136
INGENIENA QUIMICA (C. B.I.) INFORME FINAL DE PROYECTO PRESENTAN: UERVERA CASTRO/FMR DE MARIA MUJA LIMA MA. DE LOURDES ASESOR DE PROYECTO: M. en C. EDUARDO PEREZ CISNEROS PROFESOR: ING. URIEL ARECHIGA VIRAMONTES FECHA DE ENTREGA: 2 1 DE JULIO, 1994.

INGENIENA QUIMICA (C. B.I.)

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INGENIENA QUIMICA (C. B.I.)

INGENIENA QUIMICA (C. B.I.)

INFORME FINAL DE PROYECTO

PRESENTAN:

UERVERA CASTRO/FMR DE MARIA

MUJA LIMA MA. DE LOURDES

ASESOR DE PROYECTO: M. en C. EDUARDO PEREZ CISNEROS

PROFESOR: ING. URIEL ARECHIGA VIRAMONTES

FECHA DE ENTREGA: 2 1 DE JULIO, 1994.

Page 2: INGENIENA QUIMICA (C. B.I.)

INTRODUCCION

PAG.

1

PLANTA INDUSTRIAL PARA LA PRODUCCION DE METANOL

CARACTERISTICAS DEL PROCESO

SIMULACION

PRIMERA SECCION DE LA PLANTA DE METANOL Resultados. Diagrama de flujo. Balance de materia.

SEGUNDA SECCION DE LA PLANTA DE METANOL Resultados. Diagrama de flujo. Balance de materia.

TERCERA SECCION DE LA PLANTA Resultados. Diagrama de flujo. Balance de materia.

EXF'ERIMENTACION Resultados Diagrama de flujo

EQUIPO DE PROCESO (Características)

CONCLUSIONES

APENDICE

BIBLIOGRAFIA

3

5

8

13 54 55

60 80 81

83 99 1 O0

102 104 107

108

112

113

133

Page 3: INGENIENA QUIMICA (C. B.I.)

INTRODUCCION

En el desarrollo y diseño de procesos nos encontramos con dos opciones para 'lograr la simulación de un proceso industrial con buen nivel de contiabilidad, ya que en ellos intervienen flujos de materia de magnitud considerable que tienen un alto costo, por lo que hacer modificaciones de diseño y operación pueden tener una repercusión económica muy importante. Tales opciones son las plantas piloto y simulación digital.

Con el avance de los sistemas computaciodes, las secuencias numéricas que eran imposibles de realizar, hoy en día solo se emplean minutos p a llevarlas a cabo. Se han desarrollado diversos paquetes para simulación como MICROCHESS, SYSPRO, SEPSIM, ASPEN PLUS, etc., los d e s nos penniten hacer la elaboración, diseño y simulación desde un pequeño proceso hasta una planta completa, sin el riesgo de tener accidentes en el caso de no realizar en condiciones adecuadas dicho proceso, además de facilitar el hecho de poder optimizar y hacer cambios en un proceso, y de esta manera observar los resultados con el fin de tomar decisiones.

Se deben conocer los factores fundamentales que iduyen en un proceso para el control, la planificación, la evaluación y la organización de dicho proceso. Una forma de obtener esto consiste en, una vez simulado cierto proceso, hacer cambios en las variables de entrada o en condiciones de operación y analizar el comportamiento a lo largo del proceso en objetivos como calidad del producto deseado, cantidad de energía necesaria, equipo manejado, etc. Lo anterior requiere tener "Estrategias para la simulación y optimización de procesos" que constan de una serie de etapas:

-Formulación del problema, establecimiento de objetivos y criterios, y

-Inspección preliminar y clasificación del proceso. -Establecimiento de un modelo matemático. -Evaluación de la forma en que el modelo representa el comportamiento real. -Aplicación del modelo, interpretación y comprensión de los resultados. -Agilidad para llegar a la solución donde se presenten dificultades verdaderas.

conocimiento de las necesidades de operación.

Las ventajas que presenta la simulación de procesos a través de la computadora son las siguientes:

1. Experimetación económica. La simulación puede aumentar o reducir el tiempo real de forma análoga a una cámara fotográfica la cual acelera o retarda las imágenes; de esta manera se puede observar con mayor facilidad la operación del sistema.

2. Extrapolación. Con un modelo matemático se pueden ensayar intervalos extremos de las condiciones de operación que puedes ser impracticables o imposibles de realizar en una planta real. También es posible establecer características de funcionamiento.

Page 4: INGENIENA QUIMICA (C. B.I.)

3. Estudios de conmutabilidad y evaluación de diversos planes de operación. Se pueden introducir nuevos f'actores o elementos de un sistema y suprimir otros al examinar el sistema, con el fin de observar si estas modificaciones son compatibles. La simulación permite comparar distintos diseños y procesos que todavía no están en operación y ensayar hipótesis sobre sistemas o procesos antes de llevarlos a la práctica.

El objetivo principal del presente proyecto es la simulación, análisis y diseño de un planta industrial ya establecida con el simulador de procesos ASPEN-PLUS, y de esta manera obtener mejores resultados en su operación.

Page 5: INGENIENA QUIMICA (C. B.I.)

***PLANTA INDUSTRIAL PARA LA PRODUCCION DE METANOL***

El Mefano1 conocido como alcohol metílico tiene un peso molecular de 32.04; es un líquido incoloro, neutro a la temperatura ordinaria, con olor picante característico.

PROPIEDADES FISICAS

CONSTANTE VALOR P.C., "C -97.0 a -97.8

Densidad, g/ml., a: 15°C O. 79609 30°C 0.78208

P.eb., "C 64.5 - 64.7

16°C 1.3306 Viscosidad, centipoises, a: 15°C 0.6405

0.6230 20°C 0.5945

25°C 0.5525 0.5440

30°C 0.5142 0.5100

Tensión superficial, dinas/cm2, a: 15°C 22.99

20°C 22.55

30°C 21.79 Temp. crít., "C 240 Pres, crít., atm 78.5 Temp. crít., soln.,"C en:

CONSTANTE VALOR Calor espec. liq.,caI/g, a:

o - 5°C 0.570 - 0.580 0.595 - 0.605 0.610 - 0.620

20 - 25°C 40 - 45OC

Calor espec., vapor ideal cdmol, a:

0°C 10.27 25°C 10.76 100°C 12.20 200°C 14.40 Calor de vaporización a 64.7"C, caVmol 8430 Calor de combustión del liq. a

Calor de fwrmación a 25"C, caVmol de :

25"C, cdmol -173650

Líquido -57036 Vapor -48100 Punto de inflamación (vaso abierto), "C 15.60 Limites de inflamaóilidad en el aire, %vol. 6 - 36 Temperatura de ignición, "C en: Aire 473 oxígeno 46 1 Solubilidad en:

cs2 c6Hi4 c6H12

35.0 (aprox.) Agua 34.50 Alcohol 46.05 Eter

iníinito iníinito infinito

Robert Boyle, en 1 6 6 1 , observó la existencia de una "sustancia neutra" en el licor obtenido por destilación seca de la madera. Esta sustancia fue llamada "éter piroleñoso" por Taylor en 1812, y su identidad fue demostrada en 1834 por Dumas y Péligot, quienes aislaron el alcohol y determinaron su fórmula. El metano1 fue sintetizado por Berthelot en 1857, por saponificación del cloruro de metilo. Durante décadas, la única fbente comercial

Page 6: INGENIENA QUIMICA (C. B.I.)

del compuesto h e el ácido piroiehso, obtenido por destilación seca de la madera. Hace unos 50 años se descubrió la síntesis del alcohol a presión d a (I 00-600 atm) con óxido de carbono e hidrógeno, y hoy &lo 2% del metanol es extraído del hido piroleñoso. La oxidación directa de los hidrocarburos es otro método de síntesis.

El método escogido para la simulación he el de oxidación directa de hidrocarburos, en otras palabras a partir de gas natural. Este método muestra las siguientes ventajas:

- Materia prima accesible - No se contamina mucho con este método - Se conservan los bosques, etc.

El uso principal del metanol es la síntesis de foddehído. Se usa como anticongelante para motores enfiiados con agua donde el metanol se adquiere bajo diversos nombres comerciales, y éste, contiene ordidamente un inhibidor de la herrumbre; como desnaturalizante (el alcohol se añade al metanol para hacerlo impropio para beber, para utilizarlo solamente con fines industriales) y disolvente y como primera materia prima en la manufactura de gran número de productos químicos empleados en la variedad de industrias; para la preparación de haluros de metilo, ésteres, éteres y otros compuestos metilados. Las propiedades disolventes del metanol lo hacen muy Útil en las industrias de jabón, pinturas, barnices, cuero, cosméticos, adhesivos, lubricantes y otras. También se emplea como combustible en ciertos calentadores automáticos y en encendedores de cigarrillos. Las propiedades físicas de las mezclas de metanol y de agua son de gran importancia, no solamente para la identificación, sino también porque el metanol se usa frecuentemente en solución acuosa. Aunque durante muchos años se ha propuesto como combustible para automóviles, no puede competir con la gasolina en precio ni en valor calorífico. Los consumidores principales son las industrias automotriz, química y petroquímica. El metanol puede tener un porvenir prometedor como mezcla propulsora en los motores de chorro.

Actualmente es sabido que el volumen de producción obtenido en las plantas para la síntesis de metanol es 171,500 todaño ("$134'943,268.7):

UBIC ACION CAPACIDAD INICIO DE

San Martín Texmelucan, Puebla 21,500 todaño (N$16'917,086.16) 1969 San Martín Texmelucan, Puebla 150,000 todaño (N$118'026,182.5) 1978

OPERACION

1

Con esta capacidad no es posible satisfacer las necesidades del país en cuanto a consumo de metanol se refiere, ya que en 1993 se importaron 284 toneladas y no se exportó nada, siendo el consumo de 259,790 todaiío. De hecho, la producción de dicho año disminuyó en un 9.5% con respecto a la de 1992.

Teniendo como antecedentes lo anterior, el objetivo de este proyecto es el de aumentar la producción al doble.

E

Page 7: INGENIENA QUIMICA (C. B.I.)

"""CARACTERISTICAS DEL PROCESO***

MATERIAPRIMA

- Gas Natural - Aire - Vapor de Agua

SUB-PRODUCTOS

- Dióxido de Carbono - Monóxido de Carbono - Hidrógeno - Agua

REACCIONES

Sección de Reformación.

Reactor 1 .

1 . CH4 + 202 - coz + H20 2. cZH6 + 7 0 0 2 - 2c02 + 3H20 3. C3HS + SO2 3CO2 -I- 4HzO 4. 2 c o + o2 2c02 5. 2% + o2 2H20

Reactor 2.

1 . c2H6 + 3HZO - COZ + co + 6Hz 2. 2cH4 + 3HzO - COZ + co + 7Hz 3. 2C3Hs + 9H20 - 3CO2 + 3CO + 17HZ

Sección de Síntesis.

1. co + 2H2 - CH3OH 2. coz + 3Hz - CH3OH + H20

CAPACIDAD A INSTALAR.

Sección de Reformación.

Reactor 1 : 164'465,000 Vmin Reactor 2: 475,878 Vmin

Page 8: INGENIENA QUIMICA (C. B.I.)

Sección de Síntesis.

Reactor: 177,854 V m h

MONTO DE LA INVERSION = N$1,740'563,917.00

INVERSION FIJA = N$ 1,914'158,345.00

CAPITAL DE TRABAJO = N$88'766,278.14

PERSONAL PUESTO

1 6 9 30 6 1 1 6 2 4 10 2 20 1 o5 105 1 7

Director Gerentes Jefes de área Jefes de turno Ingenieros Dibujante Secretaria ejecutiva Secretarias Médicos Enfermeras Cocineros Cajeras Vigilantes Obreros calificados Obreros Bibliotecario Jardineros

SUELDO INDIVIDUAL NS 25,000.00 8,000.00 6,000.00 4,000.00 6,000.00 2,000.00 2,000.00 1,500.00 5,OOo.OO 1,500.00 700.00 1,000.00 700.00 1,400.00 700.00 700.00 525.00

TOTAL SUELDOS N$ 25,000.00 48,000.00 54,000.00 120,000.00 36,000.00 2,000.00 2,000.00 9,000.00 10,o0o.00 6,000.00 7,000.00 2,000.00 14,000.00 147,000.00 73,500.00 700.00 3,675 .O0

TOTAL NS 412,875.00

SUELDO ANUAL TOTAL, N$ 4'954,500.00

COSTO DE PRODUCCION

Capacidad mínima N$ 13'43 1,754.00

Capacidad media 11'193,128.34

Capacidad máxima 8'954,502.67

Page 9: INGENIENA QUIMICA (C. B.I.)

GANANCIA POR AÑO

Capacidad mínima N$ 153'988,745.80

Capacidad media 224'938,170.00

Capacidad máxima 295'887,593.80

CAPACIDAD DE LA PLANTA

Máxima 3 76,044.8 580 todaño

Media 285,874.9200 todailo

Mínima 195,704.9814 todaño

UBICACION DE LA PLANTA

Salamanca, Gto.; la superfície del terreno es de 250,000 m2; el terreno que ocupa la planta de proceso 62,500 m2.

TASA DE RETORNO ANUAL = (RETORNO ANUAL /INVERSION)xlOO

17.00 Yo - ROI (% AÑO) -

BALANCE PROFORMA

c

ACTIVO PASIVO N$ N$

Maquinaria y equipo 21 1'353,623.60 Proveedores 8'477,245.00 Terreno 17'500,000.00 Capital contable 25 1'5 1 1,74 1 .O0 Depreciación 2 1 '1 3 5,362.36 Inventario 1 O'OoO,o0O. O0

TOTAL ACTIVO N$259'988,986.00 TOTAL PASIVO N$ 259'988,986.00

Page 10: INGENIENA QUIMICA (C. B.I.)

SIMULACION

EXPLICACION DE LOS MODULOS UTILIZADOS DEL SIMULADOR DE PROCESOS ASPEN PLUS

COMPR

El modulo COMPR es usado para modelar un compresor politrópico, un compresor de desplazamiento positivo, un compresor isoentrópico o una turbina isoentrópica. COMPR calcula la potencia requerida (o producida) de una especificación de presión de salida, o calcula la presión de salida a partir de la potencia requerida ( o producida). Para turbinas o compresores isoentrópicos COMPR es destinado para tratar los cálculos de una fase así como de dos y tres fases.

Para compresores politrópicos, COMPR realiza dados para una ÚNca fase compresible. Sin embargo para casos especiales, se puede especificar los cálculos para dos o tres fases que son realizados para determinar las condiciones de vapor de salida y para calcular las propiedades usadas en las ecuaciones del compresor; lo correcto depende de los resultados en un número de factores tal como las cantidades relativas de las fases presentes y la eficiencia especificada.

HEATX

El modulo HEATX es utilizado para modelar un intercambiador de calor de dos corrientes. Este también puede modelar un intercambiador en contracorriente o corrientes paralelas se tiene que especificar las condiciones de salida de una de las corrientes, el cambio de la temperatura de una de las corrientes, el área de intercambio de calor o la cantidad de calor en el intercambio. HEATX concede diferentes coeficientes de traderencia de calor para diferentes zonas de intercambio.

MIXER

El módulo MIXER es usado para mezclar corrientes de materia; éste modela "T's" de mezclado u otros equipos de operaciones de mezclado. Si la presión de salida no es especificada, éste recurrirá a la presión mínima de las corrientes de entrada. MIXER solo puede ser usado para combinar (y dadir) corrientes calientes o corrientes de operación.

RSTOIC

El módulo RSTOIC es usado para modelar un reactor donde la cinética de la reacción no es conocida o no es importante, pero la estequiometría de la reacción es conocida y la cantidad convertida de la reacción puede ser especificada. Para cada reacción, deberá darse la cantidad convertida de la reacción o la conversión del componente clave. RSTOIC puede modelar dos reacciones simultáneas o una serie de reacciones (donde las reacciones toman lugar independientemente en una serie de reactores).

Page 11: INGENIENA QUIMICA (C. B.I.)

HEATER

El módulo HEATER es usado para modelar calentadores, enfnadores o UM parte del intercambiador de'calor. Este sólo piuede ser usado cmo válvula u otras operaciones qon cambio de presiones, como bombas o compresores. HEATER sólo puede ser usado para modelar mezcladores no adiabáticos. HEATER determina las condiciones térmicas y de fase de UM mezcla de una o más entradas de corrientes, donde se especifican las condiciones de salida. HEATER produce una sola salida que contiene todas las fases presentes. Puede usarse una corriente de agua decantada para decantar agua libre; la salida principal contendrá entonces otras fases.

FLASH2

El módulo FLASH2 es usado para modelar separaiones de flashes, evaporadores, cajas de drenado, y otros seoparadores de una sola etapa. Este determina condiciones térmicas y de fase de una mezcla de una o más corrientes de entrada, donde se especifica las condiciones de salida. FLASH2 produce dos corrientes de d i d a y una corriente opcional de agua decantada; la salida del líquido contendrá todas las fases líquidas existentes. El líquido contenido en la corriente de vapor debe ser especificado.

