    31 32 33

    A

    A A AIII A A A

    A A A = = (1.47)

    13.

    . 1-9: Haigh-Westergaard

    , , Haigh-Westergaard (. 1-9).

    13 Pettofrezzo, A.J., Matrices and Transformations, Dover, 1966

  • . (2008) , . 1 13

    1

    2

    3

    OP

    = (1.48)

    (). , , 1 2 3 = = , (), , , , . 1 2 3 0 + + = . 1 ,

    1 1 2 3kkI = = + + (1.49) ,

    1 1 11 , . . .3

    s I = + (1.50) 1 ,

    1 1 2 3 0s kkJ s s s s= = + + = (1.51) ( 1,2,3)i i = ( 1,2,3)is i = . (;)

    3 2 3 0s ss J s J = (1.52) 2 3 ,

    ( )2 2 22 1 2 31 12 2s ij jiJ s s s s s= = + + (1.53) ( )3 3 33 1 2 31 13 3s ij jk kiJ s s s s s s= = + + (1.54) , , . (1.52) s :

    2 2 21 2 32 2 2

    cos , cos , cos3 33 3 3

    s s ss s s

    J J Js s s = = = + (1.55) (. 1-10)

  • . (2008) , . 1 14

    2 3 1 0

    2 1 3 0

    1 2 3 0

    1 3 2 0

    3 1 2 0

    3 2 1

    (1) : 0 / 3 ( ) :(2) : / 3 2 / 3 ( ) : 2 / 3(3) : 2 / 3 ( ) : 2 / 3(4) : 4 / 3 ( ) : 4 / 3(5) : 4 / 3 5 / 3 ( ) : 4 / 3(6) : 5 / 3 2 ( )

    s s s

    s s s

    s s s

    s s s

    s s s

    s

    s s ss s s

    s s ss s s

    s s ss s s

    = = + = +

    = + = + 0: 2s s = +

    (1.56)

    . 1-10: . (1.52)

    0s 14

    30 03/ 22

    3 3cos3 , 0 / 32

    ss s

    s

    JJ

    = (1.57)

    0s Lode15 16 b, 1 :

    3 2 0 2 3 11 2 0

    sin2 1 2 1 ,sin( / 3 )

    s

    s

    L

    = = + (1.58)

    ( )1 3 0 2 3 11 2 0

    sin11 1 1 ( )2 sin( / 3 )

    s

    s

    b L = = + = + (1.59)

    14 . stress invariant angle of similarity 15 W. Lode (1926). Versuche ueber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer und Nickel. Z. Physik, Vol. 36, 913-939. 16 b , . Reads & Green, Gotechnique, 26(4), 551-576, 1976. Parry RHG. Ed. Stress-strain behaviour of soils. Proceedings of the Roscoe Memorial Symposium. Cambridge University, March, 1971.

  • . (2008) , . 1 15

    . 1-11: 0s Lode, . (1.58)

    . 1-12: b , . (1.59)

    1 2 3( , , )O x x x :

    1 0 2[ ] 0 2 3

    2 3 0ij

    =

    :

    0 0 21 (1 2 0) 1 , [ ] 0 1 33

    2 3 1ijp s

    = + + = =

  • . (2008) , . 1 16

    2 3 :

    2 2 2 2 2 22 11 22 22 33 33 11 12 23 31

    2 2 2 2 3 2

    1 ( ) ( ) ( )61 (1 2) (2 0) (0 1) 0 3 2 146

    sJ = + + + + + = + + + + + =

    11 12 13

    3 21 22 23

    31 32 33

    0 0 20 1 3 2(0 2) 42 3 1

    s

    s s sJ s s s

    s s s= = = =

    :

    0 01.5

    3 3 4cos3 0.19839 3 101.442 14s s

    = = = D

    0 1 233.81 , 153.81 , 273.81s s s = = =D D D

    22 2 14 4.32053 3

    sJ = = =

    ( )( )

    1

    2

    3

    cos(33.81 ) 3.5897

    cos 60 33.81 3.8771

    cos 60 33.81 0.2874

    s

    s

    s

    = == = = + =

    D

    D D

    D D

    : 1 2 3 0s s s+ + =

  • . (2008) , . 1 17

    :

    1 1

    2 2 2 3 1

    3 3

    4.592.88 ( )

    1.29

    p sp sp s

    = + == + = = + =

    (0 1)b b , ,

    3 1

    2 1

    0.44b = =

    ij .

