Ide Bikin PDF

Embed Size (px)

Citation preview

  • 8/13/2019 Ide Bikin PDF

    1/184

    Diagrammatic Algebra

    Aaron Lauda

    Columbia University

    December 8th, 2008

    Available athttp://www.math.columbia.edu/ lauda/talks/diagram.pdf

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 1 / 42

    http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    2/184

    Plan

    Diagrammatic calculus has a broad range of application

    Higher-categories provide a unifying framework for understanding

    various diagrammatic calculus that appear in mathematics.

    We will look at application of this diagrammatic framework bylooking at relationships between biadjoints in 2-categories,

    Frobenius algebras, and low-dimensional topology

    We will also look at an application where this graphical calculus

    shows up while categorifying quantum groups.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 2 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    3/184

    Plan

    Diagrammatic calculus has a broad range of application

    Higher-categories provide a unifying framework for understanding

    various diagrammatic calculus that appear in mathematics.

    We will look at application of this diagrammatic framework bylooking at relationships between biadjoints in 2-categories,

    Frobenius algebras, and low-dimensional topology

    We will also look at an application where this graphical calculus

    shows up while categorifying quantum groups.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 2 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    4/184

    Plan

    Diagrammatic calculus has a broad range of application

    Higher-categories provide a unifying framework for understanding

    various diagrammatic calculus that appear in mathematics.

    We will look at application of this diagrammatic framework bylooking at relationships between biadjoints in 2-categories,

    Frobenius algebras, and low-dimensional topology

    We will also look at an application where this graphical calculus

    shows up while categorifying quantum groups.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 2 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    5/184

    Plan

    Diagrammatic calculus has a broad range of application

    Higher-categories provide a unifying framework for understanding

    various diagrammatic calculus that appear in mathematics.

    We will look at application of this diagrammatic framework bylooking at relationships between biadjoints in 2-categories,

    Frobenius algebras, and low-dimensional topology

    We will also look at an application where this graphical calculus

    shows up while categorifying quantum groups.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 2 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    6/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    7/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    8/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    9/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    10/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    11/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    12/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    13/184

    CategoriesA category consists of

    a collection of of objectsx,y,z,. . .

    a set of 1-morphisms y xf

    composition of morphisms x yg

    zf = y x

    gf

    such that

    composition is associative: given Z yh

    xg

    wf

    wehave

    (h g) f =h (g f)

    identity morphisms: for each objectxa morphism x x1x such

    that

    y xf x

    1x = y xf = y y

    1y x

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 3 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    14/184

    2-categoriesAstrict 2-categoryis given by

    objectsx,y,z,. . .

    morphisms y xf

    2-morphisms between 1-morphisms xy

    f

    g

    composition for 1-morphisms

    horizontal composition xy

    f

    g

    yz

    f

    g

    = xz

    ff

    gg

    vertical composition xy

    f

    g

    = xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 4 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    15/184

    2-categoriesAstrict 2-categoryis given by

    objectsx,y,z,. . .

    morphisms y xf

    2-morphisms between 1-morphisms xy

    f

    g

    composition for 1-morphisms

    horizontal composition xy

    f

    g

    yz

    f

    g

    = xz

    ff

    gg

    vertical composition xy

    f

    g

    = xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 4 / 42

    i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    16/184

    2-categoriesAstrict 2-categoryis given by

    objectsx,y,z,. . .

    morphisms y xf

    2-morphisms between 1-morphisms xy

    f

    g

    composition for 1-morphisms

    horizontal composition xy

    f

    g

    yz

    f

    g

    = xz

    ff

    gg

    vertical composition xy

    f

    g

    = xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 4 / 42

    2 i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    17/184

    2-categoriesAstrict 2-categoryis given by

    objectsx,y,z,. . .

    morphisms y xf

    2-morphisms between 1-morphisms xy

    f

    g

    composition for 1-morphisms

    horizontal composition xy

    f

    g

    yz

    f

    g

    = xz

    ff

    gg

    vertical composition xy

    f

    g

    = xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 4 / 42

    2 t i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    18/184

    2-categoriesAstrict 2-categoryis given by

    objectsx,y,z,. . .

    morphisms y xf

    2-morphisms between 1-morphisms xy

    f

    g

    composition for 1-morphisms

    horizontal composition xy

    f

    g

    yz

    f

    g

    = xz

    ff

    gg

    vertical composition xy

    f

    g

    = xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 4 / 42

    2 t i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    19/184

    2-categoriesAstrict 2-categoryis given by

    objectsx,y,z,. . .

    morphisms y xf

    2-morphisms between 1-morphisms xy

    f

    g

    composition for 1-morphisms

    horizontal composition xy

    f

    g

    yz

    f

    g

    = xz

    ff

    gg

    vertical composition xy

    f

    g

    = xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 4 / 42

    Associativity requirements for all types of composition:

    http://find/
  • 8/13/2019 Ide Bikin PDF

    20/184

    Associativity requirements for all types of composition:

    1for -morphisms: given w zh y

    g x

    f we have

    (h g) f =h (g f).

    for 2-morphisms under vertical composition: given

    xy

    g

    h

    f

    i

    we have ( ) = ( )

    for 2-morphisms under horizontal composition: given

    xy

    f1

    g1

    yz

    f2

    g2

    zw

    f3

    g3

    we have ()=().

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 5 / 42

    Associativity requirements for all types of composition:

    http://find/
  • 8/13/2019 Ide Bikin PDF

    21/184

    Associativity requirements for all types of composition:

    1for -morphisms: given w zh y

    g x

    f we have

    (h g) f =h (g f).

    for 2-morphisms under vertical composition: given

    xy

    g

    h

    f

    i

    we have ( ) = ( )

    for 2-morphisms under horizontal composition: given

    xy

    f1

    g1

    yz

    f2

    g2

    zw

    f3

    g3

    we have ()=().

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 5 / 42

    Associativity requirements for all types of composition:

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    22/184

    ss a y q s a yp s p s

    1for -morphisms: given w zh y

    g x

    f we have

    (h g) f =h (g f).

    for 2-morphisms under vertical composition: given

    xy

    g

    h

    f

    i

    we have ( ) = ( )

    for 2-morphisms under horizontal composition: given

    xy

    f1

    g1

    yz

    f2

    g2

    zw

    f3

    g3

    we have ()=().