FSPLIT

El módulo FSPLIT es usado para modelar una división como una válvula de sangrado; ésta mezcla corrientes de material y divide la corriente resultante en dos o más corrientes resultantes. Todas las corrientes tienen la misma composición y condición de la mezcla de entrada. FSPLIT solo puede ser usada opara separar corrientes de operación o calientes.

SEP

El módulo SEP es usado para separar componentes; puede ser usado en lugar de un modelo riguroso de separación (destilación, absorción, etc.) para ahorrar tiempo de computo cuando los detalles de separación son desconocidos o sin importancia, pero la separación de los componentes se conoce.

RADFRAC.

El módulo RADFRAC es un modelo riguroso para todo tipo de fiaccionamiento, incluyendo absorción, absorción con rehenidor, agotadores, agotadores con rehervidor y destilación extractiva, azeotrópica y en tres fases, además de la destilación ordinaria. RADFRAC es conveniente para sistemas que tienen un punto de ebullición amplio y puntos de ebullición estrecho, sistemas que presentan fuertes no idealidades en su fase líquida, y sistemas en que ocurren reacciones químicas donde el equilibrio y/o velocidad son controlados. RADFRAC puede ser usado para cálculos de diseño de velocidad.

Page 12: INGENIENA QUIMICA (C. B.I.)

---

Aunque las etapas de equilibrio son supuestas, puede especificarse también eficiencias de vaporización o de Murphree. MHEATX

El módulo MHEATX es usado para representar transferencia de calor entre múltiples corientes calientes y fiías. También puede u- para modelar intercambiadores de calor de dos corrientes. Este módulo asegura un balance de energía global por el área para el intercambiador.

***PRIMERA SECCION DE LA PLANTA***

Los reactores que se simularon en esta sección corresponden en la realidad a una unidad en la que ambos reactores están configurados para que el calor generado de uno de ellos sea aprovechado por el otro. Este arreglo es con el fin de ahmar energía.

En el caso del desulfurizador que se localiza en el D.T.I. original no se pudo comprobar su utilidad por una parte y por otra solo se podría simular si se supone que es una torre de absorción.

El supercalentador, al igual que el reactor, es de un diseño especial y por lo tanto el costo total calculado fue a base de la suma de los cálculos individuales de los precalentadores. Este equipo es una muy buena opción para el ahorro de energía ya que todo el calor que desprenden algunas corrientes, es aprovechado por corrientes o equipos del mismo proceso.

***SEGUNDA SECCION***

En esta parte se ve muy claro otro aprovechamiento de energía (disminuyendo gastos), al observar los tres intercambiadores de calor conectados en serie. A pesar de que el reactor es el corazón de esta sección, el flash juega un papel tan importante como él debido a que la separación que debe realizar es la máxima.

***TERCERA SECCION***

En esta sección el D.T.I. original requiere de tres columnas de destilación, mientras que en nuestra simulación sólo requerimos de dos, esto es porque el agua que sale en la segunda columna es casi pura debido a que la fracción de metanol que contiene es un factor de lE-10, por lo que nos vemos en la necesidad de eliminarla. Con este cambio, adaptamos un mezclador para dicha agua y para la proveniente del fondo del separador adicional.

Se recurrió al separador adicional porque el metanol proveniente de la columna 2 tenía una pureza muy baja (82%) por lo que se hicieron diferentes pruebas para obtener el

Page 13: INGENIENA QUIMICA (C. B.I.)

metano1 más puro, aumentando graduaimente el número de etapas, cambiando el reflujo, moviendo presión y temperatura, haciendo cambios en el reflujo de la columna 1, adicionando un flash después de la columna, etc., sin tener resultados positivos.

Los resultados de la simulación correcta se ilustran en íos reportes individuales que genera el simulador de procesos ASPEN PLUS

Page 14: INGENIENA QUIMICA (C. B.I.)

+ + + + +++ +++

+ +++ + +++ + + + +++ +++ +++ +++ +++ +++ +++

+ +++ +++ +++ + +++ +++ +++ +++ + + + +++ +++ +++ +++ + + + +++ +++ +++ +++ +++

+ + + + +++ +++ +++ +++ + + + + +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ + + + +++ +++ +++ +++ +++ +++ + + + +++ +++ + + + +++ + + + +++ + + + +++ +++ +++ + + + + + + + + + +++ +++ +++ + + + + + + + + + +++ +++ +++ + + + . + + + +++ + + + +++ +++ +++

+ + + + +++ +++ +++ +++ + + + + +++ +++ +++ +++ +++ +++ +++ +++ + + + +++ +++ +++ +++ + + +

+ + +++ + + + + + +++ +++

+ ASPENTEC

FLOWSHEET SIMULATION FOR THE PROCESS INDUSTRIES

TM AAAAA SSSSS PPPPP EEEEE NN N PPPPP L u u sssss A A S P P E N N N P P L u u s AAAAA SSSSS PPPPP EEEEE N NN PPPPP L u u sssss A A S P E N N N P L u u S A A SSSSS P EEEEE N N P LLLLL ULTLTUU sssss

ASPEN PLUS IS A TRADEMARK OF

25 1 VASSAR STREET CAMBRIDGE, MASSACHUSETTS 02139

'7

HOTLiNE: ASPEN TECHNOLOGY, INC. U. S.A. 6 17/497-9O 10

EUROPE (32) 2/7324300

617/497-9010

VERSION: PC-DOS JULY 17, 1992 RELEASE: 8.5-4E FRIDAY INSTALLATION: ASPENTEC 2:39:30 P.M.

Page 15: INGENIENA QUIMICA (C. B.I.)

PRIMERA SECCION DE LA PLANTA DE METANOL

DESCRIPTION

PRODUCCION DEL c1SDE SIiVT'SA PARTIR DEL GAS NATURAL Y VAPOR DE AGUA.

BLOCK STATUS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * * ALL UNIT OPERATION BLOC!KS WERE COMPLETED NORMALLY

* ALL CONVERGENCE BLOCKS WERE COMPLETED NORUAUY *

* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

* *

* *

*

Page 16: INGENIENA QUIMICA (C. B.I.)

PROPERTIES FOR STREAM 43 PROPERTY OPTION SET: SYSOP3

PROPERTIES FOR STREAM 45 PROPERTY OPTION SET: SYSOP3

PROPERTIES FOR STREAM 66 PROPERTY OPTION SET: SYSOP3

PROPERTIES FOR STREAM 33 PROPERTY OPTION SET: SYSOP3

PROPERTIES FOR STREAM 38 PROPERTY OPTION SET: SYSOP3

PROPERTIES FOR STREAM 40 PROPERTY OPTION SET: SYSOP3

PROPERTIES FOR STREAM 5 1 PROPERTY OPTION SET: SYSOP3

REDLICH-KWONG-SOAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL&B ) 44327.1 44327.1 0.000000E+00

E"ALPY(CAL/SEC ) -0.3 14487EM9 -0.3 14485E+09 -0.616936E-05 MASS(KG/HR ) O. 107080E+07 O. 107080E+07 -0.217437E-15

*** INPUTDATA *** SPECIFICATIONS FOR STREAM 43 : TWO PHASE TP FLASH SPECIFIED TEMPERATüRE K 523.150 PRESSURE DROP ATM 0.0 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

SPECJFICATIONS FOR STREAM 45 : TWO PHASE TP FLASH SPECIFIED TEMPERATüRE K 648.150 PRESSURE DROP ATM 0.0 UAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

SPECIFICATIONS FOR STREAM 66 : TWO PHASE TP FLASH SPECIFIED TEMPERATURE K PRESSURE DROP ATM MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

SPECIFICATIONS FOR STREAM 33 : TWO PHASE TP FLASH SPECIFIED TEMPERATURE K PRESSURE DROP ATM

433.150 0.0

30 o . O o 0 1 m

507.150 0.0

Page 17: INGENIENA QUIMICA (C. B.I.)

MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

SPECIFICATIONS FOR S T R E A M 38 : TWO PHASE TP FLASH SPECIFIED TEMPERATURE K PRESSURE DROP ATM MAXIMUM NO. ITERATIONS CONVERGENCETOLERANCE

30 o.Oo0100000

693.150 0.0

o.ooo100000 30

SPECIFICATIONS FOR S T R E A M 40 : TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 783.150 PRESSURE DROP ATM 0.0 MAXIMüM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

SPECIFICATIONS FOR S T R E A M 5 1 TWO PHASE FLASH MAXIMIUN NO. ITERATIONS 30 MAXíMUM NO. ITERATIONS o . o o o 1 m

:

INLET OUTLET OUTLET OUTLET S T R E A M TEMPERATUREPRESSURE VAPORFRAC DUTY

K ATM C U S E C

43 45 66 33 38 40 51

523.15 0.43200E-01 1 .m 0.76450E+07 648.15 0.43200E-01 1 .m 0.10418E+07

507.15 57.298 0.00000E+00 O. 15856Ei-07 693.15 38.23 1 1 .oooo 0.22690E+07 783.15 38.23 1 1 .oooo O. 11460E+07

433.15 1 .oooo 1 .oooo -. 83 348E+07

161.29 38.23 1 0.00000E+00 -.53507E+07

BLOCK: B56 MODEL: HEATER

INLET STREAM: 49 OUTLETSTREAM: 50 PROPERTY OPTION SET: SYSOP3 EDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LRIR ) 68939.6 68939.6 0.000000E+00 MAss(KG/HR ) 0.124195Ei-07 0.124195EMI7 0.000000E+00 E"ALPY(CAL/SEC ) -0.127089E+lO -0.127153E+lO 0.503243E-03

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 423.150 SPECIFIED PRESSURE ATM 38.23 11 MAXIMUM NO. ITERATIONS 30 .

Page 18: INGENIENA QUIMICA (C. B.I.)

CONVERGENCE TOLERANCE o.oO0100000

*** RESULTS *** OUTLETTEMPERATURE K 423.15 OUTLET PRESSURE ATM 38.23 1 HEAT DUTY CWSEC .0.63989E+06 VAPORFRACTION 0.00000EW

V-L PHASE EQUILIBRIUM :

BLOCK: BOMB M0DEL:PUMP ------------------ INLET STREAM: 29 OUTLETSTREAM: 30 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN m RELATIVE DWF.

TOTAL BALANCE MoLE(KMOL/HR) 4959.92 4959.92 0.000000EW MAss(KGmR ) 89353.0 89353.0 0.000000EMIO E "ALPY (CWSEC ) -0.926977EM8 -0.926302EM8 -0.728090E-03

*** INPUTDATA *** OUTLET PRESSURE (ATM ) 57.2982 DRIVER EFFICIENCY 1.00000

FLASH SPECIFICATIONS: LIQulD PHASE CALCULATION NO FLASH PERFORMED UAXIMUM NUMBER OF ITERATIONS 30 TOLERANCE o.oO0100000

*** VOLUMETRIC FLOW RATE (L/MIN ) PRESSURE CHANGE (ATM ) FLUID POWER (KW ) BRAKE POWER (KW ) ELEcnucrrY(Kw ) PUMP EFFICIENCY USED NET WORK (KW )

RESULTS *** 2,117.80 57.1434 204.370 282.577 282.577 0.72324 -282.577

BLOCK: CAL M0DEL:HEA'i'ER

INLET STREAM: 37 OUTLETSTREAM: 32 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

Page 19: INGENIENA QUIMICA (C. B.I.)

IN OUT RELATIVE DIFF. TOTAL BALANCE

-(KMouHR) 3628.40 3628.40 0.000000EMIO MAss(KG/HR ) 65365.6 65365.6 0.000000E#O ENT"Y(CAL,/SEC ) 0.668889E+08 -0.568359EM8 -0.150294

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 523.000 SPECIFIED PRESSURE ATM 38.231 1 MAMMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RpJuLm *** OUTLETTEMPERATURE K 523.00 OUTLET PRESSURE ATM 38.23 1 HEAT DUTY C U S E C O. 10053E+08 VAPOR FRACTION 1 .oooo

V-L PHASE EQUILIBRIUM :

BLOCK: CALEN MODEL: HEATER

INLET STREAM: 64 OUTLETSTREAM: 65

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 762.757 762.757 0.000000E#O MASS(KG/HR ) 21395.1 21395.1 0.000000E+00 E"ALPY(CAUSEC ) 104500. O. 112510E+07 -0.9071 19

*** INPUTDATA *** TWO PHASETPFLASH SPECIFIED TEMPERATURE K 1,173.15 SPECIFIED PRESSURE ATM 0.043200 MAXIMUM NO. ITERATIONS 30 CONVERGENCETOLERANCE o.Oo0100000

*** RESULTS *** OUTLETTEMPERATLIRE K 1173.2 OUTLET PRESSURE ATM 0.43200E-01 HEAT DUTY C U S E C O. 10206Ei-07 VAPOR FRACTION 1 .oooo

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I) c02 0.68568E-05 0.66544E-05 0.68568E-05 28919. CH4 0.65325E-01 0.63249E-01 0.65325E-01 28986.

Page 20: INGENIENA QUIMICA (C. B.I.)

N2 0,7291 1 0.72547 0.7291 1 28206. H20 0.22394E-03 0.23916E-03 0.22394E-03 26279. CH30H 0.11197E-01 0.93690E-02 0.11197E-01 33541. c2H6 0.26605E-02 0.22323E-02 0.26605E-02 33448. C3H8 0.57597E-03 0.40847E-03 0.57597E-03 39574. 02 o. 19090 0.19902 *

BLOCK: DIVl MODEL: SSPLiT

INLETSTREAM: 50 OUTLETSTREAMS: 51 53 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LMR) 68939.6 68934.5 0.743614E44 MASS(KG/HR ) 0.124195Ei-07 O. 124185EM7 0.7436 1 4 E a E"ALPY(CAL/SEC ) -0.127153E+10 -0.127143E+lO -0.743614E-04

*** INPUTDATA ***

MASS-FLOW(KG/HR ) SUBSTRM- STRM= FLOW= KEY=

MIXED 51 62,500.0 O

STRM= 51 SUBSTRM= MIXED SPLIT FRACT= 0.050328

STRM= 53 SUBSTRTví= MIXED SPLiT FRACT= 0.94%7

BLOCK: DIVlO MODEL: FSPLiT

INLET STREAM: 30 OUTLETSTREAMS: 30B 30A PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DFF.

TOTAL BALANCE MOLE(KM0LMR ) 4959.92 4959.92 0.000000E+00 MASS(KG/HR ) 89353.0 89353.0 0.000000E+00 E"ALPY(CAL/SEC ) -0.926302Ei-08 -0.926302EM8 0.000000E+00

*** INPUTDATA ***

MASS-FLOW(KG/HR ) STRM=30B FLOW= 87,398.0 KEY=O

*** RESULTS ***

STREAM= 30B SPLIT= 0.97812 KEY= O 30A 0.02 1880 O

BLOCK: DIV2 MODEL: SSPLIT

Page 21: INGENIENA QUIMICA (C. B.I.)

INLET STREAM: 34 OUTLETSTREAMS: 36 35 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE W A T I O N OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LMR ) 4851.40 4851.40 0.000000E+00

E"ALPY(CAUSEC ) 0.868979Ei-08 -0.868979EM8 0.000000E+00 MAss(KG/HR ) 87398.0 87398.0 -0.166502E- 15

*** MPUTDATA ***

MASS-nx>W(KG/HR ) suBsTRM= STRM= FLOW= KEY=

MIXED 36 64,158.0 O

*** RESULTS ***

STRM= 36 SUBSTRM= MIXED SPLIT FRACT= 0.73409

STRM= 35 SUBSTRM= MIXED SPLIT FRACT= 0.26591

BLOCK: DIV3 MODEL: SSPLIT

INLET STREAM: 44 OUTLETSTREAMS: 45 74 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR) 17331.0 17331.0 0.000000E+00 MASS(KG/HR ) 500000. 500000. 4.1 1641 5E-15 E"ALPY(CAL/SEC ) 0.764472EM7 0.764472EM7 -0.121826E-15

*** INPUTDATA ***

MASS-FLOW(KG/HR ) sUBsTRM= STRM= FLOW= KEY=

MIXED 45 119,000. O

*** RESULTS ***

STRM= 45 SUBSTRM= MIXED SPLIT FRACT= 0.23800

STRM= 74 SUBSTRM= MIXED SPLIT FRACT= 0.76200

BLOCK: DIV4 MODEL: SSPLIT

INLET STREAM: 46 OUTLETSTREAMS: 47 48 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

Page 22: INGENIENA QUIMICA (C. B.I.)

*** W S AND ENERGY BALANCE *** IN QUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOIA-lR ) 4 124.77 4124.77 0.000000E+00 MASS(KG/HR) 119Ooo. 119Ooo. 0.000000E+00 E"ALPY(CAL/SEC ) 0.286126EHI7 0.286126EHI7 0.000000E+00

*** INPUTDATA ***

FRACTION OF FLOW suBsTRM= STRM= FRAC=

MIXED 47 0.16810

STRM= 47 SUBSTRM= MIXED SPLIT FRACT= 0.16810

STRM= 48 SUBSTRM= MIXED SPLIT FRACT= 0.83 190

BLOCK: DIV5 MODEL: SSPLIT

INLETSTREAM: 39 OUTLETSTREAMS: 40 78 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL, BALANCE MOLE(KM0LíHR ) 4890.68 4890.68 0.165164E-15 MASS(KG/HR) 88105.65 88105.65 0.000000E+00 E"ALPY(CAUSEC ) -0.743390Ei-08 -0.743390Ei-08 0.000000E+00

*** INPUTDATA ***

MASS-FLOW(KG/HR ) suBsTRM= STRM= FLOW= KEY=

MIXED 40 85,598.0 O

*** RESULTS ***

STRM= 40 SuBSTRM= MIXED SPLIT FRACT= 0.97154

STRM= 78 SUBSTRM= MIXED SPLIT FRACT= 0.028462

BLOCK: DIV6 MODEL: SSPLIT

INLET STREAM: 56 OUTUETSTREAMS: 57 58 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE

Page 23: INGENIENA QUIMICA (C. B.I.)

