40
8/13/2019 Impr Ind Temp Cal 2013 http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 1/40 Improving Industrial Temperature Calibration Accuracy

Impr Ind Temp Cal 2013

Embed Size (px)

Citation preview

Page 1: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 1/40

Improving Industrial TemperatureCalibration Accuracy

Page 2: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 2/40

©2012 Fluke Corporation NPI Team Intro 2Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 2

Improve temperature calibration by considering thecalibration system components:

1. Thermometer Readout

2. Reference Probe3. Temperature Source (Heat Source)

Drywell

Liquid bath

Agenda

Page 3: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 3/40

©2012 Fluke Corporation NPI Team Intro 3Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 3

1. Readout for the UUT

2. Reference (readout and probe) to compare to (canbe the drywell controller display)

3. Heat Source - Drywell or Liquid Bath

Calibration system components 

Your Sensor andReadout

External ReferenceThermometer 

Dry-Well’s Thermometer/Controller 

Comparison

1502C

Probe

F

Comm

K

Sample Exit

Menu

Enter 

Or

Page 4: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 4/40

©2012 Fluke Corporation NPI Team Intro 4Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 4

Digital Multi Meters 

• Adequate in some situations

• Not as accurate or efficient to use

Readout designed for

temperature measurement

• More accurate

• Designed for ease of use

Thermometer Readouts 

Page 5: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 5/40

©2012 Fluke Corporation NPI Team Intro 5Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 5

•Temperature is calculated from the readoutmeasuring the sensor (resistance or voltage)

•The more accurately the readout measures

the sensor, the more accurate the displayedtemperature will be

•The more sensitive the sensor is, the lesseffect measurement errors have on the

displayed temperature

Principles of measurement 

Page 6: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 6/40

©2012 Fluke Corporation NPI Team Intro 6Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 6

 E  E 

  R

T  

Basic Formula for Error  

• E T : equivalent temperature error

• E R : readout measurement error

• S : sensor sensitivity

Page 7: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 7/40©2012 Fluke Corporation NPI Team Intro 7Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 7

• A readout measures the resistance of a sensor with anerror of 0.01W

• The sensor has a sensitivity of 0.4 W/°C

• What is the equivalent temperature error of the

readout’s measurement? 

Simple Example 

C C 

 E T 

  W

W   025.0

4.0

01.0

Page 8: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 8/40©2012 Fluke Corporation NPI Team Intro 8Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 8

• 100 W PRT: 0.4 W/°C

• 25 W SPRT: 0.1 W/°C

• 10 kW thermistor: 0.04 W/W/°C x resistance

• Type K thermocouple: 0.04 mV/°C• Type S thermocouple: 0.01 mV/°C

Typical Sensitivities 

Page 9: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 9/40©2012 Fluke Corporation NPI Team Intro 9Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 9

• Accuracy likely varies over the range

• Accuracy spec might have two or more parts, likepercent of reading and percent of scale

• Absolute accuracy of the measurement must becalculated

Readout Specifications 

Page 10: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 10/40

©2012 Fluke Corporation NPI Team Intro 10Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 10

•Current selection

•Filter settings

•2 or 3 wire vs. 4 wire

•Long cables, poor quality•Thermoelectric EMF

•Drift, calibration, environment

Other Readout Issues 

Page 11: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 11/40

©2012 Fluke Corporation NPI Team Intro 11Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 11

•The temperature calculation might not beaccurate

• Sensor drift

• Erroneous characterization coefficients

• Poor calibration

•The temperature of the sensor might bedifferent from the target

• Temperature gradient• Self-heating

Other Sources of Error  

Page 12: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 12/40

©2012 Fluke Corporation NPI Team Intro 12Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 12

•Specified for stability, not accuracy

•Stability is affected by time and use

•Stability must be verified

Reference Probe- Properties 

Page 13: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 13/40

©2012 Fluke Corporation NPI Team Intro 13Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 13

• A probe that passes calibration doesn’t necessarilymean it is “In Tolerance” 

• Tolerance is calculated by comparing currentcalibration data with previous calibration data

Is My Probe In Tolerance? 

Page 14: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 14/40

©2012 Fluke Corporation NPI Team Intro 14Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 14

• Periodically measure the resistance at the triple point ofwater (RTPW)

• Maintain a control chart of the values

• If TPW not available, use ice-point, other fixed-point, etc.

Reference Probes – Prevent Out of Tolerance! 

Page 15: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 15/40

©2012 Fluke Corporation NPI Team Intro 15Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 15

SPRTSN1234CONTROLRTPWCHART

date

RTPW

25.532155

25.532186

25.532215

25.53215

25.53216

25.53217

25.53218

25.53219

25.53220

25.53221

25.53222

25.53223

25.53224

25.53225

MAR01_93

APR02_93

OCT20_93

MAR13_94

MAY04_94

OCT19_94

DEC15_94

JAN15_95

RTPW Drift Control Chart 

Page 16: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 16/40

©2012 Fluke Corporation NPI Team Intro 16Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 16

• Drift• Drift is a natural occurrence with resistors (including resistancethermometers) and can increase or decrease with time.

