Upload
others
View
3
Download
0
Embed Size (px)
Heavy-quarkonium theory in the LHC era
Bernd Kniehl
II. Institut für Theoretische Physik, Universität Hamburg
Heavy Flavor and Electromagentic Probes in Heavy Ion CollisionsSeptember 29 – October 1, 2014, INT Seattle
In collaboration with Mathias ButenschönPRL 104 (2010) 072001PRL 106 (2011) 022003
PRD 84 (2011) 051501 (Rapid Communications)PRL 107 (2011) 232001PRL 108 (2012) 172002
MPLA 28 (2013) 1350027 (Brief Reviews)
Introduction Technology Global fit Further tests Polarization Summary
CERN Courier, Volume 52, Issues 1 and 2
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Outline
1 Introduction: CEM, CSM, NRQCD factorization
2 NLO NRQCD: General concept, singularities
3 Global fit: Unpolarized J/ψ yield
4 Further tests: ATLAS, FTPS, ZEUS
5 Polarization: HERA, Tevatron, LHC
6 Summary: NRQCD at the crossroads
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Introduction: CEM, CSM, NRQCD factorization
Color evaporation model [Fritzsch 77; Halzen 77; Glück Owens Reya 78]
σJ/ψ ≈ 19
ρJ/ψ
∫ 2mD
2mcdscc
dσcc
dscc
1/9: statistical probability that 3×3 cc pair is asymtotically in color-single state
ρJ/ψ : fraction of charmonia that materialize as J/ψ
Based local parton-hadron duality
Assumes soft-gluon exchange with underlying event
2S+1L[c]J quantum numbers do not enter
Useful qualitative picture, rather than rigorous theory
]c [GeV/T
p0 5 10 15 20
)]c [n
b/(G
eV/
Tpd
)ψ/
J(σd
-110
1
10
210
310
410
510
< 4.5)yLHCb (2.0 <
< 4.5)yPrompt NLO CEM (2.0 <
=7 TeVs
[Schuler Vogt 96; Vogt 99; Frawley Ullrich Vogt 08]Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Color-singlet model vs. NRQCD factorization
Color-singlet model [Berger Jones 81; Baier Rückl 81]
cc pair in physical color-singlet state, e.g. cc[3S[1]1 ] for J/ψ.
Nonperturbative information in J/ψ wave function at origin.
Leftover IR divergences for P-wave quarkonia inconsistent!
Predicted cross section factor 101–102 below Tevatron data.
NRQCD factorization [Bodwin Braaten Lepage 95]
Rigorous effective field theory
Based on factorization of soft and hard scales(Scale hierarchy: Mv2∼<ΛQCD ≪ Mv ≪ M)
Theoretically consistent: no leftover singularities.
NNLO proof of factorization [Nayak Qiu Sterman 05]
Can explain hadroproduction at Tevatron.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
NRQCD factorization in a nutshell
Factorization theorem σJ/ψ =∑n
σcc[n] · 〈OJ/ψ [n]〉
n: every possible Fock state, including color-octet states.
σcc[n]: production rate of cc[n], calculated in perturbative QCD.
〈OJ/ψ [n]〉: long-distance matrix elements (LDMEs),nonperturbative, extracted from experiment, universal?
Scaling rules [Lepage Magnea2 Nakhleh Hornbostel 92]LDMEs scale with relative velocity v (v2 ≈ 0.2).
scaling v3 (CS state) v7 (CO states) v11
n 3S[1]1
1S[8]0 , 3S[8]
1 , 3P [8]0/1/2 . . .
Double expansion in v and αs.
Leading term in v (n = 3S[1]1 ) corresponds to color-singlet model.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
NLO NRQCD calculations
Petrelli Cacciari Greco Maltoni Mangano 98:Photo- and hadroproduction (only 2 → 1 processes)
Klasen BK Mihaila Steinhauser 05:Two-photon scattering (w/o resolved photons)
Butenschön BK 09:Photoproduction (w/o resolved photons)
Zhang Ma Wang Chao 10:e+e− annihilation
Ma Wang Chao 10, Butenschön BK 10:Hadroprduction
Butenschön BK 11:γp and γγ (resolved photons) global fit of CO LDMEs
Butenschön BK 11:Polarization in photoproduction
Butenschön BK 12, Chao Ma K. Wang Y.-J. Zhang 12, Gong, Wan,J.-X. Wang, H.-F. Zhang 12, Shao, Ma, K. Wang, Chao 14:Polarization in hadroprduction
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Sample diagrams for J/ψ photoproduction in NRQCD
(a)
γ
g
c
c
g
c
c
(b)
γ
g
c
c
g
c
c
c
g
c
(c)
γ
g
c
c
g
g
c
g
(d)
γ
q
c
c
q
c
g
(e)
γ
q
c
c
q
g
q
q
g
q
(f)
γ
q
c
c
q
g
qg
q
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Color and spin projection
Amplitudes for c c[n] production by projector application:
Acc[1S[8]
0 ]= Tr [C8Π0 Acc ] |q=0
Acc[3S[1/8]
1 ]= εα Tr
[
C1/8Πα Acc
]
|q=0
Acc[3P[8]
J ]= εαβ
ddqβ
Tr [C8Πα Acc ] |q=0
Acc : amputated pQCD amplitude for open cc production.
q: relative momentum between c and c.
C1/8: color projectors
Π0/1: spin projectors
ε: polarization vectors and tensors
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Main Difference to Previous Calculations
Virtual corrections: Two different approaches:First loop integration, then projectors: (Previous publications)– Loop integrals Coulomb divergent.
First projectors, then loop integration: (Our method)+ No Coulomb singularities.+ One scale less in loop integration.– Loop integrals not standard form.
Where do Coulomb divergences come from?
Projectors: Relative momentum q → 0.
Scalar diagrams with gluon between external c and c, e.g.:
I(q) ≡
P/2+q→
P/2−q→
c
c
limq→0
I(q) = Aq2 +
Bε +C
But: I(0) = Bε +C
=⇒ No Coulomb singularities in dimensional regularization!
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Cancellation of divergences
UV divergences: Cancellation within virtual corrections:
Loop integrals
Charm mass renormalization
Strong coupling constant renormalization
Wave function renormalization of external particles
IR divergences: Cancellation between:
Virtual corrections (loop integrals + wave function renormal.)
Soft and collinear parts of real corrections
Universal part absorbed into proton and photon PDFs
Radiative corrections to long distance matrix elements
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Overview of IR singularity structure
Absorption in PDFs
Collinear divergences Soft terms #1 Soft terms #2 Soft terms #3
NLO corr. MEsVirtual corrections
overlap
S states
P states
Real corr.:
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Structure of Soft Singularities
Soft limits of the real corrections:P/2+q→P/2−q→
→k4
Realk4→0−−−→k4 soft
P/2+q→P/2−q→Born × E(q)
Asoft(q) = ABorn(q) ·E(q)
S and P states: Soft #1 + Soft #2 + Soft #3 terms:
Asoft,s = Asoft(0) = ABorn,s ·E(0)
Asoft,p = A′soft(0) = ABorn,p ·E(0) + ABorn,s ·E ′(0)
|Asoft,s|2 = |ABorn,s|2 ·E(0)2
|Asoft,p|2 = |ABorn,p|2 ·E(0)2 + 2 Re A∗Born,sABorn,p ·E(0)E ′(0)
+ |ABorn,s|2 ·E ′(0)2
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Radiative Corrections to Long Distance MEs
In NRQCD: Long distance MEs = cc scattering amplitudes:
〈OJ/ψ [n]〉 =
c c
c cO[n]
O[n] = 4-fermion operators(n = 3S[1]
1 , 1S[8]0 , 3S[8]
1 , 3P [8]0/1/2, . . .)
Corrections to 〈OJ/ψ [3S[1/8]1 ]〉 with NRQCD Feynman rules:
c c
c c
3S1
+similar
diagrams∝
4αs
3πm2c
(
1εUV
− 1εIR
)
·
c c
c c3P0
+3P1 +3P2
UV singularity cancelled by renormalization of 4-fermion operat.
IR singularity cancels soft #3 terms of p states!
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Global fit at NLO in NRQCD
Fit CO LDMEs to all available world data on J/ψ inclusive production:type
√s collider collaboration reference
pp 200 GeV RHIC PHENIX PRD82(2010)012001pp 1.8 TeV Tevatron I CDF PRL97(1997)572; 578pp 1.96 TeV Tevatron II CDF PRD71(2005)032001pp 7 TeV LHC ALICE NPB(PS)214(2011)56
ATLAS PoS(ICHEP 2010)013CMS EPJC71(2011)1575LHCb EPJC71(2011)1645
γp 300 GeV HERA I H1, ZEUS EPJ25(2002)25; 27(2003)173γp 319 GeV HERA II H1 EPJ68(2010)401γγ 197 GeV LEP II DELPHI PLB565(2003)76e+e− 10.6 GeV KEKB Belle PRD79(2009)071101
Fit values for CO LDMEs:10−2 GeV3+2L feed-down included feed-down subtracted
〈O[1S[8]0 ]〉 4.97±0.44 3.04±0.35
〈O[3S[8]1 ]〉 0.224±0.059 0.168±0.046
〈O[3P [8]0 ]〉 −1.61±0.20 −0.908±0.161
χ2/d.o.f. 857/194 = 4.42 725/194 = 3.74
Note: CO LDMEs ∝ v4 ×〈O[3S[1]1 ]〉 NRQCD velocity scaling rules
√
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with world data
p2T [GeV2]
dσ(e
e→J/
ψ e
e+X
)/dp
2 T [
pb/G
eV2 ]
|y| < 2W < 35 GeVθel < 32 mrad√s
– = 197 GeV
DELPHI dataCS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
1 2 3 4 5 6 7 8 9 10
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9Q2 < 1 GeV2
√s– = 314 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA1
10-5
10-4
10-3
10-2
10-1
1
1 10W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 314 GeV, Q2 < 1 GeV2
0.3 < z < 0.9p2
T > 1 GeV2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA1
10-3
10-2
60 80 100 120 140 160 180 200 220 240
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
60 GeV < W < 240 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 314 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA1
1
10
10 2
0.3 0.4 0.5 0.6 0.7 0.8 0.9
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
√s– = 319 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA2
10-6
10-5
10-4
10-3
10-2
10-1
1
1 10 102
W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 319 GeV, Q2 < 2.5 GeV2
0.3 < z < 0.9p2
T > 1 GeV2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA2
10-3
10-2
60 80 100 120 140 160 180 200 220 240
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
60 GeV < W < 240 GeVp2
T > 1 GeV2Q2 < 2.5 GeV2√s
– = 319 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA2
1
10
10 2
0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ(e+
e- →J/
ψ+
X)
[pb]
√s– = 10.6 GeV
CS, LO: σ = 0CS, NLO: σ = (0.24+0.20
-0.09 ) pbCS+CO, LO: σ = 0.23 pbCS+CO, NLO: σ = (0.70+0.35
-0.17 ) pb
BELLE data: σ = (0.43±0.13) pb(J/ψ+cc
– contribution subtracted)
0
0.5
1
1.5
2
2.5
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
50 GeV < W < 180 GeV0.4 < z < 0.9Q2 < 1 GeV2
√s– = 300 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
ZEUS data10
-4
10-3
10-2
10-1
1
5 10 15 20 25 30
W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 300 GeV, Q2 < 1 GeV2
0.4 < z < 0.9p2
T > 1 GeV2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
ZEUS data
10-3
10-2
60 80 100 120 140 160 180
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
50 GeV < W < 180 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 300 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
ZEUS data
10-1
1
10
10 2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→ee
) [n
b/G
eV]
√s– = 200 GeV
|y| < 0.35
PHENIX data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10
10
10 2
3 4 5 6 7 8 9 10
-1
1
pT [GeV]
dσ/d
p T(p
p–→
J/ψ
+X
) ×
B(J
/ψ→
µµ)
[nb/
GeV
]
√s– = 1.8 TeV
|y| < 0.6
CDF data: Run 1
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
10 2
6 8 10 12 14 16 18 20
1
10
pT [GeV]
dσ/d
p T(p
p–→
J/ψ
+X
) ×
B(J
/ψ→
µµ)
[nb/
GeV
]
√s– = 1.96 TeV
|y| < 0.6
CDF data: Run 2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10 2
4 6 8 10 12 14 16 18 20
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
2.5 < y < 4
ALICE data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-2
10-1
1
10 2
10 3
3 4 5 6 7 8 9 10
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
|y| < 0.75
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
0.75 < |y| < 1.5
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
1.5 < |y| < 2.25
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
|y| < 1.2
CMS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10 3
4 6 8 10 12 14 16 18 20
10
10 2
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
1.2 < |y| < 1.6
CMS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10 2
10 3
4 6 8 10 12 14 16 18 20
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
1.6 < |y| < 2.4
CMS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 3
4 6 8 10 12 14 16 18 20
10 2
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
2 < y < 2.5
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10 2
4 6 8 10 12 14
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
2.5 < y < 3
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10 2
4 6 8 10 12 14
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
3 < y < 3.5
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10 2
4 6 8 10 12 14
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
3.5 < y < 4
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10 2
4 6 8 10 12 14
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
4 < y < 4.5
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10 2
4 6 8 10 12 14
10
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with RHIC and Tevatron
RHIC Tevatron II Decomposition ofPHENIX CDF NLO NRQCD
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→ee
) [n
b/G
eV]
√s– = 200 GeV
|y| < 0.35
PHENIX data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10
10
10 2
3 4 5 6 7 8 9 10
-1
1
pT [GeV]
dσ/d
p T(p
p–→
J/ψ
+X
) ×
B(J
/ψ→
µµ)
[nb/
GeV
]
√s– = 1.96 TeV
|y| < 0.6
CDF data: Run 2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p–→
J/ψ
+X
) ×
B(J
/ψ→
µµ)
[nb/
GeV
]
√s– = 1.96 TeV
|y| < 0.6
CDF data3S[1]
1 , NLO1S[8]
0 , NLO3S[8]
1 , NLO3P[8]
J , NLO-3P[8]
J , NLOTotal, NLO
10-4
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14 16 18 20
Data well described by CS+CO at NLO.
CS orders of magnitudes below data.
Sizeable NLO corrections, especially in the 3P [8]J channels.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with ATLAS and CMS at LHC
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
|y| < 0.75
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
0.75 < |y| < 1.5
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
1.5 < |y| < 2.25
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
|y| < 1.2
CMS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
1.2 < |y| < 1.6
CMS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
1.6 < |y| < 2.4
CMS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 2
10 3
4 6 8 10 12 14 16 18 20
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with ALICE and LHBb at LHC
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
2.5 < y < 4
ALICE data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-2
10-1
1
10 2
10 3
3 4 5 6 7 8 9 10
10
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
2 < y < 2.5
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
2.5 < y < 3
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
3 < y < 3.5
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
3.5 < y < 4
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
4 < y < 4.5
LHCb data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-4
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with ZEUS at HERA I
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
50 GeV < W < 180 GeV0.4 < z < 0.9Q2 < 1 GeV2
√s– = 300 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
ZEUS data10
-4
10-3
10-2
10-1
1
5 10 15 20 25 30
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
50 GeV < W < 180 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 300 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
ZEUS data
10-1
1
10
10 2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
50 GeV < W < 180 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 300 GeV
ZEUS data
3S[1]1 , NLO
1S[8]0 , NLO
3S[8]1 , NLO
-3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
W = γp CM energy.
z = fraction of γ energy going to J/ψ in p rest frame.
Compensation of 1S[8]0 vs. 3P [8]
J regular z → 1 behavior.
Data well described by CS+CO at NLO.
CS factor of 3–5 below the data.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with H1 at HERA I and II
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9Q2 < 1 GeV2
√s– = 314 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA1
10-5
10-4
10-3
10-2
10-1
1
1 10W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 314 GeV, Q2 < 1 GeV2
0.3 < z < 0.9p2
T > 1 GeV2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA1
10-3
10-2
60 80 100 120 140 160 180 200 220 240
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
60 GeV < W < 240 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 314 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA1
1
10
10 2
0.3 0.4 0.5 0.6 0.7 0.8 0.9
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
√s– = 319 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA2
10-6
10-5
10-4
10-3
10-2
10-1
1
1 10 102
W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 319 GeV, Q2 < 2.5 GeV2
0.3 < z < 0.9p2
T > 1 GeV2
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA2
10-3
10-2
60 80 100 120 140 160 180 200 220 240
zdσ
(ep→
J/ψ
+X
)/dz
[nb
]
60 GeV < W < 240 GeVp2
T > 1 GeV2Q2 < 2.5 GeV2√s
– = 319 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
H1 data: HERA2
1
10
10 2
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with DELPHI at LEP II
e+e− → e+e−J/ψ X at LEP2
10-2
10-1
1
10
0 1 2 3 4 5 6 7 8 9 10pT
2 (GeV2)
dσ/d
p T2 (p
b/G
eV2 )
←
←←←
←
NRQCD
3PJ [8]
3PJ [1]
1S0 [8]
3S1 [8]
DELPHI prelim.
√ S = 197 GeV
−2 < yJ/ψ < 2
CSM
MRST98 fit
NRQCD
CTEQ5 fit
p2T [GeV2]
dσ(e
e→J/
ψ e
e+X
)/dp
2 T [
pb/G
eV2 ]
|y| < 2W < 35 GeVθel < 32 mrad√s
– = 197 GeV
DELPHI dataCS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-3
10-2
10-1
1
10
1 2 3 4 5 6 7 8 9 10p2
T [GeV2]
dσ(e
e→J/
ψ e
e+X
)/dp
2 T [
pb/G
eV2 ]
√s– = 197 GeV
θel < 32 mradW < 35 GeV
|y| < 2
DELPHI data
10-3
10-2
10-1
1
10
1 2 3 4 5 6 7 8 9 10
[Klasen BK Mihaila NLO NRQCD Decomposition ofSteinhauser 02] NLO NRQCD
Agreement with NRQCD at NLO worse than in 2002 at LO.
Just 16 DELPHI events with pT > 1 GeV.
No results from ALEPH, L3, OPAL.
Data exhausted by single-resolved contribution.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with Belle at KEKB
σ(e+
e- →J/
ψ+
X)
[pb]
√s– = 10.6 GeV
CS, LO: σ = 0CS, NLO: σ = (0.24+0.20
-0.09 ) pbCS+CO, LO: σ = 0.23 pbCS+CO, NLO: σ = (0.70+0.35
-0.17 ) pb
BELLE data: σ = (0.43±0.13) pb(J/ψ+cc
– contribution subtracted)
0
0.5
1
1.5
2
2.5
At NLO, both CSM and NRQCD agree with data.
# of charged tracks > 4, missing events not corrected for. Belle point likely higher.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with ATLAS (after fit) [NPB850(2011)387]
pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
√s– = 7 TeV
|y| < 0.75
ATLAS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
10-5
10-4
10-3
10-2
10-1
1
10 2
5 10 15 20 25 30 35 40
10
Resummation of large logs ln(p2T /M2) necessary at large pT .
New formalism to include non-leading powers in p2T /M2
[Kang Qiu Sterman 2012].
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with Fermilab Tagged-PhotonSpectrometer data (excluded from fit) [PRL52(1984)795]
1
10
10 2
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
z
dσ(γ
p→J/
ψ+
X)/
dz [
nb]
Eγ = 105 GeV
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
FTPS data
10-4
10-3
10-2
10-1
1
10
10 102
Eγ [GeV]
σ(γp
→J/
ψ+
X)
[nb]
0.4 < z < 0.9
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
FTPS data
Inelastic scattering of 105 GeV photons on hydrogen target.
Data remarkably well described by CS+CO at NLO.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with ZEUS (after fit) [JHEP1302(2013)071]
10-3
10-2
10-1
1
10-3
10-2
10-1
1
dσ
(γ p
→ J
/ψ X
)/dp
t2 (n
b/G
eV2 )
0.1 < z < 0.3
ZEUS
0.3 < z < 0.45
0.45 < z < 0.6 0.6 < z < 0.75
pt2 (GeV2)
0.75 < z < 0.9
pt2 (GeV2)
ZEUS (prel.) 468 pb -1
NLO CS+CO
NLO CS
10
10-4
10-3
10-2
10-1
1
1 10
Notorious NRQCD overshoot at large z overcome.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Polarized J/ψ photo- and hadroproduction
Decay angular distribution:dΓ(J/ψ → l+l−)
d cosθ dφ∝ 1+λθ cos2 θ +λφ sin2 θ cos(2φ)+λθφsin(2θ)cosφ
Polarization observables in spin density matrix formalism:
λθ =dσ11 −dσ00
dσ11 +dσ00, λφ =
dσ1,−1
dσ11 +dσ00, λθφ =
√2Redσ10
dσ11 +dσ00
λ = 0,+1,−1: unpolarized, transversely and longitudinally porarized.Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with H1 and ZEUS
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
1 2 3 4 5 6 7 8 9 10
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
1 2 3 4 5 6 7 8 9 10pT [GeV](a)
pT [GeV]
ν(p T
)λ(
p T)
H1 data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Helicity frame
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
1 2 3 4 5 6 7 8 9 10
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
1 2 3 4 5 6 7 8 9 10pT [GeV](b)
pT [GeV]
ν(p T
)λ(
p T)
H1 data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Collins-Soper frame
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
1 2 3 4 5 6 7 8 9 10
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
1 2 3 4 5 6 7 8 9 10pT [GeV](c)
pT [GeV]
ν(p T
)λ(
p T)
ZEUS data (till z=1)
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Target frame
50 GeV < W < 180 GeV0.4 < z < 0.95Q2 < 1 GeV2
No z cut on ZEUS data diffractive production included.
Perturbative stability in NRQCD higher than in CSM.
J/ψ preferrably unpolarized at large pT .
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with H1 and ZEUS (cont.)
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9z(d)
z
ν(z)
λ(z)
H1 data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Helicity frame
60 GeV < W < 240 GeVpT > 1 GeV
Q2 < 2.5 GeV2
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9z(e)
zν(
z)λ(
z)
H1 data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Collins-Soper frame
60 GeV < W < 240 GeVpT > 1 GeV
Q2 < 2.5 GeV2
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9z(f)
z
ν(z)
λ(z)
ZEUS data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Target frame
50 GeV < W < 180 GeVpT > 1 GeV
Q2 < 1 GeV2
Large scale uncertainties due to low cut pT > 1.
Overall χ2 w.r.t. default prediction more than halved by goingfrom CSM to NRQCD.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with CDF and ALICE
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
5 10 15 20 25 30
-0.2-0.15
-0.1-0.05
00.05
0.10.15
0.2
5 10 15 20 25 30pT [GeV](a)
pT [GeV]
λ φ(p T
)λ θ(
p T)
CDF data: Run I / II/
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Helicity frame
|y| < 0.6√s
– = 1.96 TeV
pp– → J/ψ + X
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
3 4 5 6 7 8 9 10
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
3 4 5 6 7 8 9 10pT [GeV](b)
pT [GeV]
λ φ(p T
)λ θ(
p T)
ALICE data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Helicity frame
2.5 < y < 4√s
– = 7 TeV
pp → J/ψ + X
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
3 4 5 6 7 8 9 10
-1-0.8-0.6-0.4-0.2
00.20.40.60.8
1
3 4 5 6 7 8 9 10pT [GeV](c)
pT [GeV]
λ φ(p T
)λ θ(
p T)
ALICE data
CS, LOCS, NLOCS+CO, LOCS+CO, NLO
Collins-Soper frame
2.5 < y < 4√s
– = 7 TeV
pp → J/ψ + X
CDF I and II data mutually inconsistent for pT < 12 GeV.
CDF J/ψ polarization anomaly persits at NLO.
4/8 ALICE points agree w/ NLO NRQCD within errors, others< 2σ away.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Decomposition for ALICE
pT [GeV](a)
dσ00
/dp T
(pp→
J/ψ
+X
) [n
b/G
eV]
Helicity frame√s
– = 7 TeV
2.5 < y < 4
3S[1]1 , NLO
1S[8]0 , NLO
3S[8]1 , NLO
3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
10 3
3 4 5 6 7 8 9 10pT [GeV](b)
dσ11
/dp T
(pp→
J/ψ
+X
) [n
b/G
eV]
Helicity frame√s
– = 7 TeV
2.5 < y < 4
3S[1]1 , NLO
1S[8]0 , NLO
3S[8]1 , NLO
3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
10 3
3 4 5 6 7 8 9 10pT [GeV](c)
dσ1
-1/d
p T(p
p→J/
ψ+
X)
[nb/
GeV
]
Helicity frame√s
– = 7 TeV
2.5 < y < 4
3S[1]1 , NLO
3S[8]1 , NLO
3P[8]J , NLO
Total, NLO
10-3
10-2
10-1
1
10
10 2
3 4 5 6 7 8 9 10
pT [GeV](d)
dσ00
/dp T
(pp→
J/ψ
+X
) [n
b/G
eV]
Collins-Soper frame√s
– = 7 TeV
2.5 < y < 4
3S[1]1 , NLO
1S[8]0 , NLO
3S[8]1 , NLO
3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
10 3
3 4 5 6 7 8 9 10pT [GeV](e)
dσ11
/dp T
(pp→
J/ψ
+X
) [n
b/G
eV]
Collins-Soper frame√s
– = 7 TeV
2.5 < y < 4
3S[1]1 , NLO
1S[8]0 , NLO
3S[8]1 , NLO
3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
10 3
3 4 5 6 7 8 9 10pT [GeV](f)
dσ1
-1/d
p T(p
p→J/
ψ+
X)
[nb/
GeV
]
Collins-Soper frame√s
– = 7 TeV
2.5 < y < 4
3S[1]1 , NLO
3S[8]1 , NLO
3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
3 4 5 6 7 8 9 10
dσunpol= dσ00 +2dσ11; dσ1,−1 auxiliary.
Previously unknown 3P [8]J NLO correction significant.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
LHCb data on prompt J/ψ polarization [EPJC73(2013)2631]
]c) [GeV/ψ(J/T
p5 10 15
θλ
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
2.0 < y < 2.52.5 < y < 3.03.0 < y < 3.53.5 < y < 4.04.0 < y < 4.5
= 7 TeVsLHCb
]c) [GeV/ψ(J/T
p5 10 15
θλ
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
2.0< y < 2.52.5 < y < 3.03.0 < y < 3.53.5 < y < 4.04.0 < y < 4.5
= 7 TeVsLHCb
) [GeV/c]ψ(J/T
p5 10 15
θλ
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
LHCbALICE
2.5 < y < 4.0
= 7 TeVspp
) [GeV/c]ψ(J/T
p5 10 15
θλ
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
LHCbALICE
2.5 < y < 4.0
= 7 TeVspp
helicity frame Collins-Soper frame
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with LHCb and CMS polarization data
) [GeV/c]ψ(J/T
p0 5 10 15
θλ
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.81
NLO NRQCD(1)NLO NRQCD(2)NLO NRQCD(3)NLO CS
2.5 < y < 4.0
= 7 TeVsLHCb
[GeV]Tp
10 15 20 25 30 35 40 45 50
-1.5
-1
-0.5
0
0.5
1
1.5
, total uncert. 68.3% CL-1CMS preliminary, L = 4.9 fb
NLO NRQCD, B. Kniehl et al, MPLA28 (2013) 1350027 and private comm.
= 7 TeVspp
HX frame
|y| < 0.6
(2S)s
�h
prompt J/ψ polarization ψ′ polarizationLHCb, EPJC73(2013)2631 CMS, PLB727(2013)381
(1): Global NLO NRQCD fit to J/ψ yield [PRD84(2011)051501(R)]
New NLO NRQCD fit to ψ′ yield from HERA, Tevatron, and LHC
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
CMS data on J/ψ and ψ′ polarization [PLB727(2013)381]
-0.5
0
0.5
CMS HX frame
-0.5
0
0.5
-0.2
0
0.2
J/
-1 = 7 TeV L = 4.9 fbs pp
-0.2
0
0.2
(2S)
-0.2
0
0.2
20 30 40 50 60 70
[GeV]Tp
| < 0.6y|
| < 1.2y0.6 < |
| < 1.5y1.2 < |
-0.2
0
0.2
20 30 40 50
[GeV]Tp
NLO NRQCD [26], |y| < 2.4 NLO NRQCD [26], |y| < 2.4
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Comparison with Gong et al. and Chao et al.
e+e− yield γp yield pp/pp yield CDF polariz.
BK, MBPRL108(2012)172002
0
0.5
1
1.5
2
2.5
3
3.5
σ(e+
e- →J/
ψ+
X)
[pb]
CS+CO, NLO: Butenschön et al.
BELLE data: √s– = 10.6 GeV
10-5
10-4
10-3
10-2
10-1
1
1 10 102
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
√s– = 319 GeV
CS+CO, NLO: Butenschön et al.
H1 data: HERA1H1 data: HERA2
10-4
10-3
10-2
10-1
1
10
10 2
5 10 15 20 25 30 35 40pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
ATLAS data: √s– = 7 TeV
|y| < 0.75
CDF data: √s– = 1.96 TeV
|y| < 0.6
CS+CO, NLO: Butenschön et al.
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
5 10 15 20 25 30pT [GeV]
λ θ(p T
)
pp– → J/ψ + X, helicity frame
CDF data: √s– = 1.96 TeV, |y| < 0.6
CS+CO, NLO: Butenschön et al.
Gong et al.PRL110(2013)042002
0
0.5
1
1.5
2
2.5
3
3.5
σ(e+
e- →J/
ψ+
X)
[pb]
CS+CO, NLO: Gong et al.
BELLE data: √s– = 10.6 GeV
10-5
10-4
10-3
10-2
10-1
1
1 10 102
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
√s– = 319 GeV
CS+CO, NLO: Gong et al.
H1 data: HERA1H1 data: HERA2
10-4
10-3
10-2
10-1
1
10
10 2
5 10 15 20 25 30 35 40pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
ATLAS data: √s– = 7 TeV
|y| < 0.75
CDF data: √s– = 1.96 TeV
|y| < 0.6
CS+CO, NLO: Gong et al.
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
5 10 15 20 25 30pT [GeV]
λ θ(p T
)
pp– → J/ψ + X, helicity frame
CDF data: √s– = 1.96 TeV, |y| < 0.6
CS+CO, NLO: Gong et al.
Chao et al.PRL108(2012)242004
0
0.5
1
1.5
2
2.5
3
3.5
σ(e+
e- →J/
ψ+
X)
[pb]
CS+CO, NLO: Ma et al.
BELLE data: √s– = 10.6 GeV
10-5
10-4
10-3
10-2
10-1
1
1 10 102
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
60 GeV < W < 240 GeV0.3 < z < 0.9
Q2 < 2.5 GeV2
√s– = 319 GeV
CS+CO, NLO: Ma et al.
H1 data: HERA1H1 data: HERA2
10-4
10-3
10-2
10-1
1
10
10 2
5 10 15 20 25 30 35 40pT [GeV]
dσ/d
p T(p
p→J/
ψ+
X)
× B
(J/ψ
→µµ
) [n
b/G
eV]
ATLAS data: √s– = 7 TeV
|y| < 0.75
CDF data: √s– = 1.96 TeV
|y| < 0.6
CS+CO, NLO: Ma et al.
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
5 10 15 20 25 30pT [GeV]
λ θ(p T
)
pp– → J/ψ + X, helicity frame
CDF data: √s– = 1.96 TeV, |y| < 0.6
CS+CO, NLO: Ma et al.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Summary
NRQCD provides rigorous factorization theorem for productionand decay of heavy quarkonia; predicts:
existence of CO states;universality of LDMEs.
Previous LO tests not conclusive.
Here: first global analysis of unpolarized J/ψ world data at NLO.
Hadro- and photoproduction: striking evidence for NRQCD.
CSM greatly undershoots data, except for e+e− annihilation.
γγ scattering not conclusive yet.
Contributions from feed-down and B decays throughout smallagainst theoretical uncertainties subtracted in fit.
Hadroproduction data alone cannot reliably fix all 3 CO LDMEs.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Introduction Technology Global fit Further tests Polarization Summary
Summary (cont.)
Case for NRQCD less strong in polarized J/ψ photoproductionat HERA.
NLO NRQCD predictions for polarized J/ψ hadroproductionbased on global analysis of J/ψ yield agrees with ALICE, butdisagrees with CDF, CMS, and LHCb.
NRQCD factorization remains among the hottest topics of QCD@ LHC.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Backup Slides
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Comparison with Tevatron (cont.)
Relative importance of CO processes:
pT [GeV]
dσ/d
p T(p
p–→
J/ψ
+X
) ×
B(J
/ψ→
µµ)
[nb/
GeV
]
√s– = 1.96 TeV
|y| < 0.6
CDF data3S[1]
1 , NLO1S[8]
0 , NLO3S[8]
1 , NLO3P[8]
J , NLO-3P[8]
J , NLOTotal, NLO
10-4
10-3
10-2
10-1
1
10
10 2
4 6 8 10 12 14 16 18 20
Short-distance σ(cc[3P [8]J ])< 0 for pT ' 7 GeV.
But: Short-distance cross sections and LDMEs unphysical(NRQCD scale and scheme dependence) No problem!
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Comparison with ZEUS at HERA I (cont.)
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
50 GeV < W < 180 GeV0.4 < z < 0.9Q2 < 1 GeV2
√s– = 300 GeV
Direct, NLOResolved, NLOTotal, NLO
ZEUS data10
-4
10-3
10-2
10-1
1
5 10 15 20 25 30
W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 300 GeV, Q2 < 1 GeV2
0.4 < z < 0.9p2
T > 1 GeV2
Direct, NLOResolved, NLOTotal, NLO
ZEUS data10
-4
10-3
10-2
60 80 100 120 140 160 180
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
50 GeV < W < 180 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 300 GeV
Direct, NLOResolved, NLOTotal, NLO
ZEUS data
10-1
1
10
10 2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Data for 0.4 < z < 0.9 exhausted by direct photoproduction.
Resolved photoproduction only relevant for z∼<0.4.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Comparison with ZEUS at HERA I (cont.)
p2T [GeV2]
dσ(e
p→J/
ψ+
X)/
dp2 T [
nb/G
eV2 ]
50 GeV < W < 180 GeV0.4 < z < 0.9Q2 < 1 GeV2
√s– = 300 GeV
ZEUS data10
-4
10-3
10-2
10-1
1
5 10 15 20 25 30
W [GeV]
dσ(e
p→J/
ψ+
X)/
dW [n
b/G
eV]
√s– = 300 GeV, Q2 < 1 GeV2
0.4 < z < 0.9p2
T > 1 GeV2
ZEUS data3S[1]
1 , NLO1S[8]
0 , NLO3S[8]
1 , NLO-3P[8]
J , NLOTotal, NLO
10-3
10-2
10-1
60 80 100 120 140 160 180
z
dσ(e
p→J/
ψ+
X)/
dz [
nb]
50 GeV < W < 180 GeVp2
T > 1 GeV2Q2 < 1 GeV2
√s– = 300 GeV
ZEUS data
3S[1]1 , NLO
1S[8]0 , NLO
3S[8]1 , NLO
-3P[8]J , NLO
Total, NLO
10-1
1
10
10 2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
〈O[3P [8]0 ]〉< 0 3P [8]
0 contribution negative.
Negative interference with 1S[8]0 contribution beneficial.
3S[8]1 contribution negligible here.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Dependence on low-pT cut: Global fit
Vary low-pT cut on pp and pp data:pT > 1 GeV pT > 2 GeV pT > 3 GeV pT > 5 GeV pT > 7 GeV
Data left 148 points 134 points 119 points 86 points 60 points
〈OJ/ψ [1S[8]0 ]〉 5.68±0.37 4.25±0.43 4.97±0.44 4.92±0.49 3.91±0.51
〈OJ/ψ [3S[8]1 ]〉 0.90±0.50 2.94±0.58 2.24±0.59 2.23±0.62 2.96±0.64
〈OJ/ψ [3P [8]0 ]〉 −2.23±0.17 −1.38±0.20 −1.61±0.20 −1.59±0.22 −1.16±0.23
Global fit insensitive to low-pT cut on pp and pp data as long as γp,γγ (74 points with pT > 1 GeV), and e+e− data (1 point) are retained.
Vary low-pT cut on γp and γγ data:pT > 1 GeV pT > 2 GeV pT > 3 GeV pT > 5 GeV pT > 7 GeV
Data left 74 points 30 points 15 points 5 points 1 points
〈OJ/ψ [1S[8]0 ]〉 4.97±0.44 5.10±0.92 4.05±1.17 5.44±1.27 9.56±1.59
〈OJ/ψ [3S[8]1 ]〉 2.24±0.59 2.11±1.22 3.52±1.56 1.73±1.68 −3.66±2.09
〈OJ/ψ [3P [8]0 ]〉 −1.61±0.20 −1.58±0.48 −0.97±0.63 −1.63±0.68 −3.73±0.83
Global fit insensitive to moderate low-pT cut on γp and γγ data aslong as pp and pp data (119 points with pT > 3 GeV), and e+e− data(1 point) are retained.
Heavy-quarkonium theory in the LHC era Bernd Kniehl
Dependence on low-pT cut: Fit to pp and pp data only
Vary low-pT cut:pT > 1 GeV pT > 2 GeV pT > 3 GeV pT > 5 GeV pT > 7 GeV
Data left 148 points 134 points 119 points 86 points 60 points
〈OJ/ψ [1S[8]0 ]〉 8.54±0.52 16.85±1.23 11.02±1.67 1.68±2.20 2.18±2.56
〈OJ/ψ [3S[8]1 ]〉 −2.66±0.69 −13.36±1.60 −5.56±2.19 8.75±2.98 10.34±3.55
〈OJ/ψ [3P [8]0 ]〉 −3.63±0.23 −7.70±0.61 −4.46±0.87 2.20±1.23 3.50±1.50
M0 2.25±0.12 3.51±0.19 3.29±0.20 5.50±0.29 8.24±0.58M1 6.37±0.19 5.80±0.19 5.54±0.20 3.27±0.29 1.63±0.43
Fit highly sensitive to low-pT cut.
Comparison with fit to unpolarized, direct CDF II data with pT > 7 GeVY.-Q. Ma, K. Wang, and K.-T. Chao, Phys. Rev. D 84, 114001 (2011):M0 = (8.54±1.02)×10−2 GeV3
M1 = (1.67±1.05)×10−3 GeV3
Heavy-quarkonium theory in the LHC era Bernd Kniehl