MOLE(Kh4OLMR ) 76.3713 76.3713 0.000000E+00 MAss(K- 1 1285.00 1285.00 0.000000E+00 E"ALPY(CAL/SEC ) -383877. -383877. 0.OOOOOOEMNI

*** INPUTDATA ***

MASS-FLOW(KG/HR ) suBsTRM= STRM= now= KEY=

MIXED 57 880.000 O

STRM= 57 SUBSTRM= MIXED SPLIT FRACT= 0.68482

STRM= 58 SUBSTRM= MIXED SPLIT FRACT= 0.31518

BLOCK: D IW MODEL: SSPLIT

INLET STREAM: 3 OUTLETSTREAMS: 4 7 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 124 1.74 1241.74 0.000000E+00 MASS(KG/HR ) 8o00.00 8o00.00 0.000000E+00 ENTHALPY(CAL/SEC ) -0.248683Ei-07 -0.248683Ei-07 0.000000E+00

*** INPUTDATA ***

MASS-FLOW(KG/HR ) sUBsTRM= STRM= now= KEY=

MIXED 7 7,400.00 O

*** RESULTS ***

s m = 4 SUBSTRM= MIXED SPLIT FRACT= 0.075000

s m = 7 SUBSTRM= MIXED SPLIT FRACT= 0.92500

BLOCK: DIV8 MODEL: SSPLIT

INLET STREAM: 1 OUTLETSTREAMS: 2 6 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE Ir**

IN OUT RELATIVE DiFF. TOTAL BALANCE

MOLE(KMOL/HR ) 771.736 771.736 0.000000E+00 MASS(KG/HR ) 12985.0 12985.0 0.000000E+00 ENTALPY(CNSEC) -0.391 170Ei-07 -0.391 170E+07 0.000000E+00

*** INPUTDATA ***

Page 24: INGENIENA QUIMICA (C. B.I.)

MAss-FLow(KG/HR ) suBsTRM= STRM= FLOW= KEY=

MIXED 2 11,700.0 O

sTRM= 2 SUBSTRM= M[XED SPLIT FRACT= 0.90104

STRM= 6 SuBSTRM= MüCED SPLIT mCT= 0.098960

BLOCK: ENF M0DEL:HEATX

HOT SIDE:

INLETSTREAM: 19 OUTLETSTREAM: 20 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 87 OUTLETSTREAM: 88 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 7906.53 7906.53 0.000000E+00 MAss(KG/HR ) 117397. 117397. 0.000000EW E"ALPY(CAL/SEC ) -0.104256EMP9 -0.104256E+09 0.727850E-06

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITEMTIONS CONVERGENCE TOLERANCE

30 o.Ooo100000

30 o.Ooo100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HOT OUTLET TEMPERATURE HOT STREAM OUTLET TEMPERATURE (K ) 313.150 HOT STREAM OUTLET PRESSURE (ATM ) 12.6308 COLD STREAM OUTLET PRESSURE (ATM ) 2.57450

HEAT TRANSFER COEFFICIENTS (CUSEC-SQCM-K ): HOT STREAM PHASE LIQUID LIQUID 0.020302 BOILING LIQUID LIQUID 0.020302

COLD STREAM PHASE

Page 25: INGENIENA QUIMICA (C. B.I.)

VAPOR LIQvn, 0.020302 LIQUID BOILING LIQUID 0.020302 BOILING LIQUID BOILING LIQUID 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQUID VAPOR 0.020302 VAPOR VAPOR 0.020302

*** ~~~ *** HOT STREAM INLET TEMPERATURE (K ) 333.150 HOT STREAM OUTLET TEMPERATURE (K ) 313.150 COLD STREAM INLET TEMPERATURE (K ) 305.150 COLD STREAM OUTLET TEMPERATURE (K ) 312.605 EXCHANGER HEAT DüTY (CAUSEC ) 206,694. HEAT TRANSFER AREA (SQM ) 76.5442

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY (HOT-COLD) (WW (CUSEC )

1 B-L 76.5442 206,694.

SECTION TEMPERATüRE LEAVING SECTION HOT STREAM COLD STREAM

( X I 6 ) 1 3 13.150 3 12.605

BLOCK: ENF2 M0DEL:HEATER

INLET STREAM: 17 OWLETSTREAM: 17A PROPER" OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** M OUT RELATIVEDET.

TOTAL BALANCE MOLE(KM0LJ-R ) 4043.04 4043.04 O.OOOWOE+OO MAss(KGMR ) 47800.3 47800.3 O.OOOWOE+OO ENTHALPY(CAWSEC ) -0.276640Ei-08 -0.273182Ei-08 -0.125016E-01

*** INPUTDATA *** ONE PHASE TP FLASH SPECIFIEDPHASEIS VAPOR SPECIFIED TEMPERATURE K 333.150 SPECIFIED PRESSURE ATM 13.2599 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000000E+00

Page 26: INGENIENA QUIMICA (C. B.I.)

*** RESULTS *** OUTLETTEMPERATURE K 333.15 OUTLETPRESSURE ATM 13.260 HEAT DUTY CAUSEC 0.34584Ea

BLOCK: FLASH1 MODEL: FLASH2

INLET STREAM: 17A OüTLETVAPORSTREAM: 19 OUTLET LIQUID STREAM: 18 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONGSOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DiFF.

TOTAL BALANCE MOLE(KMOL/HR) 4043.04 4043.04 0.000000E+00 MASS(KG/HR ) 47800.3 47800.3 0.864641E-08 E ”ALPY (CUSEC ) -0.273182EM8 -0.301738EM8 0.946407E-01

*** INPUTDATA *** TWO PHASE Tp FLASH SPECIFIED TEMPERATURE K 333.150 SPECIFIED PRESSURE ATM 12.6308 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

*** RESULTS *** OUTLETTEMPERATLIRE K 333.15 OUTLET PRESSURE ATM 12.63 1 HEAT DUTY C U S E C -0.28557EM7 VAPORFRACTION 0.76112

V-L PHASE EQUILIBluuM :

COMP c02 co H2 CH4 N2 H20 CH3OH

F(I) 0.80475E-01 0.80271E-0 1 0.56498 0.24901E-01 O. 1 15 17E-04 0.24923 O. 12900E-03

X(I) WI) O. 10266E-03 O. 10570 0.22285E-06 O. 10546 0.26972E-05 0.74231 0.62863E-06 0.32716E-01

0.99981 0.13652E-01 0.86769E-04 O. 14225E-03

0.29679E- 10 O. 15 132E-04

K(I) 1029.6 0.47325E+06 0.27521E+06 52044. O. 5O987E+06 0.13655E-01 1.6394

BLOCK: FLASH2 MODEL: FLASH2

INLET STREAM: 20 OUTLET VAPOR STREAM: 22 OUTLET LIQUID STREAM: 21 PROPERl’Y OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OllT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 3077.22 3077.22 -0.147778E-15

Page 27: INGENIENA QUIMICA (C. B.I.)

MAss(KG/HR ) 30397.5 30397.5 O. 10172813-13 E”ALPY(CAL/SEC ) -0.120565Ei-08 -0.120541E+O8 -0.198516E-03

*** MPUTDATA *** TWO PHASETPFLASH SPECIFIED TEMPERATURE K 313.150 SPECIFIED PRESSURE ATM 12.0017 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

*** RESULTS *** OUTLETTEwERATüRE K 313.15 OUTLET PRESSURE ATM 12.002 HEAT DUTY C U S E C 2393.4 VAPORFRACTION 0.99133

V-L PHASE EQUILIBRIUM :

cow c02 co H2 CH4 N2 H20 CH3OH

F(I) X(I) 0.10570 0.87135E-04 O. 10546 O. 10130E-06 0.7423 1 O. 11809E-05 0.32716E-01 0.33 185E-06

0.136528-01 0.99976 O. 14225E-03 0.15177E-03

0.15132E-04 0.13369E-10

Y(I) K(I) o. 10662 1223.7 O. 10639 O. 10502Ei-07 0.74880 0.63409Ei-Oó 0.33002E-01 99449. O. 15265E-04 O. 11418EH7 0.50307E-02 0.50319E-02 O. 14216E-03 0.93672

BLOCK: FSPLIT MODEL: FSPLlT

INLETSTREAMS: 26 24 27 28 OUTLETSTREAMS: 29 25 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 5015.43 5015.43 0.000000E+00 MAss(K- 1 90353.0 90353.0 0.000000E+00 ENTHALPY(CAL/SEC ) -0.937351Ei-08 -0.937351Ei-08 0.759699E-07

*** INPUTDATA ***

OUTLETPRESSURE ATM O. 15480

MASS-FLOW(KG/HR ) STRM=25 FLOW= 1,OOO.00 KEY=O

*** RESULTS ***

STREAM= 29 SPLIT- 0.98893 KEY= O 25 0.01 1068 O

Page 28: INGENIENA QUIMICA (C. B.I.)

BLOCK: FSPLIT2 MODEL: FSPLIT 1-1

INLETSTREAMS: 86 36 55 OUTLETSTREAMS: 37 49 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATWE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 72568.0 72368.0 0.000000EMO

ENTHALPY(CAL/SEC ) -0.133778E+lO -0.133778E+lO -0.798787E-08 MAss(K- 1 0.130731E+07 0.130731E+07 -0.178OWE-15

*** INPüTDATA ***

OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES

FRACTION OF FLOW sTRM=37 FRAC= 0.050000

*** RESULTS ***

STREAM= 37 SPLIT= 0.05oooO KEY= O 49 0.95000 O

BLOCK: INTER1 M0DEL:HEATX

HOT SIDE:

INLET STREAM: 61 OUTLETSTREAM: 62 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 10 OUTLET STREAM: 11 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DiFF.

TOTAL BALANCE MOLE(Kh4OL/HR) 6904.72 6904.72 0.000000EMO MASS(KG/HR ) 154601. 154601. 0.000000EMO E"ALPY(CAUSEC ) -0.479376E+08 -0.479376EM8 0.243397E-07

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIOPS CONVERGENCE TOLERANCE

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH

30 o.Ooo100000

Page 29: INGENIENA QUIMICA (C. B.I.)

MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 o.Ooo100000

COUNTERCURRENT HEAT EXCHANGER WlTH SPECIFIED HOT OUTLET TEMPERATURE HOT STREAMOUTLEVTEMPERATURE (K ) 1,173.15

COLD STREAM OUTLET PRESSURE (ATM ) 15.1956 HOT STREAM PRESSURE DROP (ATM ) 0.0

HEAT TRANSFER COEFFICIENTS (CUSEC-SQCM-K ): HOT STREAM PHASE LIQUID LIQUID 0.020302 BOILING LIQUID LIQUID 0.020302 VAPOR LIQUID 0.020302 LIQUID BOILI[NG L I Q W 0.020302 BOiLING LIQUID BOILING LIQüiD 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQUID VAPOR 0.020302 VAPOR VAPOR 0.020302

COLD STREAM PHASE

*** RESULTS *** HOT STREAM INLET TEMPERATURE (K ) 1,253.15 HOT STREAM OUTLET TEMF'ERATURE (K ) 1,173.15 COLD S T R E A M INLET TEMPERATURE (K ) 686.415 COLD STREAM OUTLET TEMF'ERATURE (K ) 787.542 EXCHANGER HEAT DUTY (CAWSEC ) HEAT TRANSFER AREA (SQM ) 8.54934

826,345.

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY (HOT-COLD) (SQM) (CUSEC )

1 v-v 8.54934 826,345.

SECTION TEMF'ERATüRE LEAVING SECTION HOT STREAM COLD S T R E A M

(K) (K) 1 1,173.15 787.542

BLOCK: INTER2 M0DEL:HEATX

HOT SIDE:

INLET STREAM: 12 OUTLET STREAM: 13 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 53 OUTLETSTREAM: 54 PROPERTY OPTION SET: SY SOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

Page 30: INGENIENA QUIMICA (C. B.I.)

*** MASS AND ENERGY BALANCE *** IN (XIT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0IJHR ) 69508.2 69508.2 0.000000E+00 MAsw- 1 O. 122716E+07 0.122716E+07 ENTHALPY(CUSEC ) -O.l22733E+lO -0.122733E+lO -O.2%768E-08

*** RUPUTDATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXlMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 o.Ooo100000

30 o.Oo0100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HOT OUTLET TEMPERATURE HOT S T R E A M OUTLET TEMfERATüRE (K ) 703.150 HOT S T R E A M OüTLET PRESSURE ( A m ) 13.2599 COLD S T R E A M PRESSURE DROP (ATM ) 0.0

HEAT TRANSFER COEFFICIENTS (CUSEC-SQCM-K ): HOT S T R E A M PHASE LIQUID LIQUID 0.020302 BOILING LIQUID LIQUID 0.020302 VAPOR LIQUID 0.020302 LIQUID BOILING LIQUID 0.020302 BOILING LIQUID BOILING LIQUID 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQUID VAPOR 0.020302 VAPOR VAPOR 0.020302

COLD S T R E A M PHASE

*** *a*

HOT S T R E A M INLET TEMPERATURE (K ) 1,138.15 HOT S T R E A M OUTLET TEMPERATLIRE (K ) 703.150 COLD S T R E A M INLET TEMPERATLIRE (K ) 423.150 COLD STREAM OUTLET TEMPERATLIRE (K ) 433.726 EXCHANGER HEAT DUTY (CUSEC ) HEAT TRANSFER AREA (SQM ) 44.6508

4,170,200.

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY (HOT-COLD) (SQM) (CUSEC )

1 v-L 44.6508 4,170,200.

SECTION TEMPERATURE LEAVING SECTION HOT S T R E A M COLD S T R E A M

(K) (K) 1 703.150 433.726

Page 31: INGENIENA QUIMICA (C. B.I.)

BLOCK: INTER3 M0DEL:HEATX

HOT SIDE:

INLET STREAM: 13 OUTLETSTREAM: 14 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONGSOAVJ.? EQUATION OF STATE

COLD SIDE:

INLET S T R E W 5A OUTLETSTREAM: 8 PROPERTY OPTION SET: SYSOP3 REDLICH-KWoNEsoAvE EQUATION OF STATE

*** MASS AND ENFAGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 4831.53 483 1.53 0.000000E+00 MASS(KG/HR ) 60100.3 60100.3 0.000000E+00 ENTHALPY(CAL/SEC ) 4.278205E+08 4.278205E+08 4.102547E-06

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. II'ERATIONS CONVERGENCE TOLERANCE

30 o . oO01m

30 o .oO01m

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HOT OUTLET TEMF'ERATURE HOT S T R E A M OUTLET TEMPERATLJRE (K ) 597.150 HOT STREAM OUTLET PRESSURE (ATM ) 13.2599 COW S T R E A M PRESSURE DROP (ATM ) 0.0

HEAT TRANSFER COEFFICIENTS (CAL/SEC-SQCM-K ): HOT S T R E A M PHASE LIQUID LIQUID 0.020302 BOILING LIQUID LIQUID 0.020302 VAPOR LIQUID 0.020302 LIQUID BOILING LIQUID 0.020302 BOILING LIQUID BOILING LIQUID 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQUID VAPOR 0.020302 VAPOR VAPOR 0.020302

COLD STREAM PHASE

*** RESULTS *** HOT STREAM N E T TEWERATURE (K ) 703.150 HOT S T R E A M OUTLET TEMPERATURE (K ) 597.150

Page 32: INGENIENA QUIMICA (C. B.I.)

coLDsTREAMINLETTEMpERATuRE(K coLDsTREAh4ouTLETTEMpERATuRE(K EXCHANGER HEAT DUTY (CUSEC ) HEAT TRANSFER AREA (SQM )

255.588 662.137 %1,463. 33.39%

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY

1 v-v 33.3996 961,463. (HOT-COLD) (SQM) (c-c 1

SECTION TEMPERA'KJRE LEAVING SECTION HOT STREAM COLD STREAM

(K) (K) 1 597.150 662.137

BLOCK: iNTER4 M0DEL:HEATX

HOT SIDE:

INLET STREAM: 14 OUTLET STREAM: 15 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 31 OUTLETSTREAM: 33 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVEDIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 8894.44 8894.44 0.000000E+00 MASS(KG/HR ) 135198. 135198. 0.000000EMO ENTHALPY(CAL/SEC ) -O. 115084E+09 -0.115O84EM9 O. 185199E-05

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITEMTIONS CONVERGENCE TOLERANCE

30 o.Ooo100000

30 o .Ooo1m

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HEAT DUTY EXCHANGER HEAT DUTY (CUSEC ) HOT STREAM OUTLET PRESSURE (ATM ) 13.2599 COLD STREAM PRESSURE DROP (ATM ) 0.0

1,588,870.