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 5 / 42

    Identity axioms

    http://find/
  • 8/13/2019 Ide Bikin PDF

    23/184

    y

    for 1-morphisms: 1y f =f =f 1x

    y x1x x

    f = y xf = y y

    f x1y

    for vertical composition: 1g = = 1f

    xy

    g

    f

    g

    1g

    = x y

    f

    g

    = xyf

    f

    g

    1f

    for horizontal composition: 11y== 11x

    xy

    f

    g

    yy

    1y

    1y

    11y

    = xy

    f

    g

    = xx

    1x

    1x

    11x

    xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 6 / 42

    Identity axioms

    http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    24/184

    y

    for 1-morphisms: 1y f =f =f 1x

    y x1x x

    f = y xf = y y

    f x1y

    for vertical composition: 1g = = 1f

    xy

    g

    f

    g

    1g

    = x y

    f

    g

    = xy

    f

    f

    g

    1f

    for horizontal composition: 11y== 11x

    xy

    f

    g

    yy

    1y

    1y

    11y

    = xy

    f

    g

    = xx

    1x

    1x

    11x

    xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 6 / 42

    Identity axioms

    http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    25/184

    y

    for 1-morphisms: 1y f =f =f 1x

    y x1x x

    f = y xf = y y

    f x1y

    for vertical composition: 1g = = 1f

    xyg

    f

    g

    1g

    = x y

    f

    g

    = xy

    f

    f

    g

    1f

    for horizontal composition: 11y== 11x

    xy

    f

    g

    yy

    1y

    1y

    11y

    = xy

    f

    g

    = xx

    1x

    1x

    11x

    xy

    f

    g

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 6 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    26/184

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    27/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    28/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    29/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    30/184

    Examples

    http://find/
  • 8/13/2019 Ide Bikin PDF

    31/184

    Examples

    1 Cat: objects: categories morphisms: functors 2-morphisms: natural transformations

    1 Bim: objects: commutative ringsR,S,T, . . . morphisms: (S, R)-bimodules

    composition: T STNS R

    SMR := T RTNSS SMR

    2-morphisms: bimodule homomorphisms

    1 (X):

    objects: points of a topological space X

    morphisms: paths inX

    2-morphisms: homotopies between paths

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 8 / 42

    Examples

    http://find/
  • 8/13/2019 Ide Bikin PDF

    32/184

    p

    1 Cat: objects: categories morphisms: functors 2-morphisms: natural transformations

    1 Bim: objects: commutative ringsR,S,T, . . . morphisms: (S, R)-bimodules

    composition: T STNS R

    SMR := T RTNSS SMR

    2-morphisms: bimodule homomorphisms

    1 (X):

    objects: points of a topological space X

    morphisms: paths inX

    2-morphisms: homotopies between paths

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 8 / 42

    Examples

    http://find/
  • 8/13/2019 Ide Bikin PDF

    33/184

    p

    1 Cat: objects: categories morphisms: functors 2-morphisms: natural transformations

    1 Bim: objects: commutative ringsR,S,T, . . . morphisms: (S, R)-bimodules

    composition: T STNS R

    SMR := T RTNSS SMR

    2-morphisms: bimodule homomorphisms

    1 (X):

    objects: points of a topological space X

    morphisms: paths inX

    2-morphisms: homotopies between paths

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 8 / 42

    Examples

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    34/184

    p

    1 Cat: objects: categories morphisms: functors 2-morphisms: natural transformations

    1 Bim: objects: commutative ringsR,S,T, . . . morphisms: (S, R)-bimodules

    composition: T STNS R

    SMR := T RTNSS SMR

    2-morphisms: bimodule homomorphisms

    1 (X):

    objects: points of a topological space X

    morphisms: paths inX

    2-morphisms: homotopies between paths

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 8 / 42

    Examples

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    35/184

    p

    1 Cat: objects: categories morphisms: functors 2-morphisms: natural transformations

    1 Bim: objects: commutative ringsR,S,T, . . . morphisms: (S, R)-bimodules

    composition: T STNS R

    SMR := T RTNSS SMR

    2-morphisms: bimodule homomorphisms

    1 (X):

    objects: points of a topological space X

    morphisms: paths inX

    2-morphisms: homotopies between paths

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 8 / 42

    Examples

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    36/184

    1 Cat: objects: categories morphisms: functors 2-morphisms: natural transformations

    1 Bim: objects: commutative ringsR,S,T, . . . morphisms: (S, R)-bimodules

    composition: T STNS

    RSMR

    := T RTNSS SMR

    2-morphisms: bimodule homomorphisms

    1 (X):

    objects: points of a topological space Xmorphisms: paths inX

    2-morphisms: homotopies between paths

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 8 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    37/184

    te so catego y (C, , ) s catego y t a assoc at e, u tamultiplication for objects and morphisms

    y

    x

    x y

    fg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    38/184

    g y ( , , ) g y ,multiplication for objects and morphisms

    y

    x

    x y

    fg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    39/184

    g y ( , , ) g y ,multiplication for objects and morphisms

    y

    x

    x y

    fg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    40/184

    g y ( , , ) g ymultiplication for objects and morphisms

    y

    x x

    y

    fg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    41/184

    multiplication for objects and morphisms

    y

    x x

    y

    fg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    42/184

    multiplication for objects and morphisms

    y

    x

    x

    yfg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    43/184

    multiplication for objects and morphisms

    y

    x

    x yfg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    44/184

    multiplication for objects and morphisms

    y

    x

    x yfg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    A tensor category(C, , I)is category with an associative, unital

    http://find/
  • 8/13/2019 Ide Bikin PDF

    45/184

    multiplication for objects and morphisms

    y

    x

    x yfg

    Iis the unit object of C,I x=x=x I.(ThinkVectk, , k)All tensor categories(C, , I)can be thought of as a 2-category

    Cwith

    objects: just one object, call it

    1-morphisms: an objectxof Cis now thought of as a 1-morphism

    x

    composition : g

    f :=

    gf

    identity 1-morphism: 1 :=

    I

    2-morphisms: the 1-morphisms from C vertical composition : ordinary composition of 1-morphisms from C horizontal composition: tensor product of 1-morphisms from C

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 9 / 42

    String diagrams

    http://find/
  • 8/13/2019 Ide Bikin PDF

    46/184

    Invert the dimensions of the pictures xy

    f

    g

    objects become regions in the plane x or y

    morphisms stay 1-dimension, but in an orthogonal direction

    y xf y x

    f

    f

    2-morphisms become xy

    f

    g

    y x

    g

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 10 / 42

    String diagrams

    http://find/
  • 8/13/2019 Ide Bikin PDF

    47/184

    Invert the dimensions of the pictures xy

    f

    g

    objects become regions in the plane x or y

    morphisms stay 1-dimension, but in an orthogonal direction

    y xf y x

    f

    f

    2-morphisms become xy

    f

    g

    y x

    g

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 10 / 42

    String diagrams

    http://find/
  • 8/13/2019 Ide Bikin PDF

    48/184

    Invert the dimensions of the pictures xy

    f

    g

    objects become regions in the plane x or y

    morphisms stay 1-dimension, but in an orthogonal direction

    y xf y x

    f

    f

    2-morphisms become xy

    f

    g

    y x

    g

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 10 / 42

    g

    g

    http://find/
  • 8/13/2019 Ide Bikin PDF

    49/184

    vertical composition xy

    f

    y x

    f

    horizontal composition xy

    f

    g

    yz

    f

    g

    z y x

    g

    f

    g

    f

    By convention we do not draw identity morphisms or 2-morphisms:

    x = x x

    1x

    1x

    y x

    f

    f

    1f = y x

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 11 / 42

    g

    g

    http://find/
  • 8/13/2019 Ide Bikin PDF

    50/184

    vertical composition xy

    f

    y x

    f

    horizontal composition xy

    f

    g

    yz

    f

    g

    z y x

    g

    f

    g

    f

    By convention we do not draw identity morphisms or 2-morphisms:

    x = x x

    1x

    1x

    y x

    f

    f

    1f = y x

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 11 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    51/184

    g

    g

  • 8/13/2019 Ide Bikin PDF

    52/184

    vertical composition xy

    f

    y x

    f

    horizontal composition xy

    f

    g

    yz

    f

    g

    z y x

    g

    f

    g

    f

    By convention we do not draw identity morphisms or 2-morphisms:

    x = x x

    1x

    1x

    y x

    f

    f

    1f = y x

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 11 / 42

    y z3g4 z2

    g3 z1g2 x

    g1

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    53/184

    Ifis a 2-morphism

    y w2f3 w1

    f2 xf1

    thenbecomes the string diagram:

    xy

    g4 g3 g2 g1

    f3 f2 f1

    Now lets apply string diagrams to adjoint functors!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 12 / 42

    y z3g4 z2

    g3 z1g2 x

    g1

    http://find/
  • 8/13/2019 Ide Bikin PDF

    54/184

    Ifis a 2-morphism

    y w2f3 w1

    f2 xf1

    thenbecomes the string diagram:

    xy

    g4 g3 g2 g1

    f3 f2 f1

    Now lets apply string diagrams to adjoint functors!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 12 / 42