    1.3 :

    [ ] 10 0

    0 00 0

    c

    c

    = (1.60)

    2 1

    33 1

    331

    133/ 21

    1 ( )32 ( )

    27( )3 3 (2 / 3 )cos3 sgn( )

    2 (1/ 3)

    s c

    s c

    cs c

    c

    J

    J

    = +

    = ++= = ++

    (1.61)

    17

    ( )1

    0 1 2

    cos3 1 1 , 12 40 , ,3 3

    c s

    s s s

    L b

    < = + = == = = (1.62)

    18

    17 . axisymmetric extension 18 . axisymmetric compression

  • . (2008) , . 1 18

    ( )1

    0 1 2

    cos3 1 1 , 05, ,

    3 3

    c s

    s s s

    L b

    < = = + == = = (1.63)

    , c 1 , P A (. 1-13)19,

    1 cPA

    = + (1.64) ( 0P < ), 1 0c < < , ( 0P > ) 1 0c < < (. 1-14).

    . 1-13:

    . 1-14:

    19 . . , , . 3.5, www.geolab.mechan.ntua.gr

  • . (2008) , . 1 19

    . 1-15: Haigh-Westergaard

    Haigh-Westergaard (. 1-15). 1 2 , 1( ) / 3OP I = 2( ) 2 sPP J = . o ,

    3 1 2 , 5 / 3z c s = = = = (1.65) (. 1-16):

    ( )( )

    1 1 3

    2 2 22 1 2 3 3 1

    1 3 1

    2 3 1

    3 3 1

    1 1 23 3

    1 12 3

    2 1cos 53 33 3

    2 1cos 53 3 33

    2 2cos 53 3 33

    s

    p I

    T J s s s

    T Ts

    Ts

    Ts

    = = +

    = = + + = = = = = = = + =

    (1.66)

  • . (2008) , . 1 20

    . 1-16:

    1.4 (REV), . 3 nG ( )REV , . 1-17. E (REV) E . E , , in . E jt ,

    EiF , E (REV). jt : Cauchy .

    . 1-17: : nG (REV) E . t

    G

  • . (2008) , . 1 21

    .. , () (REV); , E E , in ,

    n i it t n= (1.67) in ,

    np t=< > (1.68)

    2

    0 0

    1 sin4

    n nt t d d

    < > = (1.69) 1r = , (. 1-18). OE n

    = G E 1 2 3sin cos , sin sin , cosn n n = = = (1.70)

    . 1-18: : E , .const = , .const = . E .

  • . (2008) , . 1 22

    (;)

    ( )

    ( )

    2

    0 0

    ln

    1sin3

    0

    1 13 5 15

    0

    1 13 5 7 105

    i j i j ij

    i j k

    i j k l ij kl ik jl il jk ijkl

    i j k l m

    i j k l m n in jklm jn klmi kn lmij mijk mn ijkl ijklmn

    n n n n d d

    n n n

    n n n n

    n n n n n

    n n n n n n

    < > = =< > =< > = + + =< > =< > = + + + + =

    (1.71)

    1 13 3

    nji j i ji j i ij ij kkp t n n n n =< > =< > = < > = = (1.72)

    : 1 ,

    113

    p I = (1.73) , , in .

    t ni i it t t n= (1.74) 2

    ( ) ( ) 225

    t tm i i st t J = < > = (1.75)

    ,

    252s m

    T J T = = (1.76) 20.

    1.5 21 , ( )REV , . , ,

    20 . shearing stress intensity. . Kachanov, L.M., Fundamentals of the Theory of Plasticity, Mir Publishers, Moscow, 1974. 21 . shear bands.

  • . (2008) , . 1 23

    (random) (.. , , ). . ( )REV , 22. (), , , (. 1-19).

    . 1-19: 23

    , ( )sREV ( )rREV , ,

    ( ) ( )

    2 111 22

    1 2 1 2

    2 22 12 1 21

    1 2

    1

    n

    t

    t

    t

    < > = ++ +< > = ++

    A AA A A A

    A AA A (1.77)

    , , 22A ( )rREV 12A , . 2 1/ = A A ,

    22 V.V. Novozhilov, Theory of Elasticity, Pergamon Press, 1961. 23 Vardoulakis I. and Graf B. (1985). Calibration of constitutive models for granular materials using data from biaxial experiments. Gotechnique, 35, 299-317.

  • . (2008) , . 1 24

    11 22

    2 2

    12 21

    11 1

    11 1

    n

    t

    t

    t

    < > = ++ + < > = + + +

    (1.78)

    , 0 , Coulomb

    22 21,n tt t < > < > (1.79) , , (. 1-20).