Page 33: INGENIENA QUIMICA (C. B.I.)

HEAT TRANSFER COEFFICIENTS (CAUSEC-SQCM-K ): HOT STREAM PHASE LIQUID LIQvn, 0.020302 BOILING LIQüID LIQUID O. 020302

LIQUID BOILING LIQUID 0.020302 BOILING LIQUID BOILING LIQUID 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQüID VAPOR 0.020302 VAPOR VAPOR 0.020302

COLD STREAM PHASE

VAPOR LIQUID 0.020302

*** RESULTS *** HOT STREAM INLET TEMPERATURE (K ) 597.150 HOT STREAMOUTLETTEMPERATURE (K ) 416.666 COLD STREAM INLET TEMPERATURE (K ) 402.279 COLD STREAM OUTLET TEMPERATURE (K ) 456.63 1 EXCHANGER HEAT DUTY (CAUSEC ) HEAT TRANSFER AREA (SQM ) 141.409

1,588,870.

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY (HOT-COLD) ( S Q W (CWSEC )

1 v-L 141.409 1,588,870.

SECTION TEMPERATURE LEAVING SECTION HOT STREAM COLD STREAM

(K) (K) 1 416.666 1 456.631

BLOCK: INTER5 M0DEL:HEATX

HOT SIDE:

INLET STREAM: 15 OUTLETSTREAM: 16 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 30B OUTLETSTREAM: 31 PROPERTY OPTION SET SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LHR ) 8894.44 8894.44 0.000000E+00 MASS(KG/HR ) 1 135198. 135198. 0.000000EtOO E"ALPY(CAL/SEC ) -0. 117204EW -0.1 17204EW -0.453855B-06

Page 34: INGENIENA QUIMICA (C. B.I.)

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

*** MPUTDATA ***

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXiMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 o.Oo0100000

30 o.oO0100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HOT OUTLET TEM'ERATüRE

HOT S T R E A M OUTLET PRESSURE (ATM ) 13.2599 HOT S T R E A M OUTLET TEMPJBATURE (K ) 406.150

COLD S T R E A M PRESSURE DROP (ATM ) 0.0

HEAT TRANSFER COEFFICIENTS (CAUSEC-SQCM-K ): HOT S T R E A M PHASE LIQUID LIQUID 0.020302 BOILING LIQUID LIQUID 0.020302 VAPOR LIQUID 0.020302 LIQUID BOILING LIQUID 0.020302 BOILING LIQUID BOILING LIQUID 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQUID VAPOR 0.020302 VAPOR VAPOR 0.020302

COLD S T R E A M PHASE

*** RESULTS *** HOT S T R E A M INLET TEMPERATURE (K ) 416.666

COLD S T R E A M INLET TEMPERATLIRE (K ) 383.582 COLD S T R E A M OUTLET TEMPERATWE (K ) 402.279 EXCHANGER HEAT DUTY (CAUSEC ) HEAT TRANSFER AREA (SQM ) 172.621

HOT S T R E A M OUTLET TEMPERATURE (K ) 406.150

53 1,064.

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY (HOT-COLD) (SQW (CAUSEC )

1 v-L 21.0433 51,9&6.3 2 B-L 15 1.578 479,077.

SECTION TEMPERATURE LEAVING SECTION HOT S T R E A M COLD STREAM

(K) (K) 1 410.651 402.279 2 406.150 400.460

BLOCK: MTER6 M0DEL:HEATX

I HOT SIDE:

Page 35: INGENIENA QUIMICA (C. B.I.)

INLETSTREAM: 16 OUTLETSTREAM: 17 PROPERTY OPTION SET: SYSOP3

, COLD SIDE:

INLET STREAM: 23 OUTLETSTREAM: 24 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONGSOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATiVEDIFF.

TOTAL BALANCE MOLE(KMOL/HR) 6169.04 6169.04 0.000000E+00 MAss(K- 1 86100.3 86100.3 0.000000E+00 EN"HALPY(CAWSEC ) -0.676906EM -0).676%XEM -0.220136E-15

*** INPUTDATA *** FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

30 o.oO0100000

30 o.Oo0100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECIF'IED HOT OUTLET TEMPERATüRE

HOT STREAM OUTLET PRESSURE (ATM ) 13.2599 HOT STREAM OUTLET TEMPERATURE (K ) 400.150

COLD STREAM PRESSURE DROP (ATM ) 0.0

HEAT TRANSFER COEFFICIENTS (CAUSEC-SQCM-K ): HOT STREAM PHASE LIQUID LIQUID 0.020302 BOILING LIQUID LIQüiD 0.020302 VAPOR LIQUID 0.020302 L I Q W BOILING LIQUID 0.020302 BOILING LIQUID BOILING LIQUID 0.020302 VAPOR BOILING LIQUID 0.020302 LIQUID VAPOR 0.020302 BOILING LIQUID VAPOR 0.020302 VAPOR VAPOR 0.020302

COLD STREAM PHASE

*** RESULTS *** HOT STREAM INLET TEMPERATüRE (K ) 406.150 HOT STREAM OUTLET TEMPEUTURE (K ) 400.150 COLD STREAM INLET TEMPERATURE (K ) 315.150 COLD STREAM OUTLET TEMPERATLJRE (K ) 3 15.150 EXCHANGER HEAT DUTY (CAWSEC ) HEAT TRANSFER AREA (SQM ) 29.7955

532,111.

Page 36: INGENIENA QUIMICA (C. B.I.)

AREA CALCULATION RESüLTS:

SECTION CONDITIONS AREA HEAT DüTY

1 B-B 29.7955 532,111. (HOT-COLD ) (SQM) (c- 1

SECTION TEMFTRA'KJRE LEAVING SECTION HOT STREAM COLD STREAM

(K) (K) 1 400.150 315.150

BLOCK: MEZl M0DEL:MUCER

INLETSTREAMS: 47 63 57 OUTLETSTREAM: 64 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVEDIFF.

TOTAL BALANCE MOLE(Kh4OLM.R ) 762.757 762.757 0.000000E+00 MASS(KG/HR ) 21395.1 21395.1 0.000000E+00 E"ALPY(CAL/SEC ) 104500. 104500. 0.306075E-07

*** INPUTDATA *** ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000 OUTLETPRESSURE ATM 0.043200

BLOCK: MEZ2 M0DEL:MiXER

INLETSTREAMS: 54 . 52

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE OUTLETSTREAM: 55

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LM.R ) 68934.5 68934.5 0.000000E+00 MASS(KG/HR ) 0.124185E+07 0.124185E+07 0.000000E+00 E"ALPY(CAL/SEC ) -0.127261E+lO -0.127261E+lO -0.48766OE-12

*** INPUTDATA *** ONE PHASE FLASH SPECIFIEDPHASEIS LIQUID MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.O00100000 OUTLETPRESSURE ATM 38.23 1 1

BLOCK: MEZ3 M0DEL:MIXER

INLETSTREAMS: 42 32 OUTLETSTREAM: 38 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

Page 37: INGENIENA QUIMICA (C. B.I.)

*** ' W S AND ENERGY BALANCE *** IN OUT RELATWE DFF.

TOTAL BALANCE MOLE(KMOL/HR) 4890.68 4890.68 0.000000E+00 MASS(KG/HR ) 88105.6 88105.6 0.000000E+00 ENTHALPY(CAL/SEC ) -0.766079E+08 -0.766079EM8 -0.369070E-08

*** INPUTDATA *** TWO PHASE FLASH MAXlMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.OoO1m OUTLET PRESSURE: MINlMuM OF INLET STREAM PRESSURES

BLOCK: MEZ4 MODEL:MD(ER

INLETSTREAMS: 62 65 OUTLETSTREAM: 66 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DlFF.

TOTAL BALANCE MOLE(KMOL/HR ) 4908.40 4908.4 0.000000E+00 MAS!3jCG/HR) 1281%. 1281%. 0.000000EW ENTHALPY(CAL/SEC ) -0.150028E+08 -0.150027E+08 -0.144084E-07

*** INPUTDATA *** ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXlMüM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.OoO 1 OOOOO OUTLETPRESSURE ATM 1.00000

BLOCK: MEZ5 M0DEL:MIXER

INLETSTREAMS: 7 59 OUTLETSTREAM: 60 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATlVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 1172.68 1172.68 0.000000E+00 MASS(KG/HR ) 7805.00 7805.00 -0.233054E-15 ENTHALPY(CAWSEC ) -0.242126EM7 -0.242126E+07 -0.3 15613E-08

*** INPUTDATA *** ONE PHASE FLASH SPFCIFIED PHASE IS VAPOR MAXiMüM NO. ITEiUTIONS 30 CONVERGENCE TOLERANCE o.Oo0100000 OUTLET PRESSURE ATM 1.45180

Page 38: INGENIENA QUIMICA (C. B.I.)

BLOCK: MEzó M0DEL:MIXER

INLETSTREAMS: 2 4 OlnzETSTREAM: 5 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONGSOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DJFF.

TOTAL BALANCE MOLE(KM0IJHR ) 788.4% 788.4% 0.000000E+00 wss(KG/HR 1 12300.0 12300.0 -0.147885E-15 E"AL,PY(CAL.ISEC ) -0.371 11 1EM7 -0.371 1 IIE+07 0.3599038-07

*** INPUTDATA *** ONE PHASE FLASH SPECIFLEDPHASEIS VAPOR MAXIMUM NO. ITEMTIONS 30 CONVERGENCE TOLERANCE o.oO0100000 OUTLETPRESSURE ATM 35.0371

BLOCK: MEZ7 M0DEL:MIXER

INLETSTREAMS: 9 8 OUTLET STREAM: 10 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0UHR ) 2759.08 2759.08 0.000000E+00

ENTHALPY(CAL/SEC ) -0.326361Ei-08 4).326361E+08 O. 176714E-08 MASS(KG/HR ) 47800.0 47800.0 -0.1522 17E-15

*** INPUTDATA *** ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.oO0100000 OUTLETPRESSURE ATM 16.0377

BLOCK: RSTOICl MODEL: RSTOIC

INLETSTREAMS: 48 60 OüTLETSTREAM: 61 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT GENERATION RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LlH.R ) 4604.08

E"ALPY(CAL/SEC ) -40972.9 -0.153015EM8 0.997322

4145.64 -458.442 0.321004E-15 0.5 1337 1E45 MASS(KG/HR ) 10680 1. 106801.

Page 39: INGENIENA QUIMICA (C. B.I.)

*** INPUTDATA ***

SIMULTANEOUS REACTIONS STOICHIOMETRY MA=

REACTION# 1: SmSTREAM MIXED : C02 1.00 CH4 -1.00 H20 2.00 02

REACTION# 2: SUBSTREAMMUCED : C02 2.00 H20 3.00 C2H6 -1.00 02

REACTION# 3: SUBSTREAMMMED : COZ 3.00 H20 4.00 C3H8 -1.00 02

REACTION# 4: SUBSTREAMMIXED : c02 2.00 co -2.00 02 -1.00

REACTION# 5: SUBSTREAMMIXED : H2 -2.00 H20 2.00 02 -1.00

REACTION# 6: SUBSTREAMMD(ED : C02 1.00 H20 2.00 CH3OH -1.00 02

-2.00

-3.50

-5.00

-1.50

REACTION CONVERSION SPECS: NUMBER= 6 REACTION# 1: SUBSTREAM:MIXED KEY COMP:CH4 COWFRAC: 1.OOO REACTION# 2: SUBSTREAM:MIXED KEY COMP:C2H6 C O W FRAC: 1.OOO REACTION# 3: SUBSTREAM:MMED KEY COMP:C3H8 C O W FRAC: 1.OOO REACTION# 4: SUBSTREAM:MIXED KEY C0MP:CO C O W FRAC: 1.OOO REACTION# 5: SUBSTREAM:MIXED KEY C0MP:W C O W FRAC: 1.OOO REACTION# 6: SUI3STREAM:MIXED KEY COMP:CH3OH C O W FRAC: 1 .O00

ONE PHASE TP FLASH SPECIFIEDPHASEIS VAPOR SPECIFIED TEMPERATURE K 1,253.15 SPECIFIED PRESSURE ATM 0.043200 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.oO0100000

*** RESULTS **e

OUTLETTEMPERATURE K 1253.2 OUTLETPRESSURE ATM O. 432OOE-O 1 HEAT D U N CAWSEC 4).15261E+OS

Page 40: INGENIENA QUIMICA (C. B.I.)

BLOCK: RSTOIC2 MODEL: RSTOIC

INLET STREAM: 11 OUTLET STREAM: 12 PROPERTY OPTION SET: SYSOP3 REDLICH-KWNGSOAVE EQUATION OF STATE?

*** MASS AND ENERGY BALANCE *** IN OüT GENERATION RELATIVEDEF.

TOTAL BALANCE 2759.08 4043.04 1283.% 0.224953E- 15

-0.67 1523E-05 MOLE(KMOUHR) MAss(KGMR 1 47800.0 47800.3 E"ALPY(CAL/SEC ) 4.318098EM8 4).198801E+08 -0.375032

*** INPUTDATA *** SIMULTANEOUS REACTIONS STOICHIOMETRY MATRIX:

REACTION# 1: SUBSTREAMMIXED : C02 1.00 CO 1.00 H2 6.00 H20 -3.00 C2H6 -1.00

REACTION# 2: SUBSTREAMMIXED : C02 1.00 CO 1.00 H2 7.00 CH4 -2.00 H20 -3.00

REACTION# 3: SUBSTREAMMIXED : C02 3.00 CO 3.00 H2 17.0 H20 -9.00 C3H8 -2.00

REACTION CONVERSION SPECS: NUMBER= 3 REACTION# 1: SUBSTREAM:MiXED KEY COMP:C2H6 C O W FRAC: 1.OOO REAcllON# 2: SUBSTREAh4:MIXED KEY COMP:CH4 C O W FRAC: 0.8500 REACTION# 3: SUBSTREAM:MIXED KEY COMP:C3HS C O W FRAC: 1.OOO

ONE PHASE TP FLASH SPECIFIEDPHASEIS VAPOR SPECIFIED TEMPERATüRE K 1,138.15 SPECFED PRESSURE ATM 13.2599 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.OOO100000

*** RESULTS *** OUTLETTEMPERATüRE K 1138.2 OUTLETPRESSURE ATM 13.260 HEAT DUTY CAIJSEC O. 1 1930E+08

Page 41: INGENIENA QUIMICA (C. B.I.)

BLOCK: TURB M0DU:COMPR

INLET STREAh4: 6A OUTLETSTREAM: 56 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS ANDENERGY BALANCE *** IN OUT RnATIVEDIFF.

TOTAL BALANCE MOLE(KMOL/HR) 76.3713 76.3713 0.OOOOOOEW MAss(KG/HR ) 1285.00 1285.00 0.000000E+00 ENTHALPY(CWSEC ) -383845. -383877. 0.843105E-04

*** INPUTDATA ***

GAS PHASE CALCULATION NO FLASH PERFORMED TYPE : POLYTROPIC CENTRIFUGAL COMPRESSOR OUTLETPRESSURE ATM 2.90360 OUTLETTEMPERATüRE K 294.150 MECHANICAL EFFICIENCY 1 .00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW -0.13551 BRAKE HORSEPOWERREQUIREMENT KW -0.13551 NET WORK, KW 0.13551 CALC EFFICIENCY OLYTiUISENTR) -45.8133 OUTLET VAPOR FRACTION 1.00000

BLOCK: VALV MODEL: HEATER

INLET STREAM: 58 OUTLETSTREAM: 59 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 24.0703 24.0703 0.000000EMlO MASS(KG/HR ) 405.000 405.000 0.000000EMlO E"ALPY(CAL/SEC ) -120988. -120943. -0.371619E-03

*** INPUTDATA *** ONE PHASE TP FLASH SPECIFIED PHASE IS VAPOR SPECIFIED TEMPERATURE K 294.150 SPECIFIED PRESSURE ATM 1.45180 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o . o O 0 1 m

*** RESULTS *** OUTLETTEMPERATURE K 294.15 OUTLETPRESSURE ATM 1.4518 HEAT DUTY CAUSEC 44.%2

Page 42: INGENIENA QUIMICA (C. B.I.)

BLOCK: VALV2 M0DEL:HEATER

INLET STREAM: 5 OUTLETSTREAM: 5A PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVEDIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 788.4% 788.4% 0.000000E+00 MASS(KG/HR ) 12300.0 12300.0 0.000000E+00 E"ALPY(CAL/SEC ) -0.371 11 1EM7 -0.377020E+07 O. 156744E-01

*** N U T D A T A *** TWO PHASE PV FLASH SPECIFIED PRESSURE ATM 16.0377 VAPORFRACTION 1 .m MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.oO0100000

*** RESULTS ***

OUTLETTEMPERATURE K 255.59 OUTLET PRESSURE ATM 16.038 HEAT DUTY CAWSEC -590%. VAPOR FRACTION 1 .m

V-L PHASE EQUILIBRIUM

COMP c02 co H2 CH4 N2 H20 CH3OH C2H6 C3H8

F(I) 0.55450E-02 0.4500 1E-02 0.96367E-01 0.85 12 1 0.59056E-04 O. 3 5434E-04 0.661438-03 0.342 17E-01 0.74079E-02

X(I) O. 15577E-02 0.37568E-05 0.24118E-04 0.57246E-02 0.4 19 13E-07 0.67782E-01 0.920% 0.25462E-02 O. 13986E-02

Y(I) O. 5545OE-02 0.4u)o 1 E-02 0.96367E-O 1 0.85 121 0.59056E-04 0.35434E-04 0.66 143E-03 0.342 17E-01 0.74079E-02

K(I) 3.5597 1197.8 3995.6 148.69 1409.0

0.52276E-03 0.7 1819E-03

13.438 5.2964

BLOCK: VALV3 MODEL: HEATER

INLET STREAM: 6 OUTLETSTREAM: 6A PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT ñELATIVEDIFF.

