4
Ĩõ·ƈĂƘƣõá IPSJ SIG Technical Report 1 MEG ŮƋĊØ †1 ēƋȑ †1 ǁƖ° †2 ŒŕÐå †3 ēƗÍŀ †2 Ûŕ¯Ā †2 ŸƋơ †1 ǎĀȈƔƊ)ĞÂ*Š'ƽėƐģƈĂƐ'Ǐſ9;Ƙƣ'=#ȥ=:*ǃÇǏĈ$;ȥ ƝƯXD_rLS(ô"ĄȂÈ*œǃ?=#'ȦŔƘƣ$*ȥÜQ|^ƶ( MEGȣƼƚïȤ@ 2 Õ Ǖƶ#Üő<%(9#ȥƸȈ)ƼŤƺ@Üŋ(ǒż<%$<cDdSKv`MQS[s@ şƩȦŔQS[s)ƂĢ*ȥ2 Õ) 1 Õ@ĕ²ǒż(6¡Ɗ$<Džƶ%<%$ǎĀ)ƼŤƺǒż@ Ôƺ(ſ(<ȦŋȈƤȈǐ®Ę(¯=< MEG (9#{C|WDsƼŤƺǒż@ǃȥnjƹǍ@ǭ ƸȈ)ÜǠ7W[DKM)ƝƯôƒ@ĸ<%Ôƺ%'Ȧ Hyperscaninng MEG for understanding neural dynamics during parent-child interaction TAKASHI IKEDA †1 MASAYUKI HIRATA †1 MITSURU KIKUCHI †2 TOMOYA KIMURA †3 HIROTOSHI HIRAISHI †2 YUKO YOSHIMURA †2 MINORU ASADA †1 We introduced a magneto-encephalographic (MEG) hyperscanning system to examine brain-to-brain interactions. We used two whole-head MEG systems placed in the same magnetically-shielded room. One is a 160-channel gradiometer system for an adult and the other is a 151-channel gradiometer system for a child. Moreover, we developed an audio-visual presentation system. From the result of assessment of delay in presentation, a parent-child interaction can be measured by this system in real time. 1. Ā&6*ǎ%)ƜƐƔƊ(9#ĝț@ÓȥƜ ħ@Ǫ(!#ȦƜƐƔƊ(<Ŏ6Q j|'ƔƊ)¢$<ި(#*ȥńƉ²)Ūȍ $*ÌƬ'Ç7DŽĨ)ިǃ?=<)3$<ȥƖ Ǎ%ǴÇ%)ËĦȥ:(*ǔĬ7ĺǡ%ǛƖŤƺ )ƏǷ(#ȥƔį)ĩï@ůAƓšĥÞƐ'ި ¸Ɔ<9('<[1] ƉĠ 2 ŏ>:*ƜƐȎħ3:=<9(' ;ȥūǎƔƊ@ŧ#ƀDŽĨ('<%Ā&6Ǝ ù@Ŝ¸<9('<ȣstill-face paradigmȤ[2][3]Ȧ9 ŏ>(*ƦƸ)ȉ¤6ß5µÜŵĩȣjoint attentionȤ ƏǷȥƸ%)ŵĩ)µŐÔƺ%'<[4]Ȧ2ȥĀ &6Ǒǜ@Ƅġ<ǵƠ$*ȥǎĀ&6(ȡø$8 ;%ǜ;<ǃÇ3:=ȥ=*ĉ²Țø ȣinfant-directed speechȤ%ä+=<ǎ«)ǃÇùć)¢% #Ɩ:=#<[5]ȦǑǜƐȘǑǜƐOrx`NQy (#*ȥƔį)ÑĦ@Nj#::)ÑĦ@Ǭ %W[DKMŭ5:=ȥƔį)ĩï@Ǟ4ƺ Ãȣtheory of mind: ģ)ƈǡȤ?#<%Áļ †1 üȊüĂ Osaka University †2 ȃŰüĂ Kanazawa University †3 ţűȖŤŚĚƜ Yokogawa Electric Corporation %'<ȦƺÃ)ƏǷ(#9;ljȓ'Orx`NQy öș.)ǺĦȥ#ǎú)Ƹ%)ƔƊ.% ǶƧ@Ļ%$<Ȧ=:)ƔƊ*(ǃÇ ș:ƘƣDZ5:=#<ȥ)ƝƯôƒ(*ň' ſ2ûũ#<ȦƔƊ)ƝƯXD_rLS @{C|WDsǒż<įų%ȥĀ&6)ƼŤƺ@ǒż <įųœł$<%)ƈƌ$<Ȧ ǫĔ$*ƔƊ)ƝƯôƒ@ŜǓ<5(cDd SKv`MȣHyperscanningȤ[6]%įųƊ:=ÿ 5#<Ȧ=*ȥ Montague :[7](9#ļæ=ȥ Ƹ2*=)ljŁÝ$Üŋ(ƼŶÇ@ǒż<įų $<ȦÜŋǒż(Ɗ:=<ƼŤƺǒżDžƶ(*ȥEEG ȣelectroencephalograph: ƼŴȤfMRIȣfunctional magnetic resonance imaging: ŤƺƐƚŬµȢƍ®ųȤ NIRS ȣ near-infrared spectroscopy: ǫǧú±¹±ųȤ MEG ȣmagnetoencephalograph: ƼƚïȤ<Ȧ==)Dž ƶ(*¾ſ%ťſ;ȥąȠ)ƓƐ(Ħ#Ɗ:=< DžƶǼIJ=<Ȧ2*Ƽ:)¦×@ǒż<( ;ȥ¦×Ž)Ǹ@Ʒī#ĤNJ<ȦEEG *`x ~Ȓì)ȖŬƐ'ŶÇȜƑ(¿Ƿ6)@ǒż ȥ MEG *ȖŬƐ'ŶÇ(9#ěǨ=<ƚö)ù È@ǒż#<Ȧ)5ŶÇ)ƉǨ:ǒż2$)ŋ ȈDz=*01ƀnj$<ƠĘ$;ȥȡŋȈ¹ǐƺ@ĵ #<%<ȦfMRINIRS *`x~)ŶÇ( #ěǨ=<ǂŷùÈ@į;%#<5ȥ 2015 Information Processing Society of Japan Vol.2015-HCI-161 No.1 2015/1/14