    . 1-20:

    1.6 , s Lode L , (. 1-21),

    3,max 1 2

    1,max 2 3

    2,max 3 1

    / 2 5(1) & (4) : sin( / 3 )2

    / 2 5(2) & (5) : sin( )2

    / 2 5(3) & (6) : sin( / 3 )2

    sm m

    sm m

    sm m

    = = += == =

    (1.80)

    2 3 1 0

    2 1 3 0

    1 2 3 0

    1 3 2 0

    3 1 2 0

    3 2 1

    (1) : 0 / 3 ( ) :(2) : / 3 2 / 3 ( ) : 2 / 3(3) : 2 / 3 ( ) : 2 / 3(4) : 4 / 3 ( ) : 4 / 3(5) : 4 / 3 5 / 3 ( ) : 4 / 3(6) : 5 / 3 2 ( )

    s s s

    s s s

    s s s

    s s s

    s s s

    s

    s s ss s s

    s s ss s s

    s s ss s s

    = = + = +

    = + = + 0: 2s s = +

    (1.81)

  • . (2008) , . 1 25

    . 1-21:

    s . 0s = ( 1)L =

    / 6s = ( 0)L = ,

    3,max

    3,max

    5 3min 1.3692 2

    5max 1.5812

    m

    m

    = =

    (1.82)

    , 2sT J= ,

    max30.866 12 T

    (1.83)

    maxT (1.84) in (;)

    2 2 21 1 2 2 3 3

    2 2 2 2 2 2 2 2 2 21 1 2 2 3 3 1 1 2 2 3 3( )

    n

    t

    t n n n

    t n n n n n n

    = + +

    = + + + + (1.85)

  • . (2008) , . 1 26

    , . 8 (. 1-22),

    { } { }(1) (2)1 1{ } 1,1,1 , { } 1,1, 1 ,3 3

    T Tn n= = (1.86)

    . 1-22:

    ,n toct oct oct octt t = = (1.87)

    1 2 3 11 1( )3 3oct

    I p = + + = = (1.88)

    2 2 2 21 2 3 1 2 32

    2 2 21 2 2 3 3 1

    2

    1 1( ) ( )3 3

    1 ( ) ( ) ( )3

    2 53 3

    oct

    s mJ

    = + + + +

    = + +

    = =

    (1.89)

    (. 1-23)

    3,max 3,max5 3 3 5 3min 1.061 , max 1.2252 2 5 2 5oct m

    = = (1.90)

  • . (2008) , . 1 27

    . 1-23:

    3,max* *3 3 1.061 min 1

    2 2 2oct oct oct octT

    = = =

    (1.91)

    * 2 2 21 2 2 3 3 11 ( ) ( ) ( )

    2 2oct = + + (1.92)

    [ ]1 2 42 2 1 [ ]4 1 3

    MPa =

    : ) . ) . ) ( )n G (=1,,8). ) . ) s . () , max ( )s mf = . 1.7 Tresca von Mises 24 25 .

    24 . yield 25 . failure

  • . (2008) , . 1 28

    , , (. 1-24).

    . 1-24: -

    .. Y F () (F), -. - , , 26. .. () :

    Tresca: ,

    max 1 2 2 3 3 11 1 1max , ,2 2 2

    Teq = = (1.93)

    von Mises: ,

    2 2 21 2 2 3 3 11 ( ) ( ) ( )3

    Meq oct = = + + (1.94)

    ( 03 = , .. ) ,

    1 2 2 11 1 1max , 0 , 02 2 2

    Teq = (1.95)

    2 2 2 2 21 2 1 2 11 22 11 22 122 2 3

    3 3Meq = + = + + (1.96)

    Tresca von Mises : . Y , ,

    26 . equivalent stress

  • . (2008) , . 1 29

    1 2,2 3

    T Meq Y eq Y = = (1.97)

    ),( 21 (. 1-25, . 1-26),

    1 2 2 11 1 1 1Tresca : max , 0 , 02 2 2 2 Y = (1.98)

    2 21 2 1 2v. Mises: Y + = (1.99)

    . 1-25: Tresca v. Mises

    . 1-26: , (Bisplinghoff, R.L. et al. Statics of Deformable Solids, Dover, 1990)

  • . (2008) , . 1 30

    (1)

    10 0 30 3 0 [ ]3 0 2

    MPa =

    (2)

    3 0 00 7 0 [ ]0 0 5

    MPa =

    , ( ):

    (1) (2) ,

    ) , (1) (2)| | | |oct oct > ) , (1) (2)oct oct > ) , (1) (2)max max > . 1.8 Mohr-Coulomb

    . 1-27: Mohr

    Mohr-Coulomb (M.-C.) 27 , Mohr (. 1-27),

    1 2 2 3 12 1

    ( ) / 2sin ( )( ) / 2q = + (1.100)

    27 . internal friction angle

  • . (2008) , . 1 31

    M.-C. .