TOTAL BALANCE MOLE(KMOL./HR ) 76.3713 76.3713 0.000000E+00 MASS(KG/HR ) 1285.00 1285.00 0.000000E+00 ENTHALPY(CAUSEC ) -387103. -383845. 4.841776E-02

Page 43: INGENIENA QUIMICA (C. B.I.)

*** INPUTDATA *** TWO PHASETPFLASH SPECIFIED TEMPERATüRE SPECIFIED PRESSURE MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE

OUTLETTEMPERATURE K OUTLETPRESSURE ATM HEAT DUTY C U S E C VAPOR FRACTION

K 294.150 ATM 2.57450

30 o.Oo0100000

*** RESULTS *** 294.15 2.5745 3258.5 1 .oooo

V-L PHASE EQUJLIBRTUM :

cow F(I) X(I) yo K(I) c o 2 O. 1oooOE-03 O. 14617E-03 O. 1oooOE63 26.289 CH4 0.95270 0.91020 0.95270 40.1% C2H6 0.38800E-01 0.66785E-01 0.38800E-01 22.345 C3H8 0.84000E-02 0.22864E-01 0.84000E-02 14.151

STREAM SECTION

110 11 12 13

STREAMID 1 10 11 12 13 FROM : ---- MEZ7 iNTERl RSTOIC2 INTER;! TO : DIV8 INTER1 RSTOIC2 MTER2 INTER3

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR c0Mpo"Ts: KMoL/HR c02 7.7174-02 4.3721 4.3721 325.3622 325.3622 co 0.0 3.5482 3.5482 324.5383 324.5383 H2 0.0 75.9853 75.9853 2284.2537 2284.2537 CH4 735.2330 671.1725 671.1725 100.6758 100.6758 N2 0.0 4.6565-02 4.6565-02 4.656342 4.656342 H20 0.0 1970.6080 1970.6080 1007.6377 1007.6377 CH3OH 0.0 0.5215 0.5215 0.5215 0.5215 C2H6 29.9433 26.9801 26.9801 0.0 0.0 C3H8 6.4825 5.8410 5.8410 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0

KMOUHR 771.7361 2759.0756 2759.0756 4043,0360 4043.0360 KG/HR 1.2985+04 4.7800+04 4.78OOi-04 4.78ooto4 4.7800+04 L/MIN 8277.7542 1.5988+05 1.9469+05 4.7588+05 2.9400+05

TEMP K 294.1500 686.4154 787.5420 1138.lsuO 703.1500 PRES ATM 35.0371 16.0377 15.19% 13.2599 13.2599 VFRAC 1.oooo 1.oooo 1.oooo 1.oooo 1.oooo LFRAC 0.0 0.0 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 0.0 0.0

C M O L

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY: -1.8247+04 -4.2583+04 -4.1505+04 -1.7702-W -2.1415+04

Page 44: INGENIENA QUIMICA (C. B.I.)

CAIJGM CWSEC

-1084.4910 -2457.9497 -2395.7146 -1497.2347 -1811.3059 -3.91 17+% -3.2636+07 -3.18107 -1.9-7 -2.4050+07

ENTROPY: CALMOL-K -27.6774 -9.3170 -7.7461 6.5165 2.4197 CAIJGM-K -1.6449 -0.5377 -0.4471 0.5511 0.2046

DENSITY: MOUCC 1.5538-03 2.876344 2.3619-04 1.4160-04 2.2919-04 GWCC 2.6144-02 4.9830-03 4.0919-03 1.6741-03 2.7097-03

AVG MW 16.8257 17.3246 17.3246 11.8228 11.8228

14 15 16 17 17A

STREAMID 14 15 16 17 17A FROM : INTER3 INTER4 INTER5 INTERó ENF2 TO : INTER4 INTERS INTER6 ENF2 FLASH1

SUBSTREAM: MIXED PHASE: VAPOR VAPOR MIXED MIXED VAPOR COMPONENTS: KMOLJHR c02 325.3622 325.3622 325.3622 325.3622 325.3622 co 324.5383 324.5383 324.5383 324.5383 324.5383 H2 2284.2537 2284.2537 2284.2537 2284.2537 2284.2537 CH4 100.6758 100.6758 100.6758 100.6758 100.6758 N2 4.6565-02 4.6565-02 4.6565-02 4.6565-02 4.6565-02 H20 1007.6377 1007.6377 1007.6377 1007.6377 1007.6377 CH3OH 0.5215 0.5215 0.5215 0.5215 0.5215 C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0

KMOLhIR KG/HR 4.7800+04 4.7800+04 4.78ooco4 4.7&oDto4 4.7800+04 UMIN 2.4949+05 1.7312+05 1.6220-445 1.5293+05 1.3720-445

TOTAL FLOW: 4043.0360 4043.0360 4043.0360 4043.0360 4043.0360

STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: C W O L C U G M C U S E C

ENTROPY: CAL/MOL-K CALlGM-K

DENSITY: MOUCC GWCC

AVG MW

597.1500 416.6660 406.1500 4OO.lSOO 333.1500 13.2599 13.2599 13.2599 13.2599 13.2599

1.oooO 1.oooO 0.9597 0.9164 1.oooO 0.0 0.0 4.0298-02 8.3587-02 0.0

0.0 0.0 0.0 0.0 0.0

-2.2271+04 -2.3686+04 -2.4159+04 -2.4633+04 -2.4325+04 - 1883.7 169 -2003.3 957 -2043.39 19 -2083.4669 -2057.4203 -2.5012+07 -2.6601+07 -2.7132+07 -2.7664+07 -2.7318+07

1.1004 -1.7178 -2.8740 -4.0490 -3.4282 9.3080-02 -0.1453 -0.2431 -0.3424 -0.2899

2.7008-04 3.8923-04 4.154444 4.406344 4.911544 3.1932-03 4.6018-03 4.9117-03 5.2095-03 5.806843

11.8228 11.8228 11.8228 11.8228 11.8228

!

Page 45: INGENIENA QUIMICA (C. B.I.)

18 19 2 20 21

STREAMID 18 19 2 20 21 FROM : FLASH1 FLASHl DIVS ENF FLASH2 TO : I ENF M E z ó F L A S M z -

SUBSTREAM: MIXED PHASE: LIQüID VAPOR VAPOR MIXED LIQUID COMPONENTS: KMoL/HR c02 9.9154-02 325.2631 6.9536-02 325.2631 2.324043 co 2.1523-04 324.5381 0.0 324.5381 2.701746 H2 2.6050-03 2284.2511 0.0 2284.2511 3.1495-05 CH4 6.0714-04 100.6752 662.4741 100.6752 8.850846 N2 2.8664-08 4.6565-02 0.0 4.656542 3.5655-10 H20 %5.6267 42.0109 0.0 42.0109 26.6644 CH3OH 8.380342 0.4377 0.0 0.4377 4.0478-03 C2H6 0.0 0.0 26.9801 0.0 0.0 C3H8 0.0 0.0 5.8410 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0

KMOUHR %5.813 1 3077.2229 695.3649 3077.2229 26.6708 KGiHR 1.7403444 3.0397+04 1.1700+04 3.0397-W 480.5915 IJMrN 394.3597 1.1154i-05 7458.5848 1.0392445 10.7235

TEMP K 333.1500 333.1500 294.1500 313.1500 313.1500 PRES ATM 12.6308 12.6308 35.0371 12.6308 12.0017 VFRAC 0.0 l.m l.m 0.9911 0.0 LFXAC 1 .m 0.0 0.0 8.9034-03 1.oooO SFRAC 0.0 0.0 0.0 0.0 0.0

CALMOL CAIJGM CAIJSEC

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY: -6.8301W -1.3863+04 -1.8247-W -1.4105+04 -6.8715+04

-3790.5583 -1403.3826 -1084.4910 -1427.8616 -3813.3719 -1.8324447 -1.1850447 -3.5246+06 -1.2057447 -5.0908+05

ENTROPY: CALMOL-K -38.4947 -0.9865 -27.6774 -1.7337 -39.7766 CAIJGM-K -2.1363 -9.9867-02 -1.6449 -0.1755 -2.2074

DENSITY: MOUCC 4.0818-02 4.5981-04 1.5538-03 4.9350-04 4.1452-02 GWCC 0.7354 4.5421-03 2.6144-02 4.8749-03 0.7469

AVG MW 18.0188 9.8782 16.8257 9.8782 18.0193

2223242526

STREAMID 22 23 24 25 26 FROM : FLASH2 -- INTERó FSPLIT -- TO : -- INTER6 FSPLlT -- FSPLIT

SUBSTREAM: MIXED PHASE: VAPOR LIQVn, MIXED MIXED LIQUID c0Mpo"Ts: m o m c02 325.2608 0.0 0.0 0.0 0.0 co 324.5381 0.0 0.0 0.0 0.0 H2 2284.2511 0.0 0.0 0.0 0.0

Page 46: INGENIENA QUIMICA (C. B.I.)

CH4 100.6752 0.0 0.0 0.0 0.0 N2 4.6565-02 0.0 0.0 0.0 0.0 H20 15.3465 2126.0061 2126.0061 55.5093 1559.2561 CH3OH 0.4336 0.0 0.0 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0

K M O m 3050.5520 2126.0061 2126.0061 55.5093 1559.2561 KGMR 2.9917+04 3.83ooto4 3.8300+04 1OOO.oooO 2.809otO4 UMIN 1.0936+05 856.0573 1.1716+06 1.5803+04 680.7425

TOTAL FLOW:

STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: C U O L CAUGM CAUSEC

ENTROPY: CAL/h4OL-K CAUGM-K

DENSITY: MOUCC GWCC

AVG MW

27 28 29 3 30

STREAMID FROM : TO :

313.1500 315.1500 315.1499 331.9593 403.1500 12.0017 6.3970-02 6.3970-02 0.1548 2.4197

1 .oooo 0.0 8.1807-02 9.7123-02 0.0 0.0 1.oooO 0.9181 0.9028 1.oooO 0.0 0.0 0.0 0.0 0.0

-1.3624+04 -6.8679+04 -6.7778+04 4.7282+04 -6.683- -1389.2522 -3812.3066 -3762.2910 -3734.7565 -3710.1975 -1.1545+07 -4.0559+07 -4.0027+07 -1.0374+06 -2.8950+07

-1.2901 -39.6442 -36.7852 -35.4083 -34.5035 -0.1315 -2.2006 -2.0419 -1.%54 -1.9152

4.6492-04 4.1391-02 3.0244-05 5.8542-05 3.8175-02 4.5595-03 0.7456 5.4485-04 1.054643 0.6877

9.8070 18.0150 18.0150 18.0150 18.0150

27 28 29 3 ---- --- FSPLIT -

FSPLIT FSPLIT BOMB DIV7

SUBSTREAM: MIXED PHASE: VAPOR LIQUID c0Mpo"Ts: KMom c02 0.0 0.0 co 0.0 0.0 H2 0.0 0.0 CH4 0.0 0.0 N2 0.0 0.0 H20 140.6050 1189.5642 CH3OH 0.0 0.0 C2H6 0.0 0.0 C3H8 0.0 0.0 02 00 O0

TOTAL FLOW:

MUCED

0.0 0.0 0.0 0.0 0.0

4959.9222 0.0 0.0 0.0 00

30 BOMB DIVlO

VAPOR LIQUID

57.3685 0.0 47,3103 0.0

1013.1376 0.0 115.9787 0.0 0.6208 0.0

0.3725 4959.9222 6.9537 0.0

0.0 0.0 0.0 0.0 O0 00

KMOL/HR 140.6050 1189.5642 4959.9222 1241.7424 4959.9222 KG/HR 2533.oooO 2.1430+04 8.9353+04 8000.oooO 8.9353+04 LiMIN 4.0770+04 485.7616 1.4121+06 1.190MM 2116.4843

TEMP K 517.1500 333.1500 331.9593 313.1500 383.5818 STATE VARIABLES:

Page 47: INGENIENA QUIMICA (C. B.I.)

PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: C W O L CAIfGM CAIfSEC

ENTROPY: CAJJMOL-K CAUGM-K

DENSlTY: MOLJCC GWCC

AVG MW

2.4197 0.5807 0.1548 45.6837 57.2982 1 .oooo 0.0 9.7123-02 1.oooO 0.0 0.0 1.oooO 0.9028 0.0 1.oooo 0.0 0.0 0.0 0.0 0.0

-5.6024+04 -6.8306+04 4.7282+04 -7209.6862 -6.7233+04 -3 109.8292 -3791.6025 -3734.7565 -1 119.0716 -3732.0373 -2.1881+06 -2.2571+07 -9.2698+07 -2.4868+06 -9.2630+07

-7.8661 -38.4942 -35.4083 -7.0629 -35.5912 -0.4366 -2.1367 -1.9654 -1.0%3 -1.9756

5.7478-05 4.0814-02 5.8542-05 1.7391-03 3.905842 1.0355-03 0.7352 1.0546-03 1.120402 0.7036

18.0150 18.0150 18.0150 6.4425 18.0150

30A 30B 31 32 33

STREAMID 30A 30B 31 32 33 FROM : DIVlO DIVlO INTER5 CAL INTER4 TO : ---- INTER5 INTER4 ME23 SüPH

SUBSTREAM: MiXED PHASE: LIQUID LIQUID LIQUID VAPOR LIQüiD C O ~ N E N T S : KMoL/HR c02 0.0 0.0 0.0 0.0 0.0 co 0.0 0.0 0.0 0.0 0.0 H2 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 0.0 0.0 0.0 N2 0.0 0.0 0.0 0.0 0.0 H20 108.5206 4851.4016 4851.4016 3628.4011 4851.4016 CH3OH 0.0 0.0 0.0 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0

KMOUHR 108.5206 4851.4016 4851.4016 3628.4011 4851.4016 KGlHR L/MIN 46.3076 2070.1766 2 11 1.2097 5.8673+04 2262.4705

TEMP K 383.5818 383.5818 402.2792 523.oooO 456.6312 PRES ATM 57.2982 57.2982 57.2982 38.231 1 57.2982 VFRAC 0.0 0.0 0.0 1.oooo 0.0 LFRAC 1.oooo 1.oooo 1.oooo 0.0 1 .oooo SFRAC 0.0 0.0 0.0 0.0 0.0

CALMOL CAUGM C U S E C

TOTAL FLOW:

1955.oooO 8.7398+04 8.7398+04 6.5366+04 8.7398-

STATE VARIABLES:

ENTHALPY: -6.7233+04 4.7233- 4 . 6 8 3 W -5.6391+04 4.5660+04 -3732.0373 -3732.0373 -3710.1601 -3 130.2256 -3644.7133 -2.0267- -9.0604+07 -9.0072i-07 -5.6836+07 -8.8484+07

ENTROPY: CAL/MOL-K -35.5912 -35.5912 -34.5880 -13.8111 -31.8405 CUGM-K -1.9756 -1.9756 -1.9199 -0.7666 -1.7674

DENSITY: MOUCC 3.9058-02 3.9058-02 3.8299-02 1.0307-03 3.5738-02

Page 48: INGENIENA QUIMICA (C. B.I.)