    Definition

    U

    http://find/
  • 8/13/2019 Ide Bikin PDF

    55/184

    Functors CU

    DF

    between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC

    (FY, X)

    =Hom

    D(Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF

    and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    Definition

    U

    http://find/
  • 8/13/2019 Ide Bikin PDF

    56/184

    Functors C

    DF

    between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC

    (FY, X)

    =Hom

    D(Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF

    and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    Definition

    U

    http://find/
  • 8/13/2019 Ide Bikin PDF

    57/184

    Functors C

    DF

    between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC

    (FY, X)

    =Hom

    D(Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF

    and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    Definition

    U

    http://find/
  • 8/13/2019 Ide Bikin PDF

    58/184

    Functors C

    DF

    between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC

    (FY, X) = HomD

    (Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF

    and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    Definition

    FU

    b i C d dj i if h

    http://find/
  • 8/13/2019 Ide Bikin PDF

    59/184

    Functors C

    DF

    between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC

    (FY, X) = HomD

    (Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF

    and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    Definition

    F tU

    b t t i C d D dj i t if th

    http://find/
  • 8/13/2019 Ide Bikin PDF

    60/184

    Functors CD

    F between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC

    (FY, X) = HomD

    (Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    Definition

    F t CU

    D b t t i C d D dj i t if th

    http://find/
  • 8/13/2019 Ide Bikin PDF

    61/184

    Functors CD

    F between categories Cand D are adjoint if there

    exists a natural bijectionY,X

    : HomC(FY, X) = HomD(Y, GX)

    Definition (2)

    An adjunction between two categories Cand D consists of functors

    C

    U

    DF and a natural transformations

    1C F U:

    U F 1D:

    such that for eachX in CandY in D

    1UX =U(X) UX or (1U) (1U) =1U

    1FY =FY F(Y) or (1F) (1F) =1F

    The second definition makes sense in any 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 13 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    62/184

  • 8/13/2019 Ide Bikin PDF

    63/184

    Definition

    An adjunction in a 2-category consists of

    bj t d

  • 8/13/2019 Ide Bikin PDF

    64/184

    objectsxandy

    morphisms y xf and x y

    u

    2-morphisms 1x f u: andu f 1y:

    y

    x

    uf

    :=

    x x

    y

    1A

    f u

    y

    x

    fu

    :=

    y y

    x

    1y

    u f

    such that the equalities

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    hold.Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 14 / 42

    Definition

    An adjunction in a 2-category consists of

    bj t d

    http://find/
  • 8/13/2019 Ide Bikin PDF

    65/184

    objectsxandy

    morphisms y xf and x y

    u

    2-morphisms 1x f u: andu f 1y:

    y

    x

    uf

    :=

    x x

    y

    1A

    f u

    y

    x

    fu

    :=

    y y

    x

    1y

    u f

    such that the equalities

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    hold.Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 14 / 42

    Definition

    An adjunction in a 2-category consists of

    objects x and y

    http://find/
  • 8/13/2019 Ide Bikin PDF

    66/184

    objectsxandy

    morphisms y xf and x y

    u

    2-morphisms 1x f u: andu f 1y:

    y

    x

    uf

    :=

    x x

    y

    1A

    f u

    y

    x

    fu

    :=

    y y

    x

    1y

    u f

    such that the equalities

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    hold.Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 14 / 42

    Definition

    An adjunction in a 2-category consists of

    objects x and y

    http://find/
  • 8/13/2019 Ide Bikin PDF

    67/184

    objectsxandy

    morphisms y xf and x y

    u

    2-morphisms 1x f u: andu f 1y:

    y

    x

    uf

    :=

    x x

    y

    1A

    f u

    y

    x

    fu

    :=

    y y

    x

    1y

    u f

    such that the equalities

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    hold.Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 14 / 42

    To see what these diagrams mean we can always convert back into

    globular notation:

    http://find/
  • 8/13/2019 Ide Bikin PDF

    68/184

    g

    x

    y

    u

    u

    = y x

    u

    u

    y u

    x f

    y u

    x = y

    u

    u

    x

    1u

    It says that(1u) (1u) =1u

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 15 / 42

    To see what these diagrams mean we can always convert back into

    globular notation:

    http://find/
  • 8/13/2019 Ide Bikin PDF

    69/184

    g

    x

    y

    u

    u

    = y x

    u

    u

    y u

    x f

    y u

    x = y

    u

    u

    x

    1u

    It says that(1u) (1u) =1u

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 15 / 42

    Examples of adjunctions

    The free group functor is left adjoint to the forgetful functor from

    http://find/
  • 8/13/2019 Ide Bikin PDF

    70/184

    The free group functor is left adjoint to the forgetful functor from

    Groupto Set

    In the categoryAb of abelian groups the functor Ais the leftadjoint ofHom(A, )

    Given a continuous mapf: X Ybetween topological spaces,then the inverse image functor f1 : Sh(Y) Sh(X)is left adjoint

    to the direct image functorf : Sh(X) Sh(Y).Given a inclusion of commutative ringsR A, then the restrictionfunctor

    Res: A mod R mod

    has a left and right adjoint: the induction functor Ind(M) =A RMand the coinduction functorCoInd(M) =HomR(A, M).

    See the Wikipedia page on adjunction for more examples.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 16 / 42

    Examples of adjunctions

    The free group functor is left adjoint to the forgetful functor from

    http://find/
  • 8/13/2019 Ide Bikin PDF

    71/184

    The free group functor is left adjoint to the forgetful functor from

    Groupto Set

    In the categoryAb of abelian groups the functor Ais the leftadjoint ofHom(A, )

    Given a continuous mapf: X Ybetween topological spaces,then the inverse image functor f1 : Sh(Y) Sh(X)is left adjoint

    to the direct image functorf : Sh(X) Sh(Y).Given a inclusion of commutative ringsR A, then the restrictionfunctor

    Res: A mod R mod

    has a left and right adjoint: the induction functor Ind(M) =A RMand the coinduction functorCoInd(M) =HomR(A, M).

    See the Wikipedia page on adjunction for more examples.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 16 / 42

    Examples of adjunctions

    The free group functor is left adjoint to the forgetful functor from

    http://find/
  • 8/13/2019 Ide Bikin PDF

    72/184

    The free group functor is left adjoint to the forgetful functor from

    Groupto Set

    In the categoryAb of abelian groups the functor Ais the leftadjoint ofHom(A, )

    Given a continuous mapf: X Ybetween topological spaces,then the inverse image functor f1 : Sh(Y) Sh(X)is left adjoint

    to the direct image functorf : Sh(X) Sh(Y).Given a inclusion of commutative ringsR A, then the restrictionfunctor

    Res: A mod R mod

    has a left and right adjoint: the induction functor Ind(M) =A RMand the coinduction functorCoInd(M) =HomR(A, M).