    1 2 1 21 1( ) 0 , ( ) 02 2M M

    = + < = > (1.101)

    sin MMq

    = (1.102)

    sin cos , tanM M mc c q = + = (1.103) c 28 .

    (M.-C.) (. 1-28)

    2 12cos 1 sin

    1 sin 1 sinc

    += + (1.104)

    22 11 sin2 , tan (45 / 2)1 sinp p p

    K c K K += + = = +

    D (1.105)

    pK

    . 1-28: Mohr-Coulomb 1 2( , ) 3

    28 . cohesion

  • . (2008) , . 1 32

    1.9 : Mohr , 20 Otto Mohr (1835-1918). ,

    n n , ( , )P x y () dA ,

    () n, Ox (. 1-29).

    ( ) ( )( )

    1 1 cos 2 sin 22 21 sin 2 cos 22

    n xx yy xx yy xy

    n xx yy xy

    = + + +

    = + (1.106)

    . 1-29: ( , )P x y .

    xx , yy xy yx = n n , . Error! Reference source not found., ,

    ( )( )

    n n

    n n

    == (1.107)

    nO nO , Mohr .

    Otto Mohr (1835-1918)

  • . (2008) , . 1 33

    () ( , )n nO , , . . , ( , )O x y . ( , )n nO , . (1.107) . Mohr . (1.107) , Mohr , .

    ( , )P x y . , ( , )P x y . ( , )O x y ( , )n nO . :

    10 3[ ]

    3 5xx xy

    yx yykPa

    =

    . (1.106) . ( )n n = ( )n n = , . (1.106) xx , yy xy yx = , FORTRAN (. 1-30).

  • . (2008) , . 1 34

    c PROGRAM Mohr.for

    c Mohr Circle of Stresses

    IMPLICIT DOUBLE PRECISION (a-h,o-z)

    OPEN (UNIT=1, FILE='Mohr.IN1', STATUS='UNKNOWN')

    OPEN (UNIT=2, FILE='Mohr.OU1', STATUS='UNKNOWN')

    c Input

    pi=4.d0*datan(1.d0)

    write(*,*) 'sigma-xx=? kPa'

    read(*,*) sxx

    write(1,100) 'sigma-xx [kPa]= ', sxx

    write(*,100) 'sigma-xx [kPa]= ', sxx

    write(*,*) 'sigma-yy=? kPa'

    read(*,*) syy

    write(1,100) 'sigma-yy [kPa]= ', syy

    write(*,100) 'sigma-yy [kPa]= ', syy

    write(*,*) 'sigma-xy=? kPa'

    read(*,*) sxy

    write(1,100) 'sigma-xy [kPa]= ', sxy

    write(*,100) 'sigma-xy [kPa]= ', sxy

    syx=sxy

    sM=0.5d0*(sxx+syy)

    write(1,100) 'sigma-M [kPa]= ', sM

    write(*,100) 'sigma-M [kPa]= ', sM

    tM=dsqrt(((sxx-syy)/2.d0)**2+sxy**2)

    write(1,100) 'tau-M [kPa]= ' , tM

    write(*,100) 'tau-M [kPa]= ' , tM

    100 format(1x,a20,F10.3,1x)

    sigma1=sM+tM

    sigma2=sM-tM

    write(1,100) 'sigma-1[kPa]=',sigma1

    write(*,100) 'sigma-1[kPa]=',sigma1

    write(1,100) 'sigma-2[kPa]=',sigma2

    write(*,100) 'sigma-2[kPa]=',sigma2

    write(*,*) 'phi=? in [deg]'

    read(*,*) phi

    write(1,100) ' phi in [deg]=', phi

  • . (2008) , . 1 35

    write(*,100) ' phi in [deg]=', phi

    phi=phi*pi/180.d0

    sxi=0.5d0*(sxx+syy)+0.5d0*(sxx-syy)*dcos(2.d0*phi)

    # +sxy*dsin(2.d0*phi)

    sxieta=-0.5*(sxx-syy)*dsin(2.d0*phi)+sxy*dcos(2.d0*phi)

    seta=0.5d0*(sxx+syy)-0.5d0*(sxx-syy)*dcos(2.d0*phi)