GWCC 0.7036 0.7036 0.6899 1.8568-02 0.6438 AVG MW 18.0150 18.0150 18.0150 18.0150 18.0150

3435363738

STREAMID 34 35 36 37 38 FROM : SüPH DIV2 DIVZ FSPLiT2 MEz3 TO : DIVZ - ' FSPLITZ CAL SUPH

SUBSTREAM: MIXED PHASE: LIQUID LIQUID LIQUID LIQUID VAPOR c0Mpo"Ts: KMoL/HR

c 0 2 co H2 CH4 N2 H20 CH3OH C2H6 C3H8 0 2

KM0LIH.R KGMR UMIN

TOTAL FLOW:

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 4851.4016 1290.0360 3561.3655 3628.4011 4890.6826

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

4851.4016 1290.0360 3561.3655 3628.401 1 4890.6826 8.7398- 2.3240+04 6.4158- 6.5366+04 8.8106- 2472.5695 657.4808 1815.0886 1622.3079 7.9093-

STATE VARIABLES: TEMP K 507.1500 507.1500 507.1500 424.6975 523.0387 PRES ATM 57.2982 57.2982 57.2982 38.23 11 38.231 1 VFRAC 0.0 0.0 0.0 0.0 1.oooo LFRAC l.m l.m l.m l.m 0.0 SFRAC 0.0 0.0 0.0 0.0 0.0

CAL/MOL CALJGM CAUSEC

ENTHALPY: -6.4483+04 4.4483+04 4 . 4 4 8 3 W 4.6365+04 -5.6391+04

-3579.4022 -3579.4022 -3579.4022 -3683.8926 -3 130.2035 -8.6898-7 -2.3107-7 4.3791+07 -6.6889to7 -7.6608-7

ENTROPY: CAL/MOL-K -29.3986 -29.3986 -29.3986 -33.4139 -13.8103 CAL/GM-K -1.6319 -1.6319 -1.6319 -1.8547 -0.7666

DENSITY: MOUCC 3.2701-02 3.2701-02 3.2701-02 3.7276-02 1.0306-03 GWCC 0.5891 0.5891 0.5891 0.6715 1.8566-02

AVG MW 18.0150 18.0150 18.0150 18.0150 18.0150

39 4 40 41 42

STREAMID 39 4 40 41 42 FROM : SUPH DIV7 DIV5 SUPH - TO : DIV5 MEzó SUPH - MEz3

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR c o m N E N T s : KMom

Page 49: INGENIENA QUIMICA (C. B.I.)

c02 0.0 4.3026 0.0 0.0 0.0 co 0.0 3.5482 0.0 0.0 0.0 H2 0.0 75.9853 0.0 0.0 0.0 CH4 0.0 8.6984 0.0 0.0 0.0 N2 0.0 4.6565-02 0.0 0.0 0.0 H20 CH3OH 0.0 0.5215 0.0 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0

KMOL/HR 4890.6826 93.1306 4751.4848 4751.4848 1262.2814 KG/HR 8.8106+04 6oo.oooO 8.5598+04 8.5598+04 2.2740+04 LIMm 1.1546+05 892.5046 1.1217+05 1.2929+05 2.0421+04

4890.6826 2.7939-02 4751.4848 4751.4848 1262.2814

TOTAL FLOW:

STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: CAWMOL C W G M CAUSEC

ENTROPY: C M O L - K CWGM-K

DENSiTY: MOUCC GWCC

AVG MW

43 44 45 46 47

STREAMID FROM : TO :

693.1500 313.1500 693.1500 783.lsoO 523.1500 38.23 1 1 45.6837 38.23 11 38.23 11 38.23 11

1.oooO l.m l.m 1 . m . l.m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-5.4720+04 -7209.6862 -5.4720+04 -5.3852- -5.6389+04 -3037.493 1 -1 1 19.0716 -3037.493 1 -2989.2%2 -3 130.1398 -7.4339+07 -1.8651+05 -7.2223+07 -7.1077+07 -1.9772+07

-11.0411 -7.0629 -11.0411 -9.8635 -13.8081 -0.6128 -1.0963 -0.6128 -0.5475 -0.7664

7.059944 1.7391-03 7.0599-04 6.1250-04 1.0302-03 1.2718-02 1.1204-02 1.2718-02 1.1034-02 1.8560-02

18.0150 6.4425 18.0150 18.0150 18.0150

43 44 45 46 47 -- SUPH DIV3 SUPH DIV4 S U " DIV3 SUPH DIV4 ME21

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR c o m N E N T s : m o m c02 0.0 0.0 0.0 0.0 0.0 co 0.0 0.0 0.0 0.0 0.0 H2 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 0.0 0.0 0.0 N2 1.3691- 1.3691+04 3258.5720 3258.5720 547.7659 H20 0.0 0.0 0.0 0.0 0.0 CH3OH 0.0 0.0 0.0 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 0.0 C3H8 0.0 0.0 0.0 0.0 0.0 02 3639.5071 3639.5071 866.2027 866.2027 145.6086

KMOL/HR 1.7331- 1.7331- 4124.7747 4124.7747 693.37415 KGA-lñ 5.0000+05 5.oooO+05 1.1900+05 1.19W-05 2.0004+04

TOTAL FLOW:

Page 50: INGENIENA QUIMICA (C. B.I.)

UMIN 1.6358448 2.8703+08 6.83 14-7 8.4637-7 1.4227-7 STATE VARIABLES: TEMPK PRES ATM VFI€AC LFRAC SFRAC

ENTHALPY: C M O L C U G M C U S E C

ENTROPY: CAIfMOL-K CALJGMX

DENSITY: MOUCC GWCC

AVG Mw

48 49 5 50 51

STREAMID FROM : TO :

298.1500 523.1500 523.1500 648.1500 648.1500 4.3200-02 413200-02 4.3200-02 4.3200-02 4.3200-02 l.m l.m l.m 1.oooo 1.oooo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-6.766442 1587.9647 1587.9647 2497.2384 2497.2384 -2.3454-03 55.0419 55.0419 86.5592 86.5592 -325.7457 7.6447% 1.8194+06 2.8613+06 4.8098+05

7.2597 11.2230 11.2230 12.7808 12.7808 0.2516 0.3890 0.3890 0.4430 0.4430

1.7658-06 1.0063-06 1.006346 8.1225-07 8.1225-07 5.0943-05 2.9032-05 2.9032-05 2.3433-05 2.3433-05

28.8500 28.8500 28.8500 28.8500 28.8500

48 49 5 50 51 DIV4 FSPLiT2 MEZ6 B56 DIVl

RSTOICl B56 VALV2 DIVl SUPH

SUBSTREAM: MIXED PHASE: VAPOR LIQWD VAPOR LIQüID LIQUID c0Mpo"Ts: KMOL/HR c02 0.0 0.0 4.3721 0.0 0.0 co 0.0 0.0 3.5482 0.0 0.0 H2 0.0 0.0 75.9853 0.0 0.0 CH4 0.0 0.0 671.1725 0.0 0.0 N2 2710.8061 0.0 4.6565-02 0.0 0.0 H20 0.0 6.8940+04 2.7939-02 6.8940+04 3469.33 11 CH30H 0.0 0.0 0.5215 0.0 0.0 C2H6 0.0 0.0 26.9801 0.0 0.0 C3H8 0.0 0.0 5.8410 0.0 0.0 02 720.5940 0.0 0.0 0.0 0.0

KM0m 3431.4001 6.89- 788.4956 6.894O-W 3469.3311 KGMR 9.89%+04 1.2419% 1.23ooto4 1.241- 6.2500+04 LJMIN 7.0409+07 3.0824+04 8621.2168 3.0765+04 1548.2157

TEMP K 648.1500 424.6975 294.8210 423.1500 423.1500 PRES ATM 4.3200-02 38.2311 35.0371 38.2311 38.2311 VFRAC 1.oooo 0.0 1.oooo 0.0 0.0 LFRAC 0.0 l.m 0.0 l.m 1.oooo SFRAC 0.0 0.0 0.0 0.0 0.0

CAL/MOL CAUGM CAUSEC

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY: 2497.2384 -6.6365i-04 -1.6944+04 -6.6399i-04 4.6399-W 86.5592 -3683.8926 -1086.1779 -3685.7474 -3685.7474

2.3803HK -1.2709+09 -3.711 1+06 -1.2715i-09 -6.398acO7 ENTROPY: CAL/MOL-K 12.7808 -33.4139 -24.5847 -33.4927 -33.4927

Page 51: INGENIENA QUIMICA (C. B.I.)

CUGM-K 0.4430 -1.8547 -1.5760 -1.8591 -1.8591 DENSITY: MWCC GM/CC 2.3433-05 0.6715 2.3779-02 0.6728 0.6728

AVG MW 28.8500 18.0150 15.5993 18.0150 18.0150

8.1225-07 3.7276-02 1.5243-03 3.734842 3.7348-02

5253 545556

STREAMID 52 53 54 55 56 FROM : SüPH DIVl INTER2 MEZ2 TURB TO : MEZ2 INTER2 h4EZ2 FSPLlT2 DIV6

SUBSTREAM: MIXED PHASE: LIQUID LIQUID LIQUID LIQUID VAPOR c o m N E N T s : KMouHR c02 0.0 0.0 0.0 0.0 7.6371-03 co 0.0 0.0 0.0 0.0 0.0 H2 0.0 0.0 0.0 0.0 0.0 CH4 0.0 0.0 0.0 0.0 72.7589 N2 0.0 0.0 ‘0.0 0.0 0.0 H20 3469.331 1 6.5465+04 6.54654-04 6.89344-04 0.0 CH3OH 0.0 0.0 0.0 0.0 0.0 C2H6 0.0 0.0 0.0 0.0 2.%32 C3H8 0.0 0.0 0.0 0.0 0.6415 02 0.0 0.0 0.0 0.0 0.0

KMOLJHR 3469.3311 6.5465+04 6.5465i-04 6.8934+04 76.3712 KG/HR 6.2500+04 1.1794+06 1.1794+06 1.241- 1285.oooO L/MM 1281.4996 2.9214+04 2.- 3.06554-04 1.0521+04

TOTAL FLOW:

STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: C W O L C U G M C U S E C

ENTROPY: CALiMOL-K CUGM-K

DENSlTY: MOUCC GWCC

AVG MW

57 58 59 5A 6

STREAM ID FROM :

161.2876 423.1500 433.7259 420.2891 294.1500 38.231 1 38.23 11 38.23 11 38.231 1 2.9036

0.0 0.0 0.0 0.0 1.oooo l.m 1.oooo l.m 1.m 0.0 0.0 0.0 0.0 0.0 0.0

-7.1951+04 -6.6399+04 -6.6169+04 -6.616oeo4 -1.80954-04 -3993.9464 -3685.7474 -3673.0178 -3689.1695 -1075.4527 -6,933M7 -1.2074+09 -1.2033+09 -1.2726+09 -3.8388+05

-54.0644 -33.4927 -32.9575 -33.6389 -22.3374 -3.0010 -1.8591 -1.8294 -1.8672 -1.3275

4.5121-02 3.7348-02 3.6850-02 3.7479-02 1.209944

18.0150 18.0150 18.0150 18.0150 16.8257 0.8128 0.6728 0.6638 0.6751 2.0357-03

57 58 59 SA 6 DIV6 DIV6 VALV VALV2 DIV8

TO : ME21 VALV MEz5 INTER3 vALv3

Page 52: INGENIENA QUIMICA (C. B.I.)

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR c0Mpo"Ts: KMcxJHR c02 5.2301-03 2.4070-03 2.407043 4.3721 7.6371-03 co 0.0 0.0 0.0 3.5482 0.0 H2 0.0 0.0 0.0 75.9853 0.0 CH4 49.8271 22.9318 22.9318 671.1725 72.7589 N2 0.0 0.0 0.0 4.6565-02 0.0 H20 0.0 0.0 0.0 2.793942 0.0 CH3OH 0.0 0.0 0.0 0.5215 0.0 C2H6 2.0292 0.9339 0.9339 26.9801 2.%32 C3H8 0.4393 0.2021 0.2021 5.8410 0.6415 02 0.0 0.0 0.0 0.0 0.0

KM0LtH.R 52.3009 24.0703 24.0703 788.4956 76.3712 KG/HR 880.oooO 405.oooO 405.oooO 1.23ooK)rl 1285.oooO LlMIN 7204.8094 3315.8497 6650.6500 1.64504 819.1693

TEMP K 294.1500 294.1500 294.1500 255.5876 294.1500 PRES ATM 2.9036 2.9036 1.4518 16.0377 35.0371 WRAC 1.oooo 1.oooo l.m l.m l.m LFRAC 0.0 0.0 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 0.0 0.0

CAL/MOL CAUGM CAUSEC

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY: -1.8095+04 -1.8095+04 -1.808W -1.7213+04 -1.8247+04

-1075.4527 -1075.4527 -1075.0530 -1 103.4743 -1084.4910 -2.6289445 -1.2099445 -1.2094+05 -3.7702% -3.8710+05

ENTROPY: CAL/MOL-K -22.3374 -22.3374 -20.9437 -24.0879 -27.6774 CALIGM-K -1.3275 -1.3275 -1.2447 -1.5441 -1.6449

DENSITY: MOUCC 1.2099-04 1.2099-04 6.0321-05 7.9887-04 1.5538-03 GWCC 2.0357-03 2.0357-03 1.0149-03 1.2462-02 2.6144-02

AVG MW 16.8257 16.8257 16.8257 15.5993 16.8257

60 61 62 63 64

STREAMID 60 61 62 63 64 FROM : MEZ5 RsTOICl INTER1 - MEZl TO : RSTOiC1 INTERl MEZ4 MEZl CALEN

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR COMPONENTS: m o m c02 53.0682 225.3763 225.3763 0.0 5,230143 co 43.7621 2.5299 2.5299 0.0 0.0 H2 937.1523 54.1790 54.1790 0.0 0.0 CH4 130.2121 7.5278 7.5278 0.0 49.8271 N2 0.5743 2711.3804 2711.3804 8.3698 556.1357 H20 0.3445 1144.2089 1144.2089 0.1708 O. 1708 CH3OH 6.4322 0.3718 0.3718 8.5406 8.5406 C2H6 0.9339 5.3993-02 5.3993-02 0.0 2.0292 C3H8 0.2021 1.1689-02 1.1689-02 0.0 0.4393 02 0.0 0.0 0.0 0.0 145.6086

,

Page 53: INGENIENA QUIMICA (C. B.I.)

TOTAL FLOW: K M O m 1172.6820 4145,6401 4145.6401 17.0812 762.7568 KG/HR 7805.oooO l.oó;80H)5 1.0680+05 511.2000 2.1395+04 UMIN 3.4462+05 1.6447+08 1.539744% 2.9984+04 1.4609+07

STATE VARIABLES: TEMP K PRES ATM VFRAC URAC SERAC

ENTHALPY: CALlMOL CALJGM CALBEC

ENTROPY: CALlMOL-K CALJGM-K

DENSITY: MOUCC GWCC

AVG MW

65 66 67 6A 7

STREAM ID FROM : TO :

311.7665 1253.1500 1173.1500 373.1500 604.9784 1.4518 4.3200-02 4.3200-02 0.2904 4.3200-02

1.oooo 1.oooo l.m l.m 1.oooo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-7432.9837 -1.3288+04 -1.4005+04 -2.3- 493.2132 -1 116.7875 -515.7784 -543.6326 -799.9249 -2.4213- -1.5302+07 -1.6128+07 -1.1359+05 1.045oK)5

17.5835

-0.5024 16.5197 15.9280 -9.6429 11.3029 -7.5494-02 0.6412 0.6182 -0.3222 0.4029

5.6714-05 4.201 1-07 4.4876-07 9.494846 8.7021-07 3.7747-04 1.0823-05 1.1561-05 2.8415-04 2.4409-05

6.6556 25.7621 25.7621 29.9275 28.0497

65 66 67 6A 7

MEZ4 SUPH ---- TURB MEz5 CALEN MEZ4 SUPH VALV3 DIV7

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR VAPOR VAPOR COMPONENTS: m o m c02 5.2301-03 225.3816 225.3816 7.6371-03 53.0658 co 0.0 2.5299 2.5299 0.0 43.7621 H2 0.0 54.1790 54.1790 0.0 937.1523 CH4 49.8271 57.3550 57.3550 72.7589 107.2803 N2 556.1357 3267.5162 3267.5162 0.0 0.5743 H20 0.1708 1144.3797 1144.3797 0.0 0.3445 CH3OH 8.5406 8.9125 8.9125 0.0 6.4322 C2H6 2.0292 2.0832 2.0832 2.%32 0.0 C3H8 0.4393 0.4510 0.4510 0.6415 0.0 02 145.6086 145.6086 145.6086 0.0 0.0

KMOL/HR 762.7568 4908.3970 4908.3970 76.3712 1148.61 17 KGMñ 2.1395+04 1.2820+05 1.2820+05 1285.oooO 7 4 0 0 . ~ Lh4IN 2.8328+07 7.8767% 2 .906W 1.1873+04 1.1008+04

TEMP K 1173.1500 1173.1046 433.1500 294.1500 313.1500 PRES ATM 4.3200-02 1.oooO 1.oooO 2.5745 45.6837 VFRAC 1.oooo 1.oooo 1.oooo l.m l.m LFRAC 0.0 0.0 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 0.0 0.0

C M O L CAL/GM 189.3128 -421.3083 455.3664 -1075.3620 -1 119.0716

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY: 5310.1675 -1.1004+04 -1.7117+04 -1.8094+04 -7209.6862

Page 54: INGENIENA QUIMICA (C. B.I.)