Hyperscaninng MEG for understanding neural dynamics during ... · SL{ $* 144.7 ms # SD = 11.0 ms %$ - SL{ $* 140.8 ms # SD = 12.6 ms $$ & 4. 9 & 4.1 : ; " / $ 4 B ... Vol.2015-HCI-161

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hyperscaninng MEG for understanding neural dynamics during ... · SL{ $* 144.7 ms # SD = 11.0 ms %$ - SL{ $* 140.8 ms # SD = 12.6 ms $$ & 4. 9 & 4.1 : ; " / $ 4 B ... Vol.2015-HCI-161

IPSJ SIG Technical Report

1

親親子子間間社社会会的的相相互互作作用用のの神神経経ダダイイナナミミククスス計計測測ののたためめのの MEGハハイイパパーーススキキャャニニンンググシシスステテムム

†1 †1 †2 †3 †2 †2 †1

MEG 2

2 1MEG

Hyperscaninng MEG for understanding neural dynamics during parent-child interaction

TAKASHI IKEDA†1 MASAYUKI HIRATA†1 MITSURU KIKUCHI†2 TOMOYA KIMURA†3 HIROTOSHI HIRAISHI†2 YUKO YOSHIMURA†2

MINORU ASADA†1

We introduced a magneto-encephalographic (MEG) hyperscanning system to examine brain-to-brain interactions. We used two whole-head MEG systems placed in the same magnetically-shielded room. One is a 160-channel gradiometer system for an adult and the other is a 151-channel gradiometer system for a child. Moreover, we developed an audio-visual presentation system. From the result of assessment of delay in presentation, a parent-child interaction can be measured by this system in real time.