    See the Wikipedia page on adjunction for more examples.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 16 / 42

    Examples of adjunctions

    The free group functor is left adjoint to the forgetful functor from

    http://find/
  • 8/13/2019 Ide Bikin PDF

    73/184

    The free group functor is left adjoint to the forgetful functor from

    Groupto Set

    In the categoryAb of abelian groups the functor Ais the leftadjoint ofHom(A, )

    Given a continuous mapf: X Ybetween topological spaces,then the inverse image functor f1 : Sh(Y) Sh(X)is left adjoint

    to the direct image functorf : Sh(X) Sh(Y).Given a inclusion of commutative ringsR A, then the restrictionfunctor

    Res: A mod R mod

    has a left and right adjoint: the induction functor Ind(M) =A RMand the coinduction functorCoInd(M) =HomR(A, M).

    See the Wikipedia page on adjunction for more examples.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 16 / 42

    Examples of adjunctions

    The free group functor is left adjoint to the forgetful functor from

    http://find/
  • 8/13/2019 Ide Bikin PDF

    74/184

    The free group functor is left adjoint to the forgetful functor from

    Groupto Set

    In the categoryAb of abelian groups the functor Ais the leftadjoint ofHom(A, )

    Given a continuous mapf: X Ybetween topological spaces,then the inverse image functor f1 : Sh(Y) Sh(X)is left adjoint

    to the direct image functorf : Sh(X) Sh(Y).Given a inclusion of commutative ringsR A, then the restrictionfunctor

    Res: A mod R mod

    has a left and right adjoint: the induction functor Ind(M) =A RMand the coinduction functorCoInd(M) =HomR(A, M).

    See the Wikipedia page on adjunction for more examples.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 16 / 42

    Vector spaces and their dualsWhat is an adjunction in Vectk?

    V

    http://find/
  • 8/13/2019 Ide Bikin PDF

    75/184

    A pair of vector spaces:

    V := :=

    V :=

    V

    :=

    linear mapsV V k, andk V V such that

    V

    =

    V

    ,

    V

    =

    V

    An adjunction in the 2-category Vectkis just a vector space and its

    dual!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 17 / 42

    Vector spaces and their dualsWhat is an adjunction in Vectk?

    V

    http://find/
  • 8/13/2019 Ide Bikin PDF

    76/184

    A pair of vector spaces:

    V := :=

    V :=

    V

    :=

    linear mapsV V k, andk V V such that

    V

    =

    V

    ,

    V

    =

    V

    An adjunction in the 2-category Vectkis just a vector space and its

    dual!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 17 / 42

    Vector spaces and their dualsWhat is an adjunction in Vectk?

    V

    http://find/
  • 8/13/2019 Ide Bikin PDF

    77/184

    A pair of vector spaces:

    V := :=

    V :=

    V

    :=

    linear mapsV V k, andk V V such that

    V

    =

    V

    ,

    V

    =

    V

    An adjunction in the 2-category Vectkis just a vector space and its

    dual!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 17 / 42

    Vector spaces and their dualsWhat is an adjunction in Vectk?

    V

    http://find/
  • 8/13/2019 Ide Bikin PDF

    78/184

    A pair of vector spaces:

    V := :=

    V :=

    V

    :=

    linear mapsV V k, andk V V such that

    V

    =

    V

    ,

    V

    =

    V

    An adjunction in the 2-category Vectkis just a vector space and its

    dual!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 17 / 42

    Vector spaces and their dualsWhat is an adjunction in Vectk?

    V

    http://find/
  • 8/13/2019 Ide Bikin PDF

    79/184

    A pair of vector spaces:

    V := :=

    V :=

    V

    :=

    linear mapsV V k, andk V V such that

    V

    =

    V

    ,

    V

    =

    V

    An adjunction in the 2-category Vectkis just a vector space and its

    dual!

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 17 / 42

    Definition

    Biadjoint morphismsin a 2-category consists of

    objects x and y

    http://find/
  • 8/13/2019 Ide Bikin PDF

    80/184

    objectsxandy

    morphisms y x

    f and x y

    u

    2-morphismsy

    x

    uf

    y

    xfu

    x

    y

    fu

    x

    yuf

    such that

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 18 / 42

    Definition

    Biadjoint morphismsin a 2-category consists of

    objects x and y

    http://find/
  • 8/13/2019 Ide Bikin PDF

    81/184

    objectsxandy

    morphisms y x

    f and x y

    u

    2-morphismsy

    x

    uf

    y

    xfu

    x

    y

    fu

    x

    yuf

    such that

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 18 / 42

    Definition

    Biadjoint morphismsin a 2-category consists of

    objects x and y

    http://find/
  • 8/13/2019 Ide Bikin PDF

    82/184

    objectsxandy

    morphisms y x

    f and x y

    u

    2-morphismsy

    x

    uf

    y

    xfu

    x

    y

    fu

    x

    yuf

    such that

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 18 / 42

    Definition

    Biadjoint morphismsin a 2-category consists of

    objectsxandy

    http://find/
  • 8/13/2019 Ide Bikin PDF

    83/184

    j y

    morphisms y x

    f

    and x y

    u

    2-morphismsy

    x

    uf

    y

    xfu

    x

    y

    fu

    x

    yuf

    such that

    x

    y

    f

    f

    = x y

    f

    f

    x

    y

    u

    u

    = y x

    u

    u

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 18 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    84/184

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2 dimensional surfaces

  • 8/13/2019 Ide Bikin PDF

    85/184

    2-dimensional surfaces

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 19 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    86/184

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2-dimensional surfaces

  • 8/13/2019 Ide Bikin PDF

    87/184

    2 dimensional surfaces

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 19 / 42

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2-dimensional surfaces

    http://find/
  • 8/13/2019 Ide Bikin PDF

    88/184

    2 dimensional surfaces

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 19 / 42

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2-dimensional surfaces

    http://find/
  • 8/13/2019 Ide Bikin PDF

    89/184

    2 dimensional surfaces

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 19 / 42

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2-dimensional surfaces

    http://find/
  • 8/13/2019 Ide Bikin PDF

    90/184

    d e s o a su aces

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 19 / 42

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2-dimensional surfaces

    http://find/
  • 8/13/2019 Ide Bikin PDF

    91/184

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 19 / 42

    There is a close connection betweenbiadjoints in a 2-category

    Frobenius algebras

    2-dimensional surfaces

    http://find/
  • 8/13/2019 Ide Bikin PDF

    92/184

    Define the category2PCobof planar 2-dimensional surfaces:objects: disjoint unions of intervals on R

    morphisms: 2-dimensional surfaces with boundary intervals:

    Definition

    A planar 2-dimensional topological quantum field theory is a functor

    2PCob Vectk

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 19 / 42

    DefinitionA Frobenius algebra is a vector spaceAequipped with

    multiplication and unit maps: m: A A A, : k A,

    http://find/
  • 8/13/2019 Ide Bikin PDF

    93/184

    :=

    A A

    A

    m

    :=

    A

    comulitiplication and counit maps: : A A A, : A k,

    :=

    A A

    A

    ,

    :=

    A

    satisfying the following axioms:

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 20 / 42

    DefinitionA Frobenius algebra is a vector spaceAequipped with

    multiplication and unit maps: m: A A A, : k A,

    http://find/
  • 8/13/2019 Ide Bikin PDF

    94/184

    :=

    A A

    A

    m

    :=

    A

    comulitiplication and counit maps: : A A A, : A k,

    :=

    A A

    A

    ,

    :=

    A

    satisfying the following axioms:

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 20 / 42

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    95/184

    DefinitionA Frobenius algebra is a vector spaceAequipped with

    multiplication and unit maps: m: A A A, : k A,

  • 8/13/2019 Ide Bikin PDF

    96/184

    :=

    A A

    A

    m

    :=

    A

    comulitiplication and counit maps: : A A A, : A k,

    :=

    A A

    A

    ,

    :=

    A

    satisfying the following axioms:

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 20 / 42

    DefinitionA Frobenius algebra is a vector spaceAequipped with

    multiplication and unit maps: m: A A A, : k A,

    http://find/
  • 8/13/2019 Ide Bikin PDF

    97/184

    :=

    A A

    A

    m

    :=

    A

    comulitiplication and counit maps: : A A A, : A k,

    :=

    A A

    A

    ,

    :=

    A

    satisfying the following axioms:

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th 2008 20 / 42

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    98/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    99/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    100/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    101/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    102/184

    We have already seen that

    monoidal category 2-category with one object

    http://find/
  • 8/13/2019 Ide Bikin PDF

    103/184

    but it is also true the other way

    monoidal category 2-category with one object

    Theorem

    Given biadjoints xu

    yf

    in a 2-category K, the objectu f is a

    Frobenius algebra in the monoidal categoryHomK(y, y).

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 22 / 42

    We have already seen that

    monoidal category 2-category with one object

    http://find/
  • 8/13/2019 Ide Bikin PDF

    104/184

    but it is also true the other way

    monoidal category 2-category with one object

    Theorem

    Given biadjoints xu

    yf

    in a 2-category K, the objectu f is a

    Frobenius algebra in the monoidal categoryHomK(y, y).

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 22 / 42

    We have already seen that

    monoidal category 2-category with one object

    http://find/
  • 8/13/2019 Ide Bikin PDF

    105/184

    but it is also true the other way

    monoidal category 2-category with one object

    Theorem

    Given biadjoints xu

    yf

    in a 2-category K, the objectu f is a

    Frobenius algebra in the monoidal categoryHomK(y, y).

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 22 / 42

    Proof.

    In string diagrams the identity map on uf is

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    106/184

    Try to define a multiplication map ?

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    Proof.

    In string diagrams the identity map on uf is

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    107/184

    Try to define a multiplication map ?

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    Proof.

    In string diagrams the identity map on uf is

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    108/184

    Try to define a multiplication map ?

    u f u f

    u f

    :=

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    Proof.

    In string diagrams the identity map on uf is

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    109/184

    Try to define a multiplication map ?

    u f u f

    u f

    :=

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    110/184

    Proof.

    In string diagrams the identity map on uf is

    u f

  • 8/13/2019 Ide Bikin PDF

    111/184

    Try to define a multiplication map :=

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    Proof.

    In string diagrams the identity map on uf is

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    112/184

    Try to define a multiplication map :=

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    Proof.

    In string diagrams the identity map on uf is

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    113/184

    Try to define a multiplication map :=

    u f u f

    u f

    The unit for this multiplication is : uf 1y. y

    xfu

    Why is this a unit for multiplication?u f

    =

    u f

    =

    u f

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 23 / 42

    Proof of associativityu f

    =

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    114/184

    u f u f u f u f u f u f

    xy

    fu

    1y

    11y

    yx

    fu

    1y

    1fu

    = xy

    fu

    1y

    1fu

    yx

    fu

    1y

    11y

    xy

    fu

    1y

    yx

    fu

    1y

    Just having an adjunction makesufinto a monoid.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 24 / 42

    Proof of associativityu f

    =

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    115/184

    u f u f u f u f u f u f

    xy

    fu

    1y

    11y

    yx

    fu

    1y

    1fu

    = xy

    fu

    1y

    1fu

    yx

    fu

    1y

    11y

    xy

    fu

    1y

    yx

    fu

    1y

    Just having an adjunction makesufinto a monoid.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 24 / 42

    Proof of associativityu f

    =

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    116/184

    u f u f u f u f u f u f

    xy

    fu

    1y

    11y

    yx

    fu

    1y

    1fu

    = xy

    fu

    1y

    1fu

    yx

    fu

    1y

    11y

    xy

    fu

    1y

    yx

    fu

    1y

    Just having an adjunction makesufinto a monoid.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 24 / 42

    Proof of associativityu f

    =

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    117/184

    u f u f u f u f u f u f

    xy

    fu

    1y

    11y

    yx

    fu

    1y

    1fu

    = xy

    fu

    1y

    1fu

    yx

    fu

    1y

    11y

    xy

    fu

    1y

    yx

    fu

    1y

    Just having an adjunction makesufinto a monoid.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 24 / 42

    Proof of associativityu f

    =

    u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    118/184

    u f u f u f u f u f u f

    xy

    fu

    1y

    11y

    yx

    fu

    1y

    1fu

    = xy

    fu

    1y

    1fu

    yx

    fu

    1y

    11y

    xy

    fu

    1y

    yx

    fu

    1y

    Just having an adjunction makesufinto a monoid.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 24 / 42

    Comultiplication and counit

    Sinceuandf arebiadjointwe can define

    comultiplication

    u f u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    119/184

    u f

    counit maps

    fu

    The counit axiom follows from biadjointness.

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Coassociativity follows from axioms of a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 25 / 42

    Comultiplication and counit

    Sinceuandf arebiadjointwe can define

    comultiplication

    u f u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    120/184

    u f

    counit maps

    fu

    The counit axiom follows from biadjointness.

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Coassociativity follows from axioms of a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 25 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    121/184

    Comultiplication and counit

    Sinceuandf arebiadjointwe can define

    comultiplication

    u f u f

  • 8/13/2019 Ide Bikin PDF

    122/184

    u f

    counit maps

    fu

    The counit axiom follows from biadjointness.