    # -sxy*dsin(2.d0*phi)

    write(1,100) 'sigma-xi-xi[kPa]=',sxi

    write(*,100) 'sigma-xi-xi[kPa]=',sxi

    write(1,100) 'sigma-xi-et[kPa]=',sxieta

    write(*,100) 'sigma-xi-et[kPa]=',sxieta

    write(1,100) 'sigma-et-et[kPa]=',seta

    write(*,100) 'sigma-et-et[kPa]=',seta

    pause

    if (phi.eq.pi/2.d0) goto 20

    phi=pi/2.d0

    20 phi0=0.d0

    dphi0=1.d0

    do 1000 i=1,361

    phi=phi0*pi/180.d0

    sn=0.5d0*(sxx+syy)+0.5d0*(sxx-syy)*dcos(2.d0*phi)

    # +sxy*dsin(2.d0*phi)

    tn=-0.5*(sxx-syy)*dsin(2.d0*phi)+sxy*dcos(2.d0*phi)

    write(*,200) phi0,sn,tn

    write(2,200) phi0,sn,tn

    200 FORMAT(1x,F7.2,1x,2(F10.4,1x))

    phi0=phi0+dphi0

    1000 continue

    STOP

    END

  • . (2008) , . 1 36

    . 1-30: ( , )n n . Mohr Mohr ( , )n nO . 0 = . (1.106) :

    100 :

    3n xx

    n xy

    kPakPa

    = == = =

    ( 0 )A = D Mohr (. 1-30). , 90 = D . (1.106) :

    590 :

    3n yyo

    n yx

    kPa

    kPa

    = == = =

    ( 90 )B = D Mohr.

  • . (2008) , . 1 37

    , Mohr . ( , )n n G G , Mohr . , ( , )n n G G , Mohr

    . 1-31:

    , nO . Mohr. M Mohr () ,

    ( )1( ) 2M xx yyOM = = + (1.108) 7.5M kPa = . Mohr ( ) ( ') ,

    22( ) ( )

    2xx yy

    xy

    = = = + (1.109)

    3.91M kPa = . M , . 1 2 ,

  • . (2008) , . 1 38

    12

    M M

    M M

    = += (1.110)

    ( ) 2 21/ 2 12 2xx yyxx yy xy = + + (1.111) Mohr , . , 1 1( )x = , , , 1 . n,

    cos , sinx yn n = = (1.112) n 40 = D Ox . . (1.106) :

    10.89 , 1.94n nkPa kPa = = Mohr ( 40 ) = D (. 1-32). Mohr :

    ( ) ( )1 1

    1 1

    ( ) sin 2 sin 2

    11 2( ) cos 2 cos 22

    xyxy M

    M

    xx yyxx yy M

    M

    = = =

    = = =

    (1.113)

    1( ) cos 2( )M M = + (1.114) ,

    1 1 1cos 2( ) cos 2 cos 2 sin 2 sin 2 = + (1.115) . (1.108) ,

    ( )( ) ( )

    12( ) cos 2 sin 2

    1 1 cos 2 sin 22 2

    ( )

    xx yy xyM M M

    M M

    xx yy xx yy xy

    = + +

    = + + + =

    (1.116)

    Mohr :

  • . (2008) , . 1 39

    1( ) sin 2( )M = (1.117) ,

    1 1 1sin 2( ) sin 2 cos 2 cos 2 sin 2 = (1.118) . (1.113) ,

    ( )( )

    12( ) sin 2 cos 2

    1 sin 2 cos 22

    ( )

    xx yy xyM M

    M M

    xx yy xy

    = +

    = + =

    (1.119)

    Mohr , n, . (1.112), O . ,

    10.889

    4.111

    1.941

    kPa

    kPa

    kPa

    ===

    . 1-32: Mohr

    Mohr n , , . : ( )

  • . (2008) , . 1 40

    nO Mohr , nO . , ( )x + = (1.120)

    O , n, , , ( ), ( )n n n n = = . : ( ) Mohr nO . , n ( O ), Mohr . .

    O nO , Mohr , n - Ox 90 = +D . : () ( , )O ( , )O x y . ( ) , (H) Mohr , :

    ( ) 2AM = (1.121)

    ( ) 2(90 ) ( ) 180AM AM = + = +D D (1.122) . (. 1-33).

    Mohr . Mohr (. 1-34), , .

  • . (2008) , . 1 41

    . 1-33: .

    . 1-34:

  • . (2008) , . 1 42

    : .

    ()

    xx xy

    yx yy

    cos sin cos sinsin cos sin cos

    xx xy

    yx yy

    = (1.123)

    .. 1 = . (1.123) ,

    1

    2

    00

    =

    , () Mohr . Mohr .

  • . (2008) , . 1 43

    . Mohr .

  • . (2008) , . 1 44