11
1 Morteza Mardani, Gonzalo Mateos and Georgios Giannakis ECE Department, University of Minnesota Acknowledgment: AFOSR MURI grant no. FA9550-10-1-0567 A Coruna, Spain June 25, 2013 Imputation of Streaming Low-Rank Tensor Data

Imputation of Streaming Low-Rank Tensor Data

  • Upload
    espen

  • View
    64

  • Download
    0

Embed Size (px)

DESCRIPTION

Morteza Mardani , Gonzalo Mateos and Georgios Giannakis ECE Department, University of Minnesota Acknowledgment : AFOSR MURI grant no. FA9550-10-1-0567. Imputation of Streaming Low-Rank Tensor Data. A Coruna, Spain June 25, 2013. 1. Learning from “Big Data”. - PowerPoint PPT Presentation

Citation preview

Page 1: Imputation of Streaming Low-Rank Tensor Data

1

Morteza Mardani, Gonzalo Mateos and Georgios Giannakis

ECE Department, University of Minnesota

Acknowledgment: AFOSR MURI grant no. FA9550-10-1-0567

A Coruna, SpainJune 25, 2013

Imputation of Streaming Low-Rank Tensor Data

Page 2: Imputation of Streaming Low-Rank Tensor Data

2

Learning from “Big Data” `Data are widely available, what is scarce is the ability to extract wisdom from them’

Hal Varian, Google’s chief economist

BIG Fast

Productive

Revealing

Ubiquitous

Smart

K. Cukier, ``Harnessing the data deluge,'' Nov. 2011.

Messy

Page 3: Imputation of Streaming Low-Rank Tensor Data

3

Tensor model Data cube

PARAFAC decomposition

C=

cr

γiB=

br

βiA=

ar

αi

Page 4: Imputation of Streaming Low-Rank Tensor Data

4

Streaming tensor data

Streaming data

Goal: given the streaming data , at time t learn the subspace matrices (At,Bt) and impute the missing entries of Yt?

Tensor subspace comprises R rank-one matrices

Page 5: Imputation of Streaming Low-Rank Tensor Data

5

Prior art Matrix/tensor subspace tracking

Projection approximation (PAST) [Yang’95] Misses: rank regularization [Mardani et al’13], GROUSE [Balzano et al’10] Outliers: [Mateos et al’10], GRASTA [He et al’11] Adaptive LS tensor tracking [Nion et al’09] with full data; tensor slices

treated as long vectors

Batch tensor completion [Juan et al’13], [Gandy et al’11]

Novelty: Online rank regularization with misses Tensor decomposition/imputation Scalable and provably convergent iterates

Page 6: Imputation of Streaming Low-Rank Tensor Data

6

Batch tensor completion Rank-regularized formulation [Juan et al’13]

 Tikhonov regularizer promotes low rank

Proposition 1 [Juan et al’13]: Let , then

(P1)

Page 7: Imputation of Streaming Low-Rank Tensor Data

7

Tensor subspace tracking Exponentially-weighted LS estimator

M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and imputation for streaming Big Data matrices and tensors,"  IEEE Trans. Signal Process., Apr. 2014 (submitted).

O(|Ωt|R2) operations per iteration

(P2)

``on-the-fly’’ imputation

Alternating minimization with stochastic gradient iterations (at time t) Step1: Projection coefficient updates

Step2: Subspace update

ft(A,B)

Page 8: Imputation of Streaming Low-Rank Tensor Data

8

Convergence

asymptotically converges to a st. point of batch (P1)

Proposition 2: If and are i.i.d., and c1) is uniformly bounded; c2) is in a compact set; and c3) is strongly convex w.r.t. hold, then almost surely (a. s.)

As1) Invariant subspace and As2) Infinite memory β = 1

Page 9: Imputation of Streaming Low-Rank Tensor Data

9

Cardiac MRI FOURDIX dataset

263 images of 512 x 512 Y: 32 x 32 x 67,328

http://www.osirix-viewer.com/datasets.

75% misses R=10 ex=0.14 R=50 ex=0.046

(a) (b)

(c) (d)

(a) Ground truth, (b) acquired image;reconstructed for R=10 (c), R=50 (d)

Page 10: Imputation of Streaming Low-Rank Tensor Data

10

Tracking traffic anomalies

Internet-2 backbone network Yt: weighted adjacency matrix Available data Y: 11x11x6,048 75% misses, R=18

Link load measurements

http://internet2.edu/observatory/archive/data-collections.html

Page 11: Imputation of Streaming Low-Rank Tensor Data

11

Conclusions Real-time subspace trackers for decomposition/imputation

Streaming big and incomplete tensor data Provably convergent scalable algorithms

Ongoing research Incorporating spatiotemporal correlation information via kernels Accelerated stochastic-gradient for subspace update

Applications Reducing the MRI acquisition time Unveiling network traffic anomalies for Internet backbone networks