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Coassociativity follows from axioms of a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 25 / 42

    Comultiplication and counit

    Sinceuandf arebiadjointwe can define

    comultiplication

    u f u f

    http://find/
  • 8/13/2019 Ide Bikin PDF

    123/184

    u f

    counit maps

    fu

    The counit axiom follows from biadjointness.

    y

    x

    u

    u

    = y x

    u

    u

    y

    x

    f

    f

    = x y

    f

    f

    Coassociativity follows from axioms of a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 25 / 42

    Frobenius identities

    = =

    http://find/
  • 8/13/2019 Ide Bikin PDF

    124/184

    = xx

    1x

    fu

    1fu

    xx

    fu

    1x

    1fu

    = xx

    f

    g

    =

    Frobenius relations follow from the interchange law and identity axioms

    in a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 26 / 42

    Frobenius identities

    = =

    http://find/
  • 8/13/2019 Ide Bikin PDF

    125/184

    = xx

    1x

    fu

    1fu

    xx

    fu

    1x

    1fu

    = xx

    f

    g

    =

    Frobenius relations follow from the interchange law and identity axioms

    in a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 26 / 42

    Frobenius identities

    = =

    http://find/
  • 8/13/2019 Ide Bikin PDF

    126/184

    = xx

    1x

    fu

    1fu

    xx

    fu

    1x

    1fu

    = xx

    f

    g

    =

    Frobenius relations follow from the interchange law and identity axioms

    in a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 26 / 42

    Frobenius identities

    = =

    http://find/
  • 8/13/2019 Ide Bikin PDF

    127/184

    = xx

    1x

    fu

    1fu

    xx

    fu

    1x

    1fu

    = xx

    f

    g

    =

    Frobenius relations follow from the interchange law and identity axioms

    in a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 26 / 42

    Frobenius identities

    = =

    http://find/
  • 8/13/2019 Ide Bikin PDF

    128/184

    = xx

    1x

    fu

    1fu

    xx

    fu

    1x

    1fu

    = xx

    f

    g

    =

    Frobenius relations follow from the interchange law and identity axioms

    in a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 26 / 42

    Frobenius identities

    = =

    http://find/
  • 8/13/2019 Ide Bikin PDF

    129/184

    = xx

    1x

    fu

    1fu

    xx

    fu

    1x

    1fu

    = xx

    f

    g

    =

    Frobenius relations follow from the interchange law and identity axioms

    in a 2-category.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 26 / 42

    We can see that the strings diagrams for biadjoints, in particular those

    inHomK(y, y)look a lot like 2-dimensional planar surfaces.

    Theorem

    The morphisms in2-PCobare generated by

    http://find/
  • 8/13/2019 Ide Bikin PDF

    130/184

    subject to the relations

    = =

    = = = =

    = =

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 27 / 42

    We can see that the strings diagrams for biadjoints, in particular those

    inHomK(y, y)look a lot like 2-dimensional planar surfaces.

    Theorem

    The morphisms in2-PCobare generated by

    http://find/
  • 8/13/2019 Ide Bikin PDF

    131/184

    subject to the relations

    = =

    = = = =

    = =

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 27 / 42

    We can see that the strings diagrams for biadjoints, in particular those

    inHomK(y, y)look a lot like 2-dimensional planar surfaces.

    Theorem

    The morphisms in2-PCobare generated by

    http://find/
  • 8/13/2019 Ide Bikin PDF

    132/184

    subject to the relations

    = =

    = = = =

    = =

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 27 / 42

    Defining a 2-dimensional planar TQFT is the same as giving a

    Frobenius algebra

    http://find/
  • 8/13/2019 Ide Bikin PDF

    133/184

    Every pair of biadjoint morphisms in a 2-category gives a Frobenius

    algebra

    One can show that the converse is also true, every Frobenius algebra

    gives rise to a pair of biadjoint morphisms in some 2-category.

    The diagrammatic calculus of string diagrams for 2-categories

    illuminates all of these facts.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 28 / 42

    Defining a 2-dimensional planar TQFT is the same as giving a

    Frobenius algebra

    E i f bi dj i hi i 2 i F b i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    134/184

    Every pair of biadjoint morphisms in a 2-category gives a Frobenius

    algebra

    One can show that the converse is also true, every Frobenius algebra

    gives rise to a pair of biadjoint morphisms in some 2-category.

    The diagrammatic calculus of string diagrams for 2-categories

    illuminates all of these facts.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 28 / 42

    Defining a 2-dimensional planar TQFT is the same as giving a

    Frobenius algebra

    E i f bi dj i t hi i 2 t i F b i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    135/184

    Every pair of biadjoint morphisms in a 2-category gives a Frobenius

    algebra

    One can show that the converse is also true, every Frobenius algebra

    gives rise to a pair of biadjoint morphisms in some 2-category.

    The diagrammatic calculus of string diagrams for 2-categories

    illuminates all of these facts.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 28 / 42

    Defining a 2-dimensional planar TQFT is the same as giving a

    Frobenius algebra

    E i f bi dj i t hi i 2 t i F b i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    136/184

    Every pair of biadjoint morphisms in a 2-category gives a Frobenius

    algebra

    One can show that the converse is also true, every Frobenius algebra

    gives rise to a pair of biadjoint morphisms in some 2-category.

    The diagrammatic calculus of string diagrams for 2-categories

    illuminates all of these facts.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 28 / 42

    Quantum groupsDefinition

    The quantum groupUq(sl2)is the associative algebra (with unit) over (q)with generatorsE,F,K,K1 and relations

    KK 1 = 1 = K 1K ,

    http://find/
  • 8/13/2019 Ide Bikin PDF

    137/184

    KK 1 K K,KE=q2EK, KF =q2FK,

    EF FE= KK1

    qq1

    Any finite-dimensional representationVhas a weight decomposition

    V(n 2)

    V(n)

    V(n+2)

    E

    E

    F

    F V =

    n V(n)

    KV(n) =q

    n

    V(n)

    Add orthogonal idempotents 1nfor the projectionontoV(n)

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 29 / 42

    Quantum groupsDefinition

    The quantum groupUq(sl2)is the associative algebra (with unit) over (q)with generatorsE,F,K,K1 and relations

    KK 1

    = 1 = K 1

    K ,

    http://find/
  • 8/13/2019 Ide Bikin PDF

    138/184

    KK 1 K K,KE=q2EK, KF =q2FK,

    EF FE= KK1

    qq1

    Any finite-dimensional representationVhas a weight decomposition

    V(n 2)

    V(n)

    V(n+2)

    E

    E

    F

    F V =

    n V(n)

    KV(n) =q

    n

    V(n)

    Add orthogonal idempotents 1nfor the projectionontoV(n)

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 29 / 42

    Quantum groupsDefinition

    The quantum groupUq(sl2)is the associative algebra (with unit) over (q)with generatorsE,F,K,K1 and relations

    KK1

    =1=K1

    K,

    http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    139/184

    ,KE=q2EK, KF =q2FK,

    EF FE= KK1

    qq1

    Any finite-dimensional representationVhas a weight decomposition

    V(n 2)

    V(n)

    V(n+2)

    E

    E

    F

    F V =

    n V(n)

    KV(n) =q

    n

    V(n)

    Add orthogonal idempotents 1nfor the projectionontoV(n)

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 29 / 42

    CategorificationIgor Frenkel proposed that U(sl2)could be categorified using

    Lusztig canonical basis:

    E (a)1n := Ea

    [a]!1n F(b)1n := F

    b

    [b]!1n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    140/184

    E 1n: [a]!1n F 1n: [b]!1n

    E(a)F(b)1n, n b a

    F(b)E(a)1n, n b a

    Structure constants are in [q, q1]

    U(sl2)is the Grothendieck ring of some higher structure.

    Crane and Frenkel conjectured that categorified quantum groups atroots of unity should define 4-dimensional TQFTs sensitive to smooth

    structure.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 30 / 42

    CategorificationIgor Frenkel proposed that U(sl2)could be categorified using

    Lusztig canonical basis:

    E(a)1n := Ea

    [a]!1n F(b)1n := F

    b

    [b]!1n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    141/184

    n [a]! n n [b]! n

    E(a)F(b)1n, n b a

    F(b)E(a)1n, n b a

    Structure constants are in [q, q1]

    U(sl2)is the Grothendieck ring of some higher structure.

    Crane and Frenkel conjectured that categorified quantum groups atroots of unity should define 4-dimensional TQFTs sensitive to smooth

    structure.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 30 / 42

    CategorificationIgor Frenkel proposed that U(sl2)could be categorified using

    Lusztig canonical basis:

    E(a)1n := Ea

    [a]!1n F(b)1n := F

    b

    [b]!1n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    142/184

    n [a]! n n [b]! n

    E(a)F(b)1n, n b a

    F(b)E(a)1n, n b a

    Structure constants are in [q, q1]

    U(sl2)is the Grothendieck ring of some higher structure.

    Crane and Frenkel conjectured that categorified quantum groups atroots of unity should define 4-dimensional TQFTs sensitive to smooth

    structure.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 30 / 42

    CategorificationIgor Frenkel proposed that U(sl2)could be categorified using

    Lusztig canonical basis:

    E(a)1n:= Ea

    [a]!1n F(b)1n:= F

    b

    [b]!1n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    143/184

    [a]! [b]!

    E(a)F(b)1n, n b a

    F(b)E(a)1n, n b a

    Structure constants are in [q, q1]

    U(sl2)is the Grothendieck ring of some higher structure.

    Crane and Frenkel conjectured that categorified quantum groups atroots of unity should define 4-dimensional TQFTs sensitive to smooth

    structure.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 30 / 42

    BeilinsonLusztigMacPherson

    UUis a (q)-algebra without unit

    Uq(sl2) U

    collection ofh l id

    http://find/
  • 8/13/2019 Ide Bikin PDF

    144/184

    1 orthogonal idempotents1nforn

    K1n=qn

    1n no moreK

    E1n=1n+2E=1n+2E1nF1n=1n+2F =1n+2F1n

    EF1n FE1n= [n]1n [n] = qnqn

    qq

    1

    Uhas a basis {EaFb1n} forn ,a, b 0

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 31 / 42

    BeilinsonLusztigMacPherson

    UUis a (q)-algebra without unit

    Uq(sl2) U

    collection ofth l id t t

    http://find/
  • 8/13/2019 Ide Bikin PDF

    145/184

    1 orthogonal idempotents1nforn

    K1n=qn

    1n no moreK

    E1n=1n+2E=1n+2E1nF1n=1n+2F =1n+2F1n

    EF1n FE1n= [n]1n [n] = qnqn

    qq1

    Uhas a basis {EaFb1n} forn ,a, b 0

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 31 / 42

    BeilinsonLusztigMacPherson

    UUis a (q)-algebra without unit

    Uq(sl2) U

    1collection of

    th l id t t

    http://find/
  • 8/13/2019 Ide Bikin PDF

    146/184

    1 orthogonal idempotents1nforn

    K1n=qn

    1n no moreK

    E1n=1n+2E=1n+2E1nF1n=1n+2F =1n+2F1n

    EF1n FE1n= [n]1n [n] = qnqn

    qq1

    Uhas a basis {EaFb1n} forn ,a, b 0

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 31 / 42

    BeilinsonLusztigMacPherson U

    Uis a (q)-algebra without unit

    Uq(sl2) U

    1collection of

    orthogonal idempotents

    http://find/
  • 8/13/2019 Ide Bikin PDF

    147/184

    1 orthogonal idempotents1nforn

    K1n=qn

    1n no moreK

    E1n=1n+2E=1n+2E1nF1n=1n+2F =1n+2F1n

    EF1n FE1n= [n]1n [n] = qnqn

    qq1

    Uhas a basis {EaFb1n} forn ,a, b 0

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 31 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    148/184

    Definition

    The 2-categoryUconsists of

    objects:n

    morphisms

  • 8/13/2019 Ide Bikin PDF

    149/184

    n+ 2 n

    n+ 2 nE1n{s}

    and n n+2

    n 2 nF1n{s}

    for alln, s

    , together with their composites. We also allow form

    direct sums of these 1-morphisms

    EaFb1n{s} EcFd1n{s

    }

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 32 / 42

    2-morphisms: k-linear combinations of composites of

    nn+2

    n+2n

    n

    n

    deg2 deg2 deg-2 deg-2

    F E E F n n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    150/184

    n

    n

    F E

    E Fdegn+1 deg1-n degn+1 deg1-n

    For example

    nn

    E3F31n{s}

    E3F31n{s}

    take degrees s

    diagramsthis makes the total degree =0

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 33 / 42

    2-morphisms: k-linear combinations of composites of

    nn+2

    n+2n

    n

    n

    deg2 deg2 deg-2 deg-2

    F E E F n n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    151/184

    n

    n

    F E

    E Fdegn+1 deg1-n degn+1 deg1-n

    For example

    nn

    E3F31n{s}

    E3F31n{s}

    take degrees s

    diagramsthis makes the total degree =0

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 33 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    152/184

    http://find/
  • 8/13/2019 Ide Bikin PDF

    153/184

    Topological invariance

    n+2

    n

    =

    n n+2

    =

    n+2

    n

    n

    = n =

    n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    154/184

    n

    =

    n =

    n

    We can define

    n:=

    n

    =

    n

    n :=

    n

    =

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 35 / 42

    Topological invariance

    n+2

    n

    =

    n n+2

    =

    n+2

    n

    n

    = n =

    n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    155/184

    n

    =

    n =

    n

    We can define

    n:=

    n

    =

    n

    n :=

    n

    =

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 35 / 42

    Topological invariance

    n+2

    n

    =

    n n+2

    =

    n+2

    n

    n

    = n =

    n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    156/184

    n

    =

    n =

    n

    We can define

    n:=

    n

    =

    n

    n :=

    n

    =

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 35 / 42

    Positivity of bubbles

    All dotted bubbles of negative degree are zero. That is,

    deg

    n =2(1 n) +2 deg

    n =2(1+n) +2

    n n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    157/184

    n

    = 0 if

  • 8/13/2019 Ide Bikin PDF

    158/184

    n

    = 0 if

  • 8/13/2019 Ide Bikin PDF

    159/184

    n

    = 0 if

  • 8/13/2019 Ide Bikin PDF

    160/184

    n

    = 0 if

  • 8/13/2019 Ide Bikin PDF

    161/184

    Infinite Grassmannian equation:

    n1

    n

    +

    n1+1

    n

    t+ +

    n1+

    n

    t +

    n1

    n

    + +

    n1+

    n

    t +

    =1.

    Analogous to the defining relations inH(Gr(, )), lim Gr(m, 2m), m 2m:

    (1+x1t+x2t2 +. . . )(1+y1t+y2t

    2 +y3t3 +. . . ) =1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 37 / 42

    Fake bubbles

    ndeg

    n 0

  • 8/13/2019 Ide Bikin PDF

    162/184

    Infinite Grassmannian equation:

    n1

    n

    +

    n1+1

    n

    t+ +

    n1+

    n

    t +

    n1

    n

    + +

    n1+

    n

    t +

    =1.

    Analogous to the defining relations inH(Gr(, )), lim Gr(m, 2m), m 2m:

    (1+x1t+x2t2 +. . . )(1+y1t+y2t

    2 +y3t3 +. . . ) =1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 37 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    163/184

    Examples of fake bubbles

    Forn 0

    n1+0

    n

    :=1

    n

    n

  • 8/13/2019 Ide Bikin PDF

    164/184

    n1+1

    :=

    n1+1

    n1+2

    n

    :=

    n1+2

    n

    +

    n1+1

    n1+1

    n

    n1+j

    n 0

    = 1+2=j

    n1+1

    n1+2

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 38 / 42

    Examples of fake bubbles

    Forn 0

    n1+0

    n

    :=1

    n

    n

    http://goforward/http://find/http://goback/
  • 8/13/2019 Ide Bikin PDF

    165/184

    n1+1

    :=

    n1+1

    n1+2

    n

    :=

    n1+2

    n

    +

    n1+1

    n1+1

    n

    n1+j

    n 0

    = 1+2=j

    n1+1

    n1+2

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 38 / 42

    Examples of fake bubbles

    Forn 0

    n1+0

    n

    :=1

    n

    n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    166/184

    n1+1

    :=

    n1+1

    n1+2

    n

    :=

    n1+2

    n

    +

    n1+1

    n1+1

    n

    n1+j

    n 0

    = 1+2=j

    n1+1

    n1+2

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 38 / 42

    Examples of fake bubbles

    Forn 0

    n1+0

    n

    :=1

    n

    n

    http://find/
  • 8/13/2019 Ide Bikin PDF

    167/184

    n1+1

    :=

    n1+1

    n1+2

    n

    :=

    n1+2

    n

    +

    n1+1

    n1+1

    n

    n1+j

    n 0

    = 1+2=j

    n1+1

    n1+2

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 38 / 42

    Reduction to bubbles

    n

    = f1+f2

    =n

    n

    (n1)+f1

    f2 n

    =

    g1+g2=n

    n

    (n1)+g1

    g2

    EF d i i

    http://find/
  • 8/13/2019 Ide Bikin PDF

    168/184

    EF decomposition

    nn =

    n+

    f1+f2+f3=n1

    n

    f3

    f1

    (n1)+f2

    nn =

    n + g1+g2+g3

    =n1 g3

    g1

    (n1)+g1

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 39 / 42

    Reduction to bubbles

    n

    = f1+f2=n

    n

    (n1)+f1

    f2 n

    =

    g1+g2=n

    n

    (n1)+g1

    g2

    EF d iti

    http://find/
  • 8/13/2019 Ide Bikin PDF

    169/184

    EF decomposition

    nn =

    n+

    f1+f2+f3=n1

    n

    f3

    f1

    (n1)+f2

    nn =

    n + g1+g2+g3

    =n1 g3

    g1

    (n1)+g1

    n

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 39 / 42

    Examples of reduction to bubbles

    n

    = nf=0

    n

    n1+f

    nf

    If n > 0n

    0

    http://find/
  • 8/13/2019 Ide Bikin PDF

    170/184

    Ifn>0

    = 0

    Ifn=0 then0

    = 0

    1

    = 0

    since deg

    0

    1

    =2(1 0) 2=0 so that

    0

    1

    :=1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 40 / 42

    Examples of reduction to bubbles

    n

    = nf=0

    n

    n1+f

    nf

    If n > 0n

    0

    http://find/
  • 8/13/2019 Ide Bikin PDF

    171/184

    Ifn>0

    = 0

    Ifn=0 then0

    = 0

    1

    = 0

    since deg

    0

    1

    =2(1 0) 2=0 so that

    0

    1

    :=1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 40 / 42

    Examples of reduction to bubbles

    n

    = nf=0

    n

    n1+f

    nf

    If n > 0n

    = 0

    http://find/
  • 8/13/2019 Ide Bikin PDF

    172/184

    Ifn>0

    = 0

    Ifn=0 then0

    = 0

    1

    = 0

    since deg

    0

    1

    =2(1 0) 2=0 so that

    0

    1

    :=1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 40 / 42

    Examples of reduction to bubbles

    n

    = nf=0

    n

    n1+f

    nf

    If n > 0n

    = 0

    http://find/
  • 8/13/2019 Ide Bikin PDF

    173/184

    Ifn>0

    = 0

    Ifn=0 then0

    = 0

    1

    = 0

    since deg

    0

    1

    =2(1 0) 2=0 so that

    0

    1

    :=1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 40 / 42

    Examples of reduction to bubbles

    n

    = nf=0

    n

    n1+f

    nf

    If n > 0n

    = 0

    http://find/
  • 8/13/2019 Ide Bikin PDF

    174/184

    Ifn>0

    = 0

    Ifn=0 then0

    = 0

    1

    = 0

    since deg 0

    1

    =2(1 0) 2=0 so that

    0

    1

    :=1

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 40 / 42

    Ifn= 1 then

    n

    = nf=0 n n1+f

    nf

    1

    = 1

    2

    1

    1

    http://find/
  • 8/13/2019 Ide Bikin PDF

    175/184

    deg

    1

    2

    =0 and deg

    1

    1

    =1

    1

    2

    :=1 and1

    1

    = 1

    1

    1

    =

    1

    +

    1

    1

    In this formula all bubbles are real

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 41 / 42

    Ifn= 1 then

    n

    = nf=0 n n1+f

    nf

    1

    = 1

    2

    1

    1

    http://find/
  • 8/13/2019 Ide Bikin PDF

    176/184

    deg

    1

    2

    =0 and deg

    1

    1

    =1

    1

    2

    :=1 and1

    1

    = 1

    1

    1

    =

    1

    +

    1

    1

    In this formula all bubbles are real

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 41 / 42

    Ifn= 1 then

    n

    = nf=0 n n1+f

    nf

    1

    = 1

    2

    1

    1

    http://find/
  • 8/13/2019 Ide Bikin PDF

    177/184

    deg

    1

    2

    =0 and deg

    1

    1

    =1

    1

    2

    :=1 and1

    1

    = 1

    1

    1

    =

    1

    +

    1

    1

    In this formula all bubbles are real

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 41 / 42

    Ifn= 1 then

    n

    = nf=0 n n1+f

    nf

    1

    = 1

    2

    1

    1

    http://find/
  • 8/13/2019 Ide Bikin PDF

    178/184

    deg

    1

    2

    =0 and deg

    1

    1

    =1

    1

    2

    :=1 and1

    1

    = 1

    1

    1

    =

    1

    +

    1

    1

    In this formula all bubbles are real

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 41 / 42

    http://find/
  • 8/13/2019 Ide Bikin PDF

    179/184

    TheoremThis graphical calculus is consistent and categorifies U

    U =Grothendieck ring/category of this category

    Indecomposable 1-morphisms Lusztig canonical basis element

    The 2-category Uacts on cohomology of iterated flag varietiesleading to a categorification of the irreducible N-dimensional rep

    of U (sl2)

  • 8/13/2019 Ide Bikin PDF

    180/184

    ofUq(sl2)

    Joint with Mikhail Khovanov

    This has an extension to U(sln).

    A categorification of U+(g)for anyKac-Moody algebragusing a similar

    diagrammatic calculus.

    Aaron Lauda (Columbia University) Diagrammatic Algebra December 8th, 2008 42 / 42

    TheoremThis graphical calculus is consistent and categorifies U

    U =Grothendieck ring/category of this category

    Indecomposable 1-morphisms Lusztig canonical basis element

    The 2-category Uacts on cohomology of iterated flag varietiesleading to a categorification of the irreducible N-dimensional rep

    of U (sl2)

    http://find/