1. ははじじめめにに

[1]

2

still-face paradigm [2][3] 9

joint attention

[4]

infant-directed speech

[5]

theory of mind:

†1 Osaka University †2 Kanazawa University †3 Yokogawa Electric Corporation

Hyperscanning [6]

Montague [7]

EEG

electroencephalograph: fMRI functional magnetic

resonance imaging: NIRS

near-infrared spectroscopy: MEG

magnetoencephalograph:

EEG

MEG

fMRI NIRS

ⓒ 2015 Information Processing Society of Japan

Vol.2015-HCI-161 No.12015/1/14

Page 2: Hyperscaninng MEG for understanding neural dynamics during ... · SL{ $* 144.7 ms # SD = 11.0 ms %$ - SL{ $* 140.8 ms # SD = 12.6 ms $$ & 4. 9 & 4.1 : ; " / $ 4 B ... Vol.2015-HCI-161

IPSJ SIG Technical Report

2

fMRI

2 3mm

fMRI MEG

1 1

1

MRI 2

[8] EEG NIRS

[9][10]

fMRI

EEG NIRS

MEG

[11]

MEG

1 [12]

MEG

[13]

MEG

[14]

MEG 2 MEG

2. 方方法法

1 2 MEG

2 MEG

160ch MEG vision NEO

151ch PQ1151R

MEG

MEG

CCD

1

30Hz CCD

AS-808SP

2

1

Visual Basic 2010 Microsoft

IPSiO PJWX6170N

1

1

5

1

Etymotic Research

ER-30

ⓒ 2015 Information Processing Society of Japan

Vol.2015-HCI-161 No.12015/1/14

Page 3: Hyperscaninng MEG for understanding neural dynamics during ... · SL{ $* 144.7 ms # SD = 11.0 ms %$ - SL{ $* 140.8 ms # SD = 12.6 ms $$ & 4. 9 & 4.1 : ; " / $ 4 B ... Vol.2015-HCI-161

IPSJ SIG Technical Report

3

cedrus Lumina LU400-PAIR

1

2

10 15

CCD

2

CCD

100

3. 結結果果

2

5

MEG

3

72.9 ms SD = 10.9 ms

144.7 ms SD = 11.0 ms

140.8 ms SD = 12.6 ms

4. 考考察察

4.1 視視覚覚刺刺激激呈呈示示シシスステテムムのの遅遅れれ時時間間評評価価

140 ms

150 ms 7

[15]

70 ms

2 MEG

ⓒ 2015 Information Processing Society of Japan

Vol.2015-HCI-161 No.12015/1/14

Page 4: Hyperscaninng MEG for understanding neural dynamics during ... · SL{ $* 144.7 ms # SD = 11.0 ms %$ - SL{ $* 140.8 ms # SD = 12.6 ms $$ & 4. 9 & 4.1 : ; " / $ 4 B ... Vol.2015-HCI-161

IPSJ SIG Technical Report

4

3 CCD

WS:

4.2 ハハイイパパーーススキキャャニニンンググでで得得らられれたたデデーータタのの解解析析法法

2

intra-brain

inter-brain

fMRI NIRS

EEG MEG

MEG

EEG

10 Hz

ERD event-related desynchronization:

[16][17]

mu rhythm [18]

PDC partial directed coherence:

[ 19 ] PLV

phase-locking value [20]

CCorr Circular correlation [21]

PDC PLV

[22]