C U S E C ENTROPY: CAUMOL-K CNGM-K

DENSITY: MOUCC GWCC

AVG MW

74 78 8 86 87

STREAMID FROM : TO :

1.1251% -1.5003+07 -2.3338+07 -3.8384+05 -2.3003%

16.8720 10.0791 1.9710 -22.0946 -7.0629 0.6015 0.3859 7.5467-02 -1.3131 -1.0%3

4.4876-07 1.0386-05 2.8142-05 1.0720-04 1.7391-03 1.2588-05 2.7126-04 7.3501-04 1.8038-03 1.1204-02

28.0497 26.1176 26.1176 16.8257 6.4425

74 78 8 86 87 DIV3 DIV5 INTER3 - -

--- - MEZ7 FSPLIT2 ENF

SUBSTREAM: MIXED PHASE: VAPOR VAPOR VAPOR LIQUID LIQUID COMPONENTS: KMom c02 0.0 0.0 4.3721 0.0 0.0 co 0.0 0.0 3.5482 0.0 0.0 H2 0.0 0.0 75.9853 0.0 0.0 CH4 0.0 0.0 671.1725 0.0 0.0 N2 1.0433+04 0.0 4.6565-02 0.0 0.0 H20 0.0 139.1977 2.7939-02 72.1620 4829.3089 CH30H 0.0 0.0 0.5215 0.0 0.0 C2H6 0.0 0.0 26.9801 0.0 0.0 C3H8 0.0 0.0 5.8410 0.0 0.0 02 2773.3044 0.0 0.0 0.0 0.0

KMOL/HR 1.3206i-04 139.1977 788.4956 72.1620 4829.3089 KGMR 3.8100+05 2507.6471 1.2300+04 1300.oooO 8.7oooH)4 UMJN 2.1872+08 3286.0932 4.4792+04 29.2586 1930.2176

TOTAL FLOW:

STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: C W O L C U G M C U S E C

ENTROPY: CAL/MOL-K CAL/GM-K

DENSITY: MOUCC GWCC

AVG MW

523.1500 693.1500 662.1367 325.1500 305.1500 4.3200-02 38.23 11 16.0377 38.231 1 3.3488 1.oooo 1.oooo 1.oooo 0.0 0.0 0.0 0.0 0.0 l.m l.m 0.0 0.0 0.0 0.0 0.0

1587.9647 -5.4720+04 -1.2824+04 -6.8455+04 4.8884+04 55.0419 -3037.4931 -822.0697 -3799.8823 -3823.7189

5.8253+06 -2.1158+06 -2.8087+06 -1.3722% -9.2407+07

11.2230 -11.0411 -14.1604 -39.0150 -40.3133 0.3890 -0.6128 -0.9077 -2.1657 -2.2377

1.0063-06 7.0599-04 2.933944 4.1106-02 4.1699-02 2.9032-05 1.2718-02 4.5767-03 0.7405 0.7512

28.8500 18.0150 15.5993 18.0150 18.0150

Page 55: INGENIENA QUIMICA (C. B.I.)

88 9

STREAMID 8 8 9 FROM : ENF - TO : --- MEz7

SUBSTREAM: MIXED PHASE: LIQUID VAPOR c0Mpo"Ts: KMom c02 0.0 0.0 co 0.0 0.0 H2 0.0 0.0 CH4 0.0 0.0 N2 0.0 0.0 H20 4829.3089 1970.5800 CH3OH 0.0 0.0 C2H6 0.0 0.0 C3H8 0.0 0.0 02 0.0 0.0

Kh4OLMR 4829.3089 1970.5800 KGMR 8.7000t04 3.5500+04 UMIN 1940.7903 1.0536+05

TEMP K 312.6049 703.1500 PRES ATM 2.5745 17.6153 VFRAC 0.0 1.oooo LFRAC 1.oooo 0.0 SFRAC 0.0 0.0

CAL/MOL -6.8730+04 -5.4491+04 CALIGM -3815.1692 -3024.7475 C U S E C -9.2200+07 -2.9827+07

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY:

ENTROPY: CAL/MOL-K -39.8132 -9.2230 CUGM-K -2.2100 -0.5119

DENSITY: MOUCC 4.1472-02 3.1173-04 GWCC 0.7471 5.6157-03

AVG MW 18.0150 18.0150 U

Page 56: INGENIENA QUIMICA (C. B.I.)

>

w U I

B

a

Page 57: INGENIENA QUIMICA (C. B.I.)
Page 58: INGENIENA QUIMICA (C. B.I.)
Page 59: INGENIENA QUIMICA (C. B.I.)
Page 60: INGENIENA QUIMICA (C. B.I.)

152487

Page 61: INGENIENA QUIMICA (C. B.I.)

;li

0 .. 4)

3 N

3

Page 62: INGENIENA QUIMICA (C. B.I.)

"SEGUNDA SECCION DE LA PLANTA DE METANOL"

SECCION DONDE SE REALIZA LA PRODUCCION DE METANOL CRUDO

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * *

* * *

* * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

* ALL UNíT OPERATION BLOCKS WERE COMPLETED NOlWALLY

ALL CONVERGENCE BLOCKS WERE COMPLETED NORMALLY

FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM 1 25 3 6 17 26 19 8 21 13 10 5 11 12

SOURCE ---- ---- HEATXl corn HEATER HEATX5 FLASH ENF PURGA RSTOIC HEATX2 FLASHl

DEST cow1 HEATX5 FLASHl MEZ HEATX5

VALV COW3

HEATX4 HEATX3

HEATX4 m 1 c

---

-I

--

BLOCK cow1 HEATXl c o w 2 MEZ HEATER HEATX5 FLASH COW3 ENF

INLETS 1 2 23 4 6 22 16 17 25 18 8 7

STREAM 23 2 24 7 18 20 9 22 27 16 4 15 14

OUTLETS 2 3 24 6 7 17 18 26 20 19 9 8

SOURCE

cowl HEATXl MEZ HEATXS FLASH COW3 PURGA VALV HEATX2 FLASHl HEATX3 HEATX4

-- DEST HEATXl HEATXl

ENF FLASH PURGA HEATX2 MEZ

HEATER COMPZ HEATX2 HEATX3

I-

--- I

PURGA 20 22 21

Page 63: INGENIENA QUIMICA (C. B.I.)

VALV 19 RSTOIC 12 HEATX2 15 9 FLASH1 3 HEATX3 14 10 HEATX4 13 11

CONVERGENCE STATUS SUMMARY ------ TEARSTREAM SUMMARY

27 13 16 10 4 5 15 11 14 12

STREAMMAMMUM MAXIMUM VARIABLE CONV ID ERROR TOLERANCE ERRA'OL ID STAT BLOCK

7 O. 11813E-05 0.12602E-05 0.93742 CH3OHMOLEFLOW # SOLVER01 11 0.23288E-11 0.12602E-05 0.18479E-05 CH3OH MOLEFLOW # SOLVEFtOl 10 0.2551 1E-11 0.28434E44 0.89720E-07 CH4 MOLEFLOW # SOLVER01 12 0.26689E-08 0.12602E-05 0.21179E-02 CH3OH MOLEFLOW # SOLVER01

----I ----- -- 7 I__ - -

# =CONVERGED * = NOT CONVERGED

FLOWSHEET SECTION

CONVERGENCE BLOCK: SOLVER0 1

TEARSTREAM : 7 11 10 12 TOLERANCE USED: -0.100D-03 -0.100D-03 -0.100D-03 -0.100D-03 TRACE MOLEFRAC: O. 100D-05 O. 100D-05 O. 100D-05 O. 100D-05

---------------

COMPUTATIONAL SEQUENCE

SEQUENCE USED WAS: COW1 HEATXl FTASHl C O W SOLVER01 RSTOIC ENF COW3 HEATX4 HEATX3 HEATX2 HEATER HEATXS FLASH PURGA MEZ SOLVEROl<- VALV

OVERALL FLOWSHEET BALANCE

*** MASS AND ENERGY BALANCE ***

CONVENTIONAL COMPONENTS IN OUT GENERATION RELATIVE DIFF.

w o r n ) c02 325.189 O. 146999E-02 -325.187 -0.119369E-13

0.175244E-05 -324.579 -0.120386E- 1 3 co 324.579 H2 2284.56 659.262 -1624.72 0.252591E-03 CH4 100.668 100.581 0.000000E+00 0.863299E-03 CH3OH 0.305055 650,067 649.766 0.652716E-05 H20 34348.6 34673.8 325.187 O. 262993E-07 TOTAL BALANCE

Page 64: INGENIENA QUIMICA (C. B.I.)

MOLE(KMOL/HR) 37383.9 36083.7 - 1299.53 O. 17898óE-04 MASS(KGMR) 648423. 648420. 0.468084E-05 ENTHALPY(CAUSEC) 6.668492EW -0.672820EW 0.643323E-02

PHYSICAL PROPERTIES SECTION

ID TYPE FORMULA NAMEORALIAS REPORT NAME c02 C c02 c02 c02 co C co co co H2 C H2 H2 H2 CH4 C CH4 CH4 CH4 CH3OH C CH40 CH40 cH3w H20 C H20 H20 H20

U-O-S BLOCK SECTION

BLOCK: COMPl MODELCOMPR

INLET STREAM: 1 OUTLETSTREAM: 2 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(KMOL/EIR) 3050.55 3050.55 0.000000E+00 MASS(KGmR) 29908.3 29908.3 0.000000EMO E"ALPY(CAL/SEC) -0.115402Ei-08 -0.108404Ei-08 -0.606350E-01

JN OUT RELATIVE DIFF.

*** INPUTDATA ***

GAS PHASE CALCULATION NO FLASH PERFORMED TYPE : FQLWROPIC C E " ü G A L COMPRESSOR OUTLETPRESSURE ATM 26.6166 OUTLET TEMPERATURE K 426.150 MECHANICAL EFFICIENCY 1.00000

*** RESULTS *** INDICATED HORSEFQWER REQUiREMENT KW 2,929.67 BRAKE HORSEPOWERREQUIREMENT KW 2,929.67 NET WORK, KW -2,929.67 CALC EFFICIENCY (POLYTWISENTR) 0.70694 OUTLET VAPOR FRACTiON 1.00000

BLOCK COMP2 MODEL: COMPR

INLET STREAM: 4

Page 65: INGENIENA QUIMICA (C. B.I.)

OUTLETSTREAM: 6 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** TOTAL BALANCE MOLE(KMOL/HR) 3042.66 3042.66 0.000000Ern MASS(KGmR) 29766.1 29766.1 0.000000E+00 E"ALPY(CAWSEC) 4.114175E+O8 -0.109417E+O8 4.416747E4

IN OUT RELATIVE DIFF.

*** INPUTDATA ***

GAS PHASE CALCULATION NO FLASH PERFORMED TYPE : POLYTROPIC CENTRIFUGAL COMPRESSOR OUTLET PRESSURE ATM 47.1355 OUTLETTEMPERATURE K 390.150 MECHANiCAL EFFICIENCY 1.00000

*** RESULTS *** INDICATED HORSEPOWER REQUIREMENT KW 1,992.17 BRAKE HORSEFQWERREQUIREMENT KW 1,992.17 NET WORK, KW -1,992.17 CALC EFFICIENCY (POLYTR/ISENTR) 0.71353 OUTLET VAPOR FRACTION 1 .m

BLOCK COW3 MODEL: COMPR

INLET STREAM: 8 OUTLETSTREAM: 9

----I---------

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(KM0LJHR) 10148.9 10148.9 0.000000E+00 MASS(KG/HR) 58546.7 58546.7 0.000000E+00 E"ALPY(CAWSEC) 4.1651 15E+O8 -0.15%41B+O8 4.331528E-01

IN OUT RELATIVE DIFF.

*** INPUTDATA ***

GAS PHASE CALCULATION NO FLASH PERFORMED TYPE : POLYTROPIC CENTRlFuGAL COMPRESSOR OUTLET PRESSURE ATM 50.3295 OUTLETTEMPERATüRE K 342.150 MECHANICAL EFFICIENCY 1.00000

*** RESULTS ***

INDICATED HORSEPOWER REQUIREMENT KW 2,291.86 BRAKE HORSEPOWERREQUIREMENT KW 2,291.86 NET WORK, KW -2,291.86

Page 66: INGENIENA QUIMICA (C. B.I.)

0.36928 1 .m

CALC EFFICIENCY (POLYTWISENTR) OUTLETVAPORFRACTION

BLOCK: ENF MODELHEATER

iNLET STREAM: 7 OUTLETSTREAM: 8 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(KMOL4HR) 10149.5 10148.9 0.660730E-04 MASS(KGMR) 58549.5 58546.7 0.463890E-04 E"AL,PY(CUSEC) -0.1607%E+08 -0.1651 15E+08 0.261576E-01

------I-------

IN OUT RELATIVE DIFF.

*** INPUTDATA *** TWO PHASE PV FLASH SPECIFIED PRESSURE ATM 45.1998 VAPOR FRACTION 1.00000 MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

*** RESULTS *** OUTLET TEMPERA- K 315.45 OUTLETPRESSURE ATM 45.200 HEATDUTY C U S E C -0.43239E+06 VAPORFRACTION 1 .oooo

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) c02 O. 3 2042E-O 1 O. 12 180E-03 co 0.3 1982E-01 O. 17527E-06 H2 0.828% 0.7 1520E-05 CH4 O. 10086 0.55105E-05 CH30H 0.44702E-02 O. 18740E-01 H20 0.16801E-02 0.98113

YO 0.32042E-O 1 O. 3 1982E-0 1 0.828% o. 10086 0.44702E-02 O. 16801E-02

K O 263 .O7 O. 18247E+06 O. 11591E+06 18304. 0.23854 O. 17 124E-02

BLOCK FLASH MODELFLASH2

INLET STREAM: 18 OUTLET VAPOR STREAM: 20 OUTLET LIQüID STREAM: 19

-------____I-------_---

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** TOTAL BALANCE MOLE(KMOL/HR) 8849.34 8849.34 0.000000E+00 MASS(KG/HR) 58546.4 58546.4 0.000000E+00 ENTHALPY(CAWSEC) -0.222273Ei-08 -0.222244EM8 -0.13 1372E-03

IN OUT RELATIVE DIFF.

! *** INPUTDATA ***

Page 67: INGENIENA QUIMICA (C. B.I.)

TWO PHASE TP FLASH SPECIFIED TEWERATURE K 3 13.150 SPECIFIED PRESSURE ATM 47.1550 MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

*** RESULTS *** OUTLETTEMPERATLIRE K 313.15 OUTLET PRESSURE ATM 47.155 HEATDUTY CAWSEC 2920.0 VAPORFRACTION 0.88937

V-L PHASE EQUILIBRIUM :

COMP F(I) XI) yo K(r) H2 0.76710 0.89790E-03 0.86241 960.48 CH4 0.11567 O. 14572E-02 O. 12988 89.133 CH3OH 0.78552E-01 0.65904 0.63415E-02 0.96224E-02 H20 0.38674E-01 0.33861 O. 13629E-02 0.40249E-02

BLOCK: FLASH1 MODELFLASH2

INLET STREAM: 3 OUTLET VAPOR STREAM: 4 OUTLET LIQUID STREAM: 5 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(Kh4OLhIR) 3050.55 3050.55 0.000000E+00

ENTHALPY(CUSEC) -0.115443Ei-08 -0.115681Ei-08 0.205176E-02

IN OUT RELATIVE DIFF.

MASWrn) 29908.3 29908.3 0.104609E-13

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 313.150 SPECIFIED PRESSURE ATM 26.6166 MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RESULTS *** OUTLET TEMPERATWE K 313.15 OUTUYTPRESSURE ATM 26.617 HEATDUTY C U S E C -23735. VAPOR FRACTION 0.99741

V-L PHASE EQUILIBRIUM :

cow F(I) XI) Y(I) K(I) c02 o. 10660 O. 1863 1E43 O. 10688 573.66 co o. 10640 0.22210E-06 0.10668 0.48029E+06 H2 0.74890 0.26200E-05 0.75084 0.28658E+06 CH4 0.33000E-01 0.71941E-06 0.33086E-01 45989.

Page 68: INGENIENA QUIMICA (C. B.I.)

CH3OH O. loooOE-03 0.21672E-03 0.99697E-04 0.46004 H20 0.50000E-02 0.99959 0.24208E-02 0.242 18E-02

BLOCK: HEATER M0DEL:HEATER

INLET STREAM: 16 OUTLETSTREAM: 17

_-I

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONGSOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** TOTAL BALANCE MOLE(KM0LIHR) 8849.34 8849.34 0.000000E+00 MAS!%-) 58546.4 58546.4 0.000000E+00 E"ALPY(CAL/SEC) -0.167537EM8 -0.215532E+08 0.222683

IN OUT RELATIVE DIFF.

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMFERATüRE K 333.150 SPECIFIED PRESSURE ATM 48.3938 MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

*** RESULTS *** OUTLETTEMFERATLJRE K 333.15 OUTLETPRESSURE ATM 48.394 HEATDUTY CUSEC -0.47995EM7 VAPORFRACTION 0.89897

V-L PHASE EQUILIBRIUM :

cow F(I) X(I) YO) K(I) H2 0.76710 O. 13 110E-02 0.853 16 650.77 CH4 O. 11567 O. 16476E-02 O. 12849 77.987 CH30H 0.78552E-01 0.64540 0.14850E-01 0.23010E-01 H20 0.38674E-01 0.35164 0.35029E-02 0.99616E-02

BLOCK HEATXl MODEL: HEATX

HOT SIDE:

INLET STREAM: 2 OUTLETSTREAM: 3 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

-------

COLD SIDE:

INLET STREAM: 23 OUTLETSTREAM: 24

------

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE IN OUT RELATIVE DIFF.

Page 69: INGENIENA QUIMICA (C. B.I.)