• Usually the drift is minimal and does not adversely affect probeperformance

• Drift is not reversible• Suggested Measurements

• Frequent Triple Point of Water Checks

• Others (Ice point, Gallium)

Reference Probes 

Page 17: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 17/40

©2012 Fluke Corporation NPI Team Intro 17Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 17

• Stress, strain, and shock• Caused by vibration and slight physical impulses, ordropping (shock)

• Introduces mechanical deformations in element withresulting increase in Rtpw 

• Changes can be as large as 0.050°

C• Most effects are reversible by annealing

Causes of Drift 

Page 18: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 18/40

©2012 Fluke Corporation NPI Team Intro 18Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 18

Cold quenching

• Caused by rapid cooling of a hot (> 500 °C) probe

• Introduces crystal lattice vacancies with resulting increase in Rtpw

• Changes generally do not exceed 0.025°

C• Most effects are reversible by annealing

Causes of Drift 

Page 19: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 19/40

Page 20: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 20/40

©2012 Fluke Corporation NPI Team Intro 20Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 20

• Oxidation and strain can be reduced by annealing inhigh-quality PRT probes

• Platinum begins annealing ~400°C

• Typically 480°C or 665 C is used

Probe Annealing 

Page 21: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 21/40

©2012 Fluke Corporation NPI Team Intro 21Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 21

• When a probe is calibrated, check theRTPW:

1. Before sending to calibration lab

2. When probe is returned to calibration lab

3. Periodically during use

• Know probe’s drift before the cal lab tellsyou the bad news

• If possible, update RTPW in readout to

remove drift• Save money, send the probe out for

calibration when it needs it

Summary: Close the Loop 

Page 22: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 22/40

©2012 Fluke Corporation NPI Team Intro 22Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 22

• Drywells (& Metrology Wells)

• Liquid Baths

• Others?

Heat Sources 

Page 23: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 23/40

©2012 Fluke Corporation NPI Team Intro 23Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 23

Drywells work in industrial calibration because:

• Portable

• Fast

• Wide temperature ranges• Relatively inexpensive

• Easy to use

• Performance is typically adequate

Drywell Strengths 

Page 24: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 24/40

©2012 Fluke Corporation NPI Team Intro 24Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 24

Uncertainty contributions for drywells

• Axial and radial uniformity

• Stability

• Display accuracy

• Block loading• Immersion depth

• Environmental conditions

• Procedural variance

• Probe fit and positioning issues

Drywell limitations 

H d d t i d ll

Page 25: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 25/40

©2012 Fluke Corporation NPI Team Intro 25Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 25

To answer this question you need to know:

•How the drywell will be used

•Important sources of error

•How drywell manufacturers’

specifications are written and applied

How do you determine dry-wellaccuracy? 

How you use a dry well greatly

Page 26: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 26/40

©2012 Fluke Corporation NPI Team Intro 26Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 26

Temperature range• Generally errors are greater the further away from ambient

temperature

Will dry-well temperature be measured using anexternal reference or the internal control sensorand display?

• Each method is valid, but an external reference will generallyprovide better uncertainties

How you use a dry-well greatlyaffects performance! 

Page 27: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 27/40

©2012 Fluke Corporation NPI Team Intro 27Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 27

• Metrology wells and drywells are used forcomparison calibrations

• Comparison calibrations require thermal equilibrium

and consistency

• Without thermal equilibrium no comparison can be made

• Equilibrium requires stability

• Consistency allows comparisons to have meaning over

time and between different tests

• Good consistency requires similar loading, low drift, goodhandling practices and verification

What errors are significant? 

Page 28: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 28/40

©2012 Fluke Corporation NPI Team Intro 28Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 28

Errors depend upon mode of use 

External Reference

1. Axial Uniformity

2. Radial Uniformity

3. Stem conduction4. Loading Effect (Very Little)

5. Stability

6. Reference temperaturemeasurement

 – Reference Probe – Reference Readout

 – Hysteresis

Internal con trol sensor andcal ibrated d isplay

1. Axial Uniformity

2. Radial Uniformity

3. Stem conduction

4. Loading effect

5. Stability

6. Reference temperature measurement

 – Sensor and display drift – Hysteresis

 – Sensor Calibration

Page 29: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 29/40

©2012 Fluke Corporation NPI Team Intro 29Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 29

Estimate of Significance 

Page 30: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 30/40

©2012 Fluke Corporation NPI Team Intro 30Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 30

Axial Uniformity 

Insert

Measureme

nt Zone

ProbeSensors

• The temperature difference between thetop and bottom of the well

• Measurement zone is where axialuniformity is smallest

• EA-10/13 requires 40mm (1.5 inches)

• Hart recommends 60mm (2.25 inches)

•  Axial uniformity in the measurement zoneneeds to be known to determineuncertainty

• Hart has a special probe designed to measurethis error

•  Axial uniformity error is minimized by• Dual-zone control

• Ensuring probe sensor fits in measurement zone

•  Aligning the centers of the sensing elements inthe reference and UUT

Page 31: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 31/40

Page 32: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 32/40

©2012 Fluke Corporation NPI Team Intro 32Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 32

Stem Conduction 

d

15-20d

• Heat conducted up the sheathof the probe• Causes non-equilibrium between

sensor and source

• This is a function of the sizeand type of material

• Large diameter probes conduct moreheat

•  Alumina conducts more than Inconel

• This error is minimized bydeeper immersion

• Fluke suggests 15 times the diameter of

the probe + sensor length

•  An 8mm probe should have about150mm

• Metrology wells have the extra depthneeded to minimize this error

Page 33: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 33/40

©2012 Fluke Corporation NPI Team Intro 33Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 33

• Added Heat Loss due to increased numbers orsize of thermometers, creates a shift in thetemperature gradient in the insert (block) of thedry-well.

• The Temperature Controller cannot completelycompensate for this shift.

• The result can be a temperature error that is

particularly apparent in the Direct Mode. 

Block Thermal Loading 

Page 34: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 34/40

©2012 Fluke Corporation NPI Team Intro 34Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 34

Loading Effect 

• The number of probes willimpact the amount of heatdrawn from or into the well

• Loading effect is minimizedby well design

• Deeper immersion• Dual-zone control

Page 35: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 35/40

©2012 Fluke Corporation NPI Team Intro 35Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 35

Temperature Stability 

• Stability is temperature variation

with time

• Time frame needs to be

specified

• EA10/13 recommends 30min

• Should be stated with high

confidence

Use of TYPICAL to be avoided !

Temperature Stability

249.75

249.8

249.85

249.9

249.95

250

250.05

250.1

250.15

250.2

250.25

1 0: 00 :0 0 1 0: 03 :2 0 1 0: 06 :4 0 1 0: 10 :0 0 1 0: 13 :2 0 1 0: 16 :4 0 1 0: 20 :0 0 1 0: 23 :2 0 1 0: 26 :4 0 1 0: 30 :0 0

±0.181°C – 30 min

±0.046°C – 15 min

±0.017°C – 30 min

±0.011°C – 15 min

Page 36: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 36/40

©2012 Fluke Corporation NPI Team Intro 36Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 36

Temperature Stability 

• Stability is required to reachthermal equilibrium• Probes need time to reach

equilibrium with surroundings

• Multiple measurements rarely

instantaneous

• Temperature stability error

minimised by design•  Accurate control with good

resolution• Off the shelf controllers do not

provide exceptional stability

Temperature Stability

249.75

249.8

249.85

249.9

249.95

250

250.05

250.1

250.15

250.2

250.25

1 0 :0 0: 00 1 0: 03 :2 0 1 0: 06 :4 0 1 0: 10 :0 0 1 0 :1 3: 20 1 0 :1 6: 40 1 0: 20 :0 0 1 0 :2 3: 20 1 0 :2 6: 40 1 0 :3 0: 00

±0.181°C – 30 min

±0.046°C – 15 min

±0.017°C – 30 min

±0.011°C – 15 min

Page 37: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 37/40

©2012 Fluke Corporation NPI Team Intro 37Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 37

Control Sensor Hysteresis 

Control Sensor Hysteresis

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

Set Point Temperature, C

ActualTempera

ture,C

Heating

Cooling

 Average Value

Temperature Range

 Midpoint

Error Error 

Page 38: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 38/40

©2012 Fluke Corporation NPI Team Intro 38Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 38

est PracticeProbe fit and position 

• Fully Immerse Probes.

• Reference and UUT at Same Depth.

• Similar Diameters.

• Similar sheath heat conduction characteristics.

• Snug Fit Into Sleeves.

•  Allow Ample Time For Stability.

Page 39: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 39/40

©2012 Fluke Corporation NPI Team Intro 39Jason Titmas Temperature Calibration Tour 2009 © 2009 Fluke Corporation 39

Liquid Baths 

•Liquid baths are moreuniform heat sources

for comparison

measurements

• Always use aReference Thermometer

•Follow same guidelines

as drywells for bestmeasurement

uncertainty

Page 40: Impr Ind Temp Cal 2013

8/13/2019 Impr Ind Temp Cal 2013

http://slidepdf.com/reader/full/impr-ind-temp-cal-2013 40/40

Other heat sources 

• Air chamber• Poor uniformity & stability

• Not Recommended

• “In-situ calibration”

heat source• Provides the same test

environment as the test

probe sees.