2
Physical Retrieval of CO 2 v 2 Parameters Forward Model (Including Spectroscopy) LBLRTM Input Atmospheric State Radiosonde and NWP profiles (GMAO) Surface parameters Layer Optical Depths Line Shape: •CO2 has a sub-Lorentzian line shape that accounts for duration of collision effects CO2 Continuum: •Line contributions 25 cm -1 beyond line center •LBLRTM_v9.4 : MT_CKD_1.2 •LBLRTM_v10.1: MT_CKD_1.3 (based on retrieved results shown below) CO2 Line Coupling (Mixing) •Implemented CO2 v2 P/R branch line coupling (Niro et al., 2005) Spectroscopic Line Parameters: •tes_v_1.2 -> CO2 parameters from HITRAN2000 •tes_v_1.3 -> tes_v_1.3 modified with retrieved parameters (see below) Radiative Transfer Instrument Function Mark W. Shephard, Vivienne H. Payne, and Shepard. A. Clough Atmospheric and Environmental Research Inc., 131 Hartwell Ave., Lexington, MA, 02421-3626, USA [email protected] Linda R. Brown Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA Implications for ν 2 and ν 3 CO 2 Spectroscopic Parameters from Atmospheric Remote Sensing Instruments Used in Comparisons Temperature field must be as accurate as possible for passive infrared atmospheric species retrievals Errors in the Forward Model, including spectroscopy, play a significant role in the retrieval error The CO 2 v 2 (600-800 cm -1 ) and v 3 (2150 - 2450 cm- 1 ) spectral regions are commonly used for the remote sounding of atmospheric temperature profiles AERI Atmospheric Emittance Radiometric Interferometer U. of Wisconsin Interferometer Downwelling Radiance ARM/Surface Resolution: 0.5 cm -1 (S)HIS (Scanning) High-resolution Interferometer Sounder U. of Wisconsin Interferometer Upwelling Radiance ER-2/WB-57 Resolution: 0.5 cm -1 TES Tropospheric Emission Spectrometer JPL Interferometer Upwelling Radiance AURA Resolution: 0.06 cm -1 AIRS Atmospheric InfraRed Sounder JPL/NASA Grating Array Upwelling Radiance AQUA Resolution: 0.5 - 2 cm -1 What is Truth for Temperature Comparisons? “Truth” at the level required is not readily available Radiosonde accuracies; spatial and temporal sampling Spectral Residuals are Key! Consistency within a band system (shown here) Forward model improvements across the CO2 v2 band show consistency within a band Consistency between bands (shown here and present work) AIRS ν 2 and ν 3 bands to investigate consistency for CO 2 Consistency between species TES: temperature from O 3 and H 2 O consistent with CO 2 ; AIRS CO2 and N 2 O Consistency between instruments - SHIS - AERI - AIRS - ACE - TES - MIPAS Table of Retrieved Semi-Empirical Line Parameter Modifications Implemented Resultant change at J=40 Retrieved Value Parameter P/R Line Coupling CO 2 Continuum Width Intensity Width Intensity +2% +0.004 +0.0004 b 0 b 1 +4% +0.03 +0.0003 b 0 b 1 All Bands in v2 720.81 667.38 Band center (cm -1 ) 3 2, 2 1, 5 2, 8 4 5 2 2 1 Band Niro et al., 2005 4.5x -5% -0.008 -0.0004 0.000004 a 0 a 1 a 2 -3% +0.01 +0.0002 -0.00002 a 0 a 1 a 2 Retrieved CO 2 Parameters The form of the retrieved CO 2 parameters reflect the underlying physics (semi-empirical) Widths W ret = W HITRAN (1 + b 0 )(1 + b 1 |m|) Intensities S ret = S HITRAN (1 + a 0 ) (1 + a 1 m + a 2 m 2 ) 2 Hermann-Wallis-type parameters (i.e. a 1 and a 2 ) (e.g. Rothman et al., 1992) Accounts for the dependence on the upper state rotational quantum number J P-Branch : m = -J R-branch : m = J + 1 Simple scaling parameters (a 0 and b 0 ) i k (ν ) = 1 π i S 2 ν i ν ( ) + i 2 α Lorentz χ ν i ν ( ) χ i : duration of collision i k (ν ) = 1 π i S 2 ν i ν ( ) + i 2 α Lorentz 1+ i y ν i ν ( ) y i : line coupling coefficient Effect of P-R Line Coupling on S-HIS Residuals (Niro et al. Parameters) lblrtm _v6.01 Line Coupling Parameters for the 5 < 2 Band -3.25 -3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05 0.07 715 717 719 721 723 725 630 650 670 690 710 730 750 770 790 Q Branch Ys P, R Branch Ys Wavenumber (cm-1) Wavenumber (cm-1) Q Branch Hartmann et al. Q Branch Hoke et al. P Branch Hartmann et al. R Branch Hartmann et al. Niro et al., 2005 Niro et al., 2005 Niro et al., 2005

Implications for ν2 and ν3 CO2 Spectroscopic … Retrieval of CO2 v2 Parameters Forward Model (Including Spectroscopy) LBLRTM • Input Atmospheric State • Radiosonde and NWP profiles

  • Upload
    lythuan

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Physical Retrieval of CO2 v2 Parameters

Forward Model (Including Spectroscopy)

LBLRTM• Input Atmospheric State

• Radiosonde and NWP profiles (GMAO)

• Surface parameters

•Layer Optical Depths

• Line Shape:

•CO2 has a sub-Lorentzian line shape that accounts for duration of collision effects

• CO2 Continuum:

•Line contributions 25 cm-1 beyond line center

•LBLRTM_v9.4 : MT_CKD_1.2

•LBLRTM_v10.1: MT_CKD_1.3 (based on retrieved results shown below)

• CO2 Line Coupling (Mixing)

•Implemented CO2 v2 P/R branch line coupling (Niro et al., 2005)

• Spectroscopic Line Parameters:

•tes_v_1.2 -> CO2 parameters from HITRAN2000

•tes_v_1.3 -> tes_v_1.3 modified with retrieved parameters (see below)

• Radiative Transfer

• Instrument Function

Mark W. Shephard, Vivienne H. Payne, and Shepard. A. CloughAtmospheric and Environmental Research Inc., 131 Hartwell Ave., Lexington, MA, 02421-3626, USA

[email protected]

Linda R. BrownJet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA

Implications for ν2 and ν3 CO2 Spectroscopic Parametersfrom Atmospheric Remote Sensing

Instruments Used in Comparisons

Temperature field must be as accurate as possible for passive infrared atmospheric species retrievals

• Errors in the Forward Model, including spectroscopy, play a significant role in the retrieval error

• The CO2 v2 (600-800 cm-1) and v3 (2150 - 2450 cm-1) spectral regions are commonly used for the remote sounding ofatmospheric temperature profiles

• AERI Atmospheric Emittance Radiometric Interferometer– U. of Wisconsin Interferometer

– Downwelling Radiance ARM/Surface Resolution: 0.5 cm-1

• (S)HIS (Scanning) High-resolution Interferometer Sounder– U. of Wisconsin Interferometer

– Upwelling Radiance ER-2/WB-57 Resolution: 0.5 cm-1

• TES Tropospheric Emission Spectrometer– JPL Interferometer

– Upwelling Radiance AURA Resolution: 0.06 cm-1

• AIRS Atmospheric InfraRed Sounder–JPL/NASA Grating Array

–Upwelling Radiance AQUA Resolution: 0.5 - 2 cm-1

What is Truth for Temperature Comparisons?

• “Truth” at the level required is not readily available• Radiosonde accuracies; spatial and temporal sampling

• Spectral Residuals are Key!

• Consistency within a band system (shown here)– Forward model improvements across the CO2 v2 band show consistency within a band

• Consistency between bands (shown here and present work)– AIRS ν2 and ν3 bands to investigate consistency for CO2

• Consistency between species– TES: temperature from O3 and H2O consistent with CO2 ; AIRS CO2 and N2O

• Consistency between instruments- SHIS - AERI- AIRS - ACE- TES - MIPAS

Table of Retrieved Semi-Empirical Line Parameter Modifications

Implemented

Resultantchange at

J=40

RetrievedValue

Parameter

P/R LineCoupling

CO2Continuum

Width

Intensity

Width

Intensity

+2%+0.004+0.0004

b0b1

+4%+0.03+0.0003

b0b1

All Bands in v2

720.81

667.38

Bandcenter(cm-1)

3 2, 2 1, 5 2, 8 4

5 2

2 1

Band

Niro et al., 2005

4.5x

-5%-0.008-0.0004

0.000004

a0a1a2

-3%+0.01+0.0002-0.00002

a0a1a2

Retrieved CO2 Parameters

The form of the retrieved CO2 parameters reflect the underlying physics (semi-empirical)

Widths → Wret = WHITRAN (1 + b0)(1 + b1|m|)

Intensities → Sret = SHITRAN (1 + a0 ) (1 + a1m + a2m2)2

• Hermann-Wallis-type parameters (i.e. a1 and a2) (e.g. Rothman et al., 1992)• Accounts for the dependence on the upper state rotational quantum number J

P-Branch : m = -J R-branch : m = J + 1

• Simple scaling parameters (a0 and b0)

ik (ν) =1π

iS2ν− iν( ) + i

2αLorentz

 χ ν −i

ν( )⎡⎣ ⎤⎦

χ i: duration of collision

ik (ν) =1π

iS2ν− iν( ) + i

2αLorentz

 1+ iy ν − iν( )⎡⎣ ⎤⎦

yi: line coupling coefficient

Effect of P-R Line Coupling on S-HIS Residuals(Niro et al. Parameters)

lblrtm_v6.01

Line Coupling Parameters for the 5 < 2 Band

-3.25

-3.00

-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

715 717 719 721 723 725

630 650 670 690 710 730 750 770 790

Q B

ranc

h Ys

P, R

Bra

nch

Ys

Wavenumber (cm-1)

Wavenumber (cm-1)

Q Branch Hartmann et al.Q Branch Hoke et al.

P Branch Hartmann et al.R Branch Hartmann et al.Niro et al., 2005

Niro et al., 2005

Niro et al., 2005

LBLRTM Comparisons With Observations (CO2 v2 Band)

Implications for ν2 and ν3 CO2 Spectroscopic Parametersfrom Atmospheric Remote Sensing

LBLRTM Comparison with Observations (CO2 v2 and v3)

Scatter plots of Brightness Temperaturevs. Residuals (Obs - Calc.) binned in 20cm-1 intervals from the CO2 v2 region

Impact on Temperature Retrievals

v9.4 v10.1

V1

0.1

v9

.4

R

ETV

.

GM

AO

SH

IS

V1

0.1

v9

.4

R

ETV

.

S

ON

DE

S

HIS

V1

0.1

v9

.4

R

ETV

.

S

ON

DE

A

ER

IV

10

.1

v9.4

RE

TV.

G

MA

O

TES

General Remarks on CO2 v2

• LBLRTM_v10.1 :• Implementation of P/R branch line coupling• Retrieval of a new CO2 continuum• Retrieval of CO2 line intensities and widths

- tes_v_1.3

• LBLRTM_v10.1 with tes_v_1.3 show animprovement in Obs. - LBLRTM residuals inthe CO2 v2

• This improvement impacts the

temperature retrievals ~1-2 K in the

troposphere

v9.4 v10.1

v9.4 v10.1

v9.4 v10.1

V1

0.1

v9

.4

R

ETV

.

S

ON

DE

AIR

S

V1

0.1

v9

.4

v9.4 v10.1

v9.4 v10.1CO2 v2 Temperature Retrievals

CO2 v3 Temperature Retrievals

RE

TV.

SO

ND

E

A

IRS

General Remarks on CO2 v2 and v3

• The CO2 v2 region improvements made toLBLRTM_v10.1 and tes_v_1.3 provide moreconsistency between the CO2 v2 and v3 spectralregions, and thus the retrieved temperature profiles

• However, the CO2 v2 and v3 still are not

consistent….Yet!

• Start working on the CO2 v3 spectral region in

conjunction with the CO2 v2 region:

• Implement P/R line coupling in the CO2 v3 spectral

region

• Further investigate the χ factor and continuum by

taking into consideration both CO2 v2 and v3