MOLE(KA4OLlHR) 22772.8 22772.8 0.000000E+00 MASS(KG/HR 385204. 385204. 0.000000E+00 E "ALPY (CUSEC ) -0.388216EH9 -0.388216Ei-09 -0.196363E-07

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

FLASH SPECS FOR COLD SIDE: ONE PHASE FLASH SPECIFIEDPHASEIS LIQulD MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECFED HOT OUTLET TEMPERATURE HOT STREAM PRESSURE DROP (ATM) COLD STREAM OUTLET PRESSURE (ATM)

0.0 3.13000

HEAT TRANSFER COEFFICIENTS HOT STREAM PHASE COLD STREAM PHASE LIQUID LIQUID BOILING LIQUID LIQUID VAPOR LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQüíD VAPOR BOILING LIQUID LIQUID VAPOR BOILING LIQUID VAPOR VAPOR VAPOR

(C AUSEC-SQCM-K)

0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302

*** RESULTS *** HOT STREAM INLET TEMPERATüRE (K) 426.150 HOT STREAMOUTLETTEMPERATURE (K) 313.150 COLD STREAM N E T TEMF'ERATURE (K) 305.150 COLD STREAM OUTLET TEMPERATüRE (K) 3 1 1.36 1 EXCHANGER HEAT DUTY (CWSEC) 703,901. HEAT TRANSFER AREA (SQM) 86.482 1

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY

1 v-L 86.4821 703,901. (HOT-COLD) (SQM) (CUSEC )

SECTION TEMPERATURE'LEAVING SECTION HOT STREAM COLD STREAM (K) (K)

1 3 13.150 311.361

rrvy -I-

t - _- ._ -_* .-,.----

Page 70: INGENIENA QUIMICA (C. B.I.)

--- INLET STREAM: 15 OUTLETSTREAM: 16 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 9 OUTLETSTREAM: 10 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

----

*** MASS AND ENERGY BALANCE *** TOTAL BALANCE MOLE(KMOL/HR) 18998.2 18998.2 0.000000EMXI MASW-) 117093. 117093. 0.000000EMXI E"ALPY(CAWSEC) -0.3 10900E+08 -0.3 10WOEi-08 0.206668E-09

IN OUT RELATIVE DiFF.

*** INPüTDATA ***

FLASH SPECS FOR HOT SIDE: ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

FLASH SPECS FOR COLD SIDE: ONE PHASE FLASH SPECIFIED PHASE IS VAPOR MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE O . O O O 1 0 0 0 0 0

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HEAT DUTY EXCHANGER HEAT DUTY (CAWSEC) 1,627,750. HOT STREAM PRESSURE DROP (ATM) COLD STREAM PRESSURE DROP (ATM )

0.0 0.0

HEAT TRANSFER COEFFICIENTS HOT STREAM PHASE COLD STREAM PHASE LIQUID LIQUID BOILING LIQUID LIQUID VAPOR LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQUID VAPOR BOILING LIQUID LIQVn, VAPOR BOILING LIQUID VAPOR VAPOR VAPOR

(CAWSEC-SQCM-K ):

0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302

*** RESULTS *** HOT STREAM INLET TEMPERATüRE (K) OUTLETSTREAM: 10 HOT STREAM OUTLET TEMPERATURE (K)

I

545.73 1

465.356 COLD STREAM INLET TEMPERATURE (K) 342.150 COLD STREAM OUTLET TEMPERATURE (K) EXCHANGER HEAT DUTY (CUSEC) 1,627,750.

420.379

Page 71: INGENIENA QUIMICA (C. B.I.)

HEAT TRANSFER AREA (SQM) 64.5157

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DIITY

1 v-v 64.5157 1,627,750.

SECTION TEMPERATURE LEAVING SECTION

(HOT-COLD) (WM) (CAL/SEC)

HOT STREAM COLDSTREAM (K) (K)

1 465.356 420.379

BLOCK: HEAlW MODELEEATX

HOT SIDE:

INLET STREAM: 14 OUTLETSTREAM: 15 PROPERTY OPTION SET: SYSOP3

-- ----- -----A

COLD SIDE: ------- M E T STREAM: lo OUTLETSTREAM: 11 PROPERTY OPTION SET: SYSOP3

REDLICH-KWOMG-WAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE IN OUT RELATIVE DIFF.

MOLE(KMOL/HR) 18998.2 18998.2 0.352802E-11 MASS(KGMR) 117093. 117093. 0.232683E-11 ENTHALPY(CAWSEC) -0.278345EM8 -0.278345EM8 0.3 10834E-08

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

FLASH SPECS FOR COLD SIDE: ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECFED HEAT DUTY EXCHANGER HEAT DUTY (CAWSEC) 1,627,750. HOT STREAM PRESSURE DROP (ATM) COLD STREAM PRESSURE DROP (ATM)

0.0 0.0

HEAT TRANSFER COEFFICIENTS (CAUSEC-SQCM-K ): HOT STREAM PHASE COLD STREAM PHASE LIQUID LIQülD 0.020302

Page 72: INGENIENA QUIMICA (C. B.I.)

BOILING LIQUID VAPOR LIQUID BOILING LIQUID VAPOR LIQUID BOILING LIQUID VAPOR

LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQUID VAPOR VAPOR VAPOR

0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302

*** RESULTS *** HOT STREAM INLET TEMPERATURE (K) 623.897 HOT STREAM OUTLET TEMPERATURE (K) 545.73 1 COLD STREAM INLET TEMPERATURE (K) 420.379

497.040 EXCHANGER HEAT DUTY (CUSEC) 1,627,750. HEAT TRANSFER AREA (SQM) 63.5809

COLD STREAM OUTLET TEMPERATURE (K)

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY

1 v-v 63.5809 1,627,750. (HOT-COLD) (WW (CAUSEC )

SECTION TEMPERATURE LEAVING SECTION HOT STREAM COLD STREAM 6) (K)

1 545.731 497.040

BLOCK. HEATX4 MODEL HEATX

HOT SIDE: ----------------

INLET STREAM: 13 OUTLETSTREAM: 14 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 11 OUTLETSTREAM: 12 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE IN OUT RELATIVE DIFF.

MOLE (KMOL/HR) 18998.2 18998.2 4.363564E-1 1 MASS(KG/HR) 117093. 117093. -0.801906E-11 ENTHALPY (CUSEC) -0.24579OEM8 -0.24579OEM8 O. 3 3 3 248E-07

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: ONE PHASE FLASH SPECIFIEDPHASEIS VAPOR MAXIMUMNO. ITEMTIONS 30

Page 73: INGENIENA QUIMICA (C. B.I.)

CONVERGENCE TOLERANCE O.OO0 1OOOOO

FLASH SPECS FOR COLD SIDE: ONE PHASE FLASH SPECJFIEDPHASEIS VAPOR MAxlMuMNO.ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECJFIED HEAT DUTY EXCHANGER HEAT DUTY (CAUSEC ) 1,627,750. HOT STREAM PRESSURE DROP (ATM ) 0.0 COLD STREAM PRESSURE DROP (ATM ) 0.0

HEAT TRANSFER COEFFICIENTS HOT STREAM PHASE COLD STREAM PHASE LIQUID LIQUID BOILING LIQUID LIQUID VAPOR LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQUID VAPOR BOILING LIQUID LIQUID VAPOR BOILING LIQUID VAPOR VAPOR VAPOR

(CWSEC-SQCM-K ):

0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302

*** RESULTS *** HOT STREAM INLET TEMPERATURE (K) 700.000 HOT STREAM OUTLET TEMPERATURE (K) 623.897 COLD STREAM INLET TEMPERATURE (K) 497.040 COLD STREAM OUTLET TEMPERATURE (K) 572.216 EXCHANGER HEAT DUTY (CAUSEC) 1,627,750. HEAT TRANSFER AREA (SQM) 62.9730

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY

1 v-v 62.9730 1,627,750. (HOT-COLD) (SQM) (CAUSEC )

SECTION TEMPERATURE*LEAVING SECTION HOT STREAM COLD STREAM (K) (K)

1 623.897 572.216

BLOCK HEATXS MODELHEATX

HOT SIDE:

INLET STREAM: 17 OUTLETSTREAM: 18

-------

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

COLD SIDE:

INLET STREAM: 25 ------

Page 74: INGENIENA QUIMICA (C. B.I.)

OUTLETSTREAM: 26 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(Kh4OLIHR) 23460.5 23460.5 0.000000EM MAsw-1 321766. 321766. 0.000000EMJO E"ALPY(CAUSEC) -0.301 13OEM9 -0.301 130EW 0.163015E-05

IN OUT RELATIVE DIFF.

*** INPUTDATA ***

FLASH SPECS FOR HOT SIDE: TWO PHASE FLASH MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.OOO100000

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O . O O O 1 0 0 0 0 0

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HOT OUTLET TEMPERATURE HOT STREAM OUTLET TEMPERATURE (K)

COLD STREAM OUTLET PRESSURE (ATM)

3 13.150 0.0 3.41660

HOT STREAM PRESSURE DROP (ATM)

HEAT TRANSFER COEFFICIENTS HOT STREAM PHASE COLD STREAM PHASE LIQUID LIQUID BOILING LIQUID LIQUID VAPOR LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQUID VAPOR BOILING LIQUID LIQUID VAPOR BOILING LIQUID VAPOR VAPOR VAPOR

(CAUSEC-SQCM-K ):

0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302

*** RESULTS *** HOT STREAM INLET TEMPERATURE (K) 333.150 HOT STREAM OUTLET TEMPERATURE (K) 313.150 COLD STREAM INLET TEMPERATURE (K) 305.150 COLD STREAM OUTLET TEMPEUTüRE (IC) 313.165 EXCHANGER HEAT DUTY (CUSEC) 674,098. HEAT TRANSFER AREA (WM) 253.646

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY

1 B-L 253.646 674,098. (HOT-COLD) (SQM) (CUSEC )

SECTION TEMPERATURE LEAVING SECTION

Page 75: INGENIENA QUIMICA (C. B.I.)

HOT STREAM COLDSTREAM (K) (K)

1 313.150 3 13.165

BLOCK: MEZ MODELMIXER

INLET STREAMS: 6 22 OUTLETSTREAM: 7 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** TOTAL BALANCE MOLE(KM0LMR) 10149.5 10 149.5 0.000000E#O MASS@-) 58549.5 58549.5 0.000000EW E"ALPY(CAL/SEC) -0.1607%E+08 -0.1607%E+os 0.589022E-08

IN OUT RUATIVE DiFF.

*** INPUTDATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000 OUTLET PRESSURE: MMIMUM OF INLET STREAM PRESSURES

BLOCK: PURGA MODEL: FSPLIT

INLET STREAM: 20 OUTLETSTREAMS: 22 21 PROPERTY OPTION SET: SYSOP3 WDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(KMOL/HR) 7870.30 7870.30 0.000000E+00 MASS(KG/HR) 31875.3 31875.3 0.000000E+00 E"ALPY(CAL/SEC) -0.568984E+07 -0.568984E+07 0.000000E+00

IN OUT RELATIVE DIFF.

*** INPüTDATA ***

FRACTION OF FLOW STRM=21 FRAC= 0.097000

*** RESULTS *** STREAM= 22 SPLIT= 0.90300 KEY= o

21 0.097000 O

BLOCK: RSTOIC MODEL: RSTOIC

INLET STREAM: 12 OUTLETSTREAM: 13 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

------------------------

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE IN OUT GENERATION RELATIVE DIFF.

I

Page 76: INGENIENA QUIMICA (C. B.I.)

10148.9 8849.34 -1299.53 -0.146852E-06 58546.7 58546.4 0.54507OE-05 -0.1 108088+08 -0.1 18704Ei-08 0.665151E-01

*** M U T D A T A *** SIMULTANEOUS REACTIONS STOICHIOMETRY MATRiX:

REACTION# 1: SUBSTREAMMIXED : C02 -1.00 H2 -3.00 CH3OH 1.00 H20 1.00

1 REACTION# 2: SUBSTREAMMIXED : CO -1.00 H2 -2.00 CH3OH 1 .o0

REACTION CONVERSION SPECS: NUMBER= 2 REACTION# 1: SUBSTREAM:MIXED KEY COMP:C02 CONVFRAC: 1.Ooo REACTION# 2: SUBSTREAM:MIXED KEY C0MP:CO CONVFRAC: 1.Ooo

TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 700.000 SPECIFIED PRESSURE ATM 48.3938 MAXIMUMNO. ITERATIONS 30 CONVERGENCE TOLERANCE O.Ooo100000

*** RESULTS *** OUTLETTEMPERATURE K 700.00 OUTLETPRESSURE ATM 48.394 HEAT DUTY CAWSEC -0.78962Ei-06 VAPOR FRACTION 1 .oooo

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(1) K(I) H2 0.76710 O. 763 22 0.76710 16.773 CH4 0.11567 O. 10952 0.11567 17.754 CH3OH 0.78552E-01 0.77925E-01 0.78552E-01 17.259 H20 0.38674E-01 0.49340E-01 0.38674E-01 13.352

BLOCK: VALV MODELHEATER

INLET STREAM: 19 OUTLETSTREAM: 27 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE ***

TOTAL BALANCE MOLE(KM0m) 979.04 1 979.04 1 0.000000EWO

IN OUT RELATIVE DIFF.

MASS(KG/IIR) 26671.1 26671.1 O. 136401E-15

Page 77: INGENIENA QUIMICA (C. B.I.)

E"ALPY(CAUSEC) -0.165345Ei-08 -0.165436EM8 0.549193E-03

*** INPUTDATA *** TWO PHASETPFLASH SPECIFIEDTEMPERATLJRE K 313.150 SPECIFIED PRESSURE ATM 4.06510 MAXIMUMNO.ITERATIONS 30 CONVERGENCE TOLERANCE 1O.OOO100000

*** RESULTS *** OUTLETTEMPERATURE K OUTLETPRESSURE ATM HEATDUTY CAUSEC VAPORFRACTION

313.15 4.065 1

O. 19584E-02 -9085.6

V-L PHASE EQl.JLIBRWM :

X(I) Y(I) K(I) 0.40225E-04 0.43799 10889. 0.50439E-03 0.48702 %5.% 0.66021 0.6 1249E-O 1 0.92772E-0 1 0.33925 0.13739E-01 0.40499E-01

cow F(I) H2 0.89790E-03 CH4 O. 14572E-02 CH3OH 0.65904 H20 0.33861

STREAM SECTION

STREAMID 1 FROM : -- TO: COMPl

10 HEATX2 HEATX3

11 HEATX3 HEATX4

12 HEATX4 RSTOIC

13 RSTOIC HEATX4

SUBSTREAM: MIXED PHASE: c0Mpo"Ts: KMOIJHFt c02 co H2 CH4 CH3OH H20 TOTAL FLOW: Kh4OL/HR KGMR LiMIN STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC ENTHALPY:

VAPOR VAPOR VAPOR VAPOR VAPOR

325.1888 324.5787 2284.5583 100.6682 0.3050 15.2527

325.1873 324.5787 8413.0473 1023.6395 45.3675 17.0507

325.1873 324.5787 84 13 .O473 1023.6395 45.3675 17.0507

325.1873 324.5787 84 13.0473 1023.6395 45.3675 17.0507

0.0 0.0 6788.3290 1023.63 97 695.1337 342.2380

1.014- 5.85474-04 1.4013+05

1.014- 5.85474-04 1.61ooto5

8849.3405 5.85464-04 1.7785i-05

3050.5320 2.9%8+04 1.0936+0'5

1.01494-04 5.85474-04 1.1876i-05

313.1500 12.0017 1 .oooo 0.0 0.0

420.3792 50.3295 1 .oooo 0.0 0.0

497.03% 50.3295 1 .m 0.0 0.0

572.2155 50.3295 1 .oooo 0.0 0.0

700.oooo 48.3938 1 .oooo 0.0 0.0

Page 78: INGENIENA QUIMICA (C. B.I.)

CAUMOL CALIGM CAUSEC ENTROPY: CAL/MOL-K CALIGM-K DENSITY: MOUCC GWCC AVG MW

1415161718

-1.361- - 1389.0703 -1.154oto7

-1.28% I

-0.1315

4.6492-04 4.558 1-03 9.8042

STREAMID 14 FROM : HEATX4 TO: HEATX3

SUBSTREAM: MIXED PHASE: c0Mpo"Ts: KMOLMR c02 co H2 CH4 CH3OH H20 TOTAL FLOW: KMOLMR KG/HR L/MM STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC ENTHALPY: CALA40L CAUGM CAUSEC ENTROPY: CALMOL-K CAUGM-K DENSITY: MOUCC GWCC AVG MW

VAPOR

0.0 0.0 6788.3290 1023.6397 695.1337 342.2380

8849.3405 5.8546+04 1.5863+05

623.8970 48.3 93 8 1 .o 0.0 0.0

-5491.1808 -829.9966 -1.3498+07

-5.4476 -0.8234

9.2976-04 6.15 12-03 6.6159

-5085.3758 -881.5320 -1.4336+07

-5.4509 -0.9449

1.4243-03 8.2163-03 5.7687

15 HEATX3 HEATX2

VAPOR

0.0 0.0 6788.3290 1023.6397 695.1337 342.2380

8849.3405 5.85464-04 1.3880+05

545.7307 48.3938 1.0 0.0 0.0

-6 153.3676 -930.0867 - 1.5 1264.07

-6.5813 -0.9947

1 .O62643 7.0302-03 6.6159

4307.9800 -781.4425 -1.270W7

-4.18% -0.7262

1.207 1-03 6. %3 3 -03 5.7687

16 HEATXZ HEATