12
I. BARISAN TAKBERHINGGA I.A. PENDAHULUAN Suatu barisan a 1 , a 2 , a 3 , a 4 , . . . adalah suatu susunan bilangan yang terurut dengan urutan bilangan asli. Atau dapat dikatakan juga bahwa suatu barisan takberhingga adalah sebuah fungsi yang daerah asalnya adalah himpunan bilangan asli. Barisan dapat dituliskan dalam bentuk a n n 1 atau disingkat {a n }. Suatu barisan dapat dispesifikasikan dengan memberikan suku awal yang cukup untuk membentuk suatu pola seperti contoh berikut, 1, 4, 7, 10, 13, . . . Suku ke-n dari barisan ini dapat ditentukan dengan rumus eksplisit yaitu, a n = 3n 2, n 1 atau dengan rumus rekursi , a n = a n1 + 3, n 2, a 1 = 1 Kedua rumus tersebut menggambarkan barisan yang sama, yaitu n a n = 3n 2 (n 1) a n = a n1 + 3 (n 2, a 1 = 1) 1 a 1 = 3(1) 2 = 1 a 1 = 1 2 a 2 = 3(2) 2 = 4 a 2 = a 1 + 3 = 1 + 3 = 4 3 a 3 = 3(3) 2 = 7 a 3 = a 2 + 3 = 4 + 3 = 7 4 a 4 = 3(4) 2 = 10 a 4 = a 3 + 3 = 7 + 3 = 10 5 a 5 = 3(5) 2 = 13 a 5 = a 4 + 3 = 10 + 3 = 13 . . . . . . DND 1

I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

Embed Size (px)

Citation preview

Page 1: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

I. BARISAN TAKBERHINGGA

I.A. PENDAHULUANSuatu barisan a1, a2, a3, a4, . . . adalah suatu susunan bilangan yang terurut dengan

urutan bilangan asli. Atau dapat dikatakan juga bahwa suatu barisan takberhingga adalah sebuah fungsi yang daerah asalnya adalah himpunan bilangan asli. Barisan dapat dituliskan dalam bentuk an n

1 atau disingkat {an}.Suatu barisan dapat dispesifikasikan dengan memberikan suku awal yang cukup

untuk membentuk suatu pola seperti contoh berikut,1, 4, 7, 10, 13, . . .

Suku ke-n dari barisan ini dapat ditentukan dengan rumus eksplisit yaitu,an = 3n 2, n 1

atau dengan rumus rekursi,an = an1 + 3, n 2, a1 = 1

Kedua rumus tersebut menggambarkan barisan yang sama, yaitu

nan = 3n 2

(n 1)an = an1 + 3

(n 2, a1 = 1)

1 a1 = 3(1) 2 = 1 a1 = 12 a2 = 3(2) 2 = 4 a2 = a1 + 3 = 1 + 3 = 43 a3 = 3(3) 2 = 7 a3 = a2 + 3 = 4 + 3 = 74 a4 = 3(4) 2 = 10 a4 = a3 + 3 = 7 + 3 = 105 a5 = 3(5) 2 = 13 a5 = a4 + 3 = 10 + 3 = 13...

.

.

.

.

.

.

Sekarang akan kita tinjau rumus eksplisit untuk empat barisan berikut,

Rumus Eksplisit Barisan

1) an = 1 1n

, n 1, 034

, , , , , 12

23

45

. . .

2) bn = 1 + (1)n 1n

, n 1 032

23

54

, 45

76

67

. . . , , , , , ,

3) cn = (1)n + 1n

, n 1 032

23

54

, 45

76

67

. . . , , , , , ,

4) dn = 0,999, n 1 0,999, 0,999, 0,999, 0,999, . . .Grafik dari barisan-barisan ini adalah,

DND

1

Page 2: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

1)

a1 a2 a3 a4

00-1 1

2)

b1 b3 b5

00-1 1

b4 b2

3) c1c5 c3

00-1 1

c6c4 c2

4)

d1d2 d3

00-1 1

Gambar I.1

I.B. KEKONVERGENANPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut

semakin mendekati satu. Tetapi tidak semuanya konvergen menuju 1. Barisan yang konvergen menuju 1 adalah {an} dan {bn}, sedangkan {cn} dan {dn} tidak.

Agar suatu barisan konvergen menuju 1 syaratnya adalah, nilai-nilai barisan tersebut harus mendekati satu dan harus tetap berdekatan, syarat ini tidak dipenuhi oleh {cn}. Berdekatan artinya makin lama semakin dekat dalam sebarang tingkat ketelitian, hal ini tidak dipenuhi oleh {dn.}. Walaupun {dn} tidak konvergen menuju 1, tetapi {dn} konvergen menuju 0,999. Barisan yang tidak konvergen seperti {cn} disebut divergen. Untuk kejelasan, di bawah ini diberikan definisi dari konvergen dan divergen.

Definisi : Barisan {an} dikatakan konvergen menuju L atau berlimit L yang dituliskan sebagai,

limn na = L

apabila untuk setiap bilangan positif , ada bilangan positif N sehingga untukn N a Ln

Suatu barisan yang tidak konvergen ke suatu bilangan L yang terhinggga, dinamakan barisan yang divergen.

Dari teorema ini dapat disimpulkan bahwa suatu barisan misalkan {an}akan konvergen jika limitnya ada atau lim

n na ada yang berupa bilangan.

Contoh I.1

Buktikan untuk p positif bulat (asli), barisan 1

np

konvergen menuju 0, atau lim

n pn

10

Jawab :

DND

2

Page 3: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

Untuk soal ini ann p1

dan L = 0. Misalkan diketahui 0, selanjutnya pilihlah N 1

p

maka untuk n N berlaku,

a L

n n Nn p p p p p 1

01 1 1

1 /

Jadi menurut definisi di atas, barisan 1

np

konvergen menuju 0 atau,

limn pn

1

0

Barisan yang dibicarakan di atas sepintas tampak sama dengan fungsi. Memang antara barisan dengan fungsi terdapat hubungan yang erat. Misalkan kita tinjau grafik

barisan an = 1 1n

dengan fungsi a(x) = 1 1x

. Perbedaan antara keduanya adalah

peubah (variabel) dalam barisan (atau daerah asal an) adalah bilangan asli, sedangkan peubah dalam fungsi a(x) daerah asalnya adalah himpunan bilangan riil. Dalam barisan diperoleh lim

n na = 1, sedangkan dalam fungsi diperoleh juga lim ( )

xa x

= 1 seperti yang diperlihatkan dalam Gambar I.2.

n N an 1

n N a x ( ) 1

Gambar I.2

DND

3

Page 4: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

Karena barisan mempunyai hubungan yang kuat dengan fungsi, maka Teorema-teorema mengenai limit yang telah kita kenal dalam fungsi berlaku juga untuk barisan seperti diberikan di bawah ini.

Teorema I.1Andaikan {an} dan {bn} adalah barisan-barisan yang konvergen dan k adalah sebuah konstanta. Maka :

1. limn

k = k

2. limn nka = k a

n nlim

3. lim(n na bn ) = lim

n na lim

n nb

4. lim( . )n n na b = lim . lim

n n n na b

5. limn

ab

n

n

lim

limn n

n n

a

b

, asalkan limn nb 0

Contoh I.2

Diketahui barisan 38

1229

2764

48

113 . . ., , , , Tentukanlah rumus eksplisit dari barisan ini dan

tentukan juga apakah barisan ini konvergen atau tidak ?

Jawab :

Barisan 38

1229

2764

48

113 . . ., , , , dapat dituliskan dalam bentuk,

3(1)7 +1

3(4)

28 +1

3(9)63 +1

3(16)

112 +1 . . ., , , ,

atau3(1)

7(1) +1

3(4)7(4) +1

3(9)

7(9) +1

3(16)7(16) +1

. . ., , , ,

atau3(1 )

7(1 ) +1

3(2 )

7(2 ) +1

3(3 )

7(3 ) + 1

3(4 )

7(4 ) +1 . . .

2

2

2

2

2

2

2

2, , , , = 3

7 1

2

2n

n Jadi rumus ekplisitnya adalah,

37 1

2

2n

n

Untuk mengetahui apakah barisan 3

7 1

2

2n

n

konvergen atau tidak, kita tentukan apakah

limn

nn 3

7 1

2

2 ada atau tidak ? Untuk melihat apa yang terjadi pada suatu hasil bagi dua suku

banyak dalam n apabila n membesar, kita bagi pembilang dan penyebut dengan pangkat n yang terbesar dalam penyebut. Kemudian kita gunakan sifat-sifat dalam Teorema I.1 yang dinyatakan oleh nomor dalam kotak di atas sama dengan. Nomor-nomor ini menyatakan nomor sifat-sifat limit dalam Teorema I.1. tersebut.