謝謝辞辞 JSPS 24000012

参参考考文文献献 1) Jones, S.S.: The Development of Imitation in Infancy, Philos. Trans. R. Soc. Lond. B Biol. Sci., Vol. 364, No. 1528, pp.2325-2335, (2009). 2) Tronick, E. et al.: Infants Response to Entrapment between Contradictory Messages in Face-to-Face Interaction, J. Am. Acad. Child Adolesc. Psychiatry, Vol. 17, No. 1, pp.1-13, (1978). 3) Rochat, P. et al.: Differential Effects of Happy, Neutral, and Sad Still-Faces on 2-, 4- and 6-Month-Old Infants, Infant and Child Development, Vol. 11, No. 4, pp.289-303, (2002). 4) Baron-Cohen, S.: Mindblindness: An Essay on Autism and Theory of Mind, MIT Press, Cambridge, (1995). 5) Fernald, A. et al.: A Cross-Language Study of Prosodic Modifications in Mothers and Fathers Speech to Preverbal Infants, J. Child Lang., Vol. 16, No. 3, pp.477-501, (1989). 6) Babiloni, F. and Astolfi, L.: Social Neuroscience and Hyperscanning Techniques: Past, Present and Future, Neurosci. Biobehav. Rev., Vol. 44, pp.76-93, (2014). 7) Montague, P.R. et al.: Hyperscanning: Simultaneous fMRI During Linked Social Interactions, Neuroimage, Vol. 16, No. 4, pp.1159-1164, (2002). 8) Lee, R.F. et al.: Decoupled Circular-Polarized Dual-Head Volume Coil Pair for Studying Two Interacting Human Brains with Dyadic fMRI, Magn. Reson. Med., Vol. 68, No. 4, pp.1087-1096, (2012). 9) Dumas, G. et al.: Inter-Brain Synchronization During Social Interaction, PLoS One, Vol. 5, No. 8, pp.e12166, (2010). 10) Cui, X. et al.: NIRS-Based Hyperscanning Reveals Increased Interpersonal Coherence in Superior Frontal Cortex During Cooperation, Neuroimage, Vol. 59, No. 3, pp.2430-2437, (2012). 11) Sekihara, K. et al.: Reconstructing Spatio-Temporal Activities of Neural Sources Using an MEG Vector Beamformer Technique, IEEE Trans. Biomed. Eng., Vol. 48, No. 7, pp.760-771, (2001). 12) Baess, P. et al.: MEG Dual Scanning: A Procedure to Study Real-Time Auditory Interaction between Two Persons, Front. Hum. Neurosci., Vol. 6, pp.83, (2012). 13) Nadel, J. et al.: Expectancies for Social Contingency in 2-Month-Olds, Dev. Sci., Vol. 2, No. 2, pp.164-173, (1999). 14) Hirata, M. et al.: Hyperscanning Meg for Understanding Mother-Child Cerebral Interactions, Front. Hum. Neurosci., Vol. 8, pp.118, (2014). 15) Hillock-Dunn, A. and Wallace, M.T.: Developmental Changes in the Multisensory Temporal Binding Window Persist into Adolescence, Dev. Sci., Vol. 15, No. 5, pp.688-696, (2012). 16) Tognoli, E. et al.: The Phi Complex as a Neuromarker of Human Social Coordination, Proc. Natl. Acad. Sci. U. S. A., Vol. 104, No. 19, pp.8190-8195, (2007). 17) Konvalinka, I. et al.: Frontal Alpha Oscillations Distinguish Leaders from Followers: Multivariate Decoding of Mutually Interacting Brains, Neuroimage, Vol. 94, pp.79-88, (2014). 18) Gastaut, H.: Electrocorticographic Study of the Reactivity of Rolandic Rhythm, Rev. Neurol. (Paris), Vol. 87, No. 2, pp.176-182, (1952). 19) Babiloni, F. et al.: Hypermethods for EEG Hyperscanning, Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1, pp.3666-3669, (2006). 20) Lindenberger, U. et al.: Brains Swinging in Concert: Cortical Phase Synchronization While Playing Guitar, BMC Neurosci., Vol. 10, pp.22, (2009). 21) Berens, P.: CircStat: A MATLAB Toolbox for Circular Statistics, J. Stat. Softw., Vol. 31, No. 10, pp.1-21, (2009). 22) Burgess, A.P.: On the Interpretation of Synchronization in EEG Hyperscanning Studies: A Cautionary Note, Front. Hum. Neurosci., Vol. 7, pp.881, (2013).

ⓒ 2015 Information Processing Society of Japan

Vol.2015-HCI-161 No.12015/1/14