DND

4

Page 5: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

limn

nn 3

7 1

2

2 = lim( / )n n 3

7 1 2 (bagi pembilang dan penyebut dengan n2)

= lim

lim[ ( / )]n

nn

3

7 1 2

= lim

lim lim( / )n

n nn

3

7 1 2

= 3

7 1 2

lim( / )n

n

= 3

7 037

Jadi barisan konvergen menuju 37

.

Contoh I.3.

Apakah barisan ln nen

konvergen ?. Jika ya, hitunglah limitnya.

Jawab :Untuk menjawab soal seperti ini dapat kita gunakan fakta sebagai berikut,

Jika lim ( )x

f x = L, maka lim

n nf = L

Fakta ini memudahkan kita karena Kaidah l’Hospital dapat digunakan untuk peubah

kontinu. Dalam hal ini menurut kaidah l’Hospital, lim( )( )

lim'( )'( )x x

f xg x

f xg x

atau

limln

lim/

x x x xx

ex

e

10

Karena fungsi dan barisan menuju limit yang sama (lihat Gambar I.2) maka,

limln

n nn

e0

Artinya, ln nen

konvergen menuju 0.

Untuk menentukan kekonvergenan atau kedivergenan suatu barisan dapat juga digunakan cara lain seperti yang dinyatakan dalam teorema berikut,

Teorema I.2 (Teorema Apit)Andaikan {an} dan {cn} barisan yang konvergen menuju L dan andaikan an bn cn untuk n K (K bilangan asli yang tetap). Maka {bn} juga konvergen menuju L.

DND

5

3

5

1

Page 6: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

Contoh I.4

Buktikan bahwa barisan sin3 n

n

konvergen menuju 0, atau lim

sinn

nn

3

0

Jawab :

Untuk n 1, kita peroleh 1 13

nn

n nsin , oleh karena lim

n

1n

= 0 dan limn

1n

= 0,

maka berdasarkan Teorema I.2 (Teorema Apit),

limsin

n

nn

3

0

Jadi barisan sin3 n

n

konvergen menuju 0.

Teorema I.3Jika lim

n na

= 0, maka lim .n na = 0

Bukti :Oleh karena a a an n n dan lim

n na

0, atau an konvergen menuju 0, maka

menurut teorema apit, {an} juga konvergen menuju 0 atau limn na = 0.

Contoh I.5Apabila 1 1r , buktikanlah bahwa lim .

n

nr

0

Jawab :

Untuk r = 0, maka jelas limn rn = 0. Apabila r 0, maka r 1, sehingga

11

r . Jadi kita

dapat menuliskan 1r = 1 + p, untuk suatu bilangan p 0. Menurut Teorema Binomial,

1r n = (1 + p)n = 1 + pn + (suku positif) pn

Sehingga, 01

rpn

n

Oleh karena lim limn npn p n

1 1 1

0, maka berdasarkan Teorema Apit dapat diperoleh

limn

nr

0 atau ekivalen dengan limn

nr

0. Berdasarkan Teorema I.3 diperoleh limn

nr

0.Apabila r 1, misalkan r = 2, maka rn akan melampaui tiap bilangan yang diketahui apabila n menjadi makin besar. Hal ini dapat dituliskan,

limn

nr

, untuk r 1

Untuk ini dapat kita katakan bahwa barisan {rn} divergen. Supaya barisan {rn} konvergen, barisan harus menuju ke suatu limit yang berhingga. Barisan {rn} juga divergen apabila r 1.

DND

6

Page 7: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

I.C. BARISAN MONOTONMisalkan {an} adalah suatu barisan yang tak turun. Hal ini berarti bahwa untuk

n 1, berlaku an an+1. Contohnya, an = n2, dan ann 11

. Dalam hal ini hanya ada dua

kemungkinan, yaitu an menjadi semakin besar apabila n menuju (n ) atau menuju ke suatu batas apabila an tidak menuju ke takberhingga oleh karena limitnya terbatas (lihat Gambar I.3). Sifat-sifat yang dibicarakan ini diterangkan dalam teorema berikut.

Teorema I.4 (Teorema Barisan Monoton)Apabila U adalah batas atas untuk suatu barisan {an} yang tak turun, maka barisan ini konvergen menuju suatu limit A yang kurang dari atau sama dengan U. Begitu pula apabila L suatu batas bawah untuk suatu barisan yang tak naik {bn}, maka barisan {bn} konvergen menuju suatu limit B lebih dari atau sama dengan L.

limn na = A

Gambar I.3

Dalam Teorema I.4, barisan {an} dan {bn} tidak perlu monoton dari permulaan, tetapi sudah cukup monoton untuk n K. Karena kekonvergenan atau kedivergenan suatu barisan tidak bergantung pada suku-suku awal akan tetapi bergantung pada suku-suku ke-n yang besar.

Contoh I.6

Buktikan dengan menggunakan Teorema I.4 .bahwa barisan {bn} dengan bn = nn

2

2

konvergen

DND

7

Page 8: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

Jawab :Beberapa suku permulaan barisan ini adalah,

12

, , , , , 1, 98

2532

3624

49

128 . . .

Untuk n 3, tampak bahwa barisan tersebut menurun, yaitu (bn bn+1). Bukti ini dapat dilihat di bawah ini. Setiap pertidaksamaan setara dengan pertidaksamaan yang lain.

n nn n

2 2

121

2

( )

nn2

212

( )

2 2 12 2n n n

n n2 2 1 n n( ) 2 1

Pertidaksamaan terakhir benar untuk n 3. Oleh karena barisan menurun dan di bawah terbatas oleh nol, maka menurut Teorema I.4, barisan tersebut mempunyai limit. Dengan menggunakan Kaidah l’Hopital dapat ditunjukkan bahwa limit barisan tersebut adalah nol, yaitu

lim lim

lim

lim

lim

n n n n

n n

n n

n n

bn

nn

=

=

=

=

2

1

1

2

2222

21

20

I.D. SOAL LATIHANDiketahui rumus eksplisit an untuk barisan {an} dalam soal 115. Tuliskanlah lima suku pertama dari setiap barisan tersebut, dan tentukanlah apakah barisan tersebut konvergen atau divergen. Jika konvergen, tentukanlah lim

n na

1. an

nn 2 1

2. annn

2 13 2

3. an

n nn

4 1

2 3

2

2

4. an

nnn

( )1

1 5. ann

n

1 1( ) 6. a

nn

nnn

1

1

7. an n

nn 2

23 2

58. a

nn cos

2 9.

annn

sin 2

10. an

n n2 11. an

n n

n n

3 23 21 1

( )( )

12. aenn

n

2

DND

8

Page 9: I. BARISAN TAKBERHINGGA · Web viewPerhatikan keempat barisan di atas, nilai suku-suku dalam setiap barisan tersebut semakin mendekati satu. Tetapi tidak semuanya konvergen menuju

13. an

nn ln

14. ann

n

1

2 15. an

nn

n

11 2

cos

Tentukanlah rumus ekplisit untuk an dalam soal 16 - 21. Kemudian tentukanlah apakah barisan tersebut konvergen atau divergen. Apabila konvergen, tentukanlah lim

n na

16. 12

, , , , 23

34

45

. . . 17. 135

59

, , , , , 23

47

. . . .

18. 11 2 32 2 2, , , ,

22

3

3

44

. . . 2 2 2 19. sin , , , , . . . 2 sin

12

3 sin 13

4 sin 14

1

20. 23

24

252

4

2

5

2, 1, 2

. . . 3

, , , 21. 112

12

13

13

14

14

15

, , , , . . .

Tuliskanlah empat suku pertama dari barisan {an} dalam soal 22-25. Kemudian buktikanlah bahwa barisan tersebut konvergen dengan menggunakan Teorema I.4.

22. an

n n4 3

2 23. an

nn

114

119

11

22 . . . ,

24. ann 1

12!

13

1!

. . . +!

25. a a an n 1 1112

1,

Hitunglah setiap limit dalam soal 26-33 dengan menggunakan teorema mengenai limit.

26. limn

nn

2 73 2 27. lim

n

n nn n

3 55 2 6

2

2 28. lim( )

n

n nn

nn

21 1

2

2

29. limn

n n

1 30. limn

n nn

3 42 1

2

31. limn

nn

2 33 7

4

32. limn

nn n

2 43 10

5 2

7 3 33. lim( )( )n

n

n

1 2 105 3 10

34. Buktikan bahwa limn 1

1

n

n

= e

35. Buktikan bahwa limn

nn2 1

= 0.

36. Buktikanlah jika limn na = 0 dan {bn} terbatas, maka lim

n n na b = 0.

37. Bukikanlah bahwa apabila {an}konvergen dan {bn} divergen, maka {an + bn} divergen.

38. Apabila {an}dan {bn} divergen, maka apakah {an + bn} juga divergen.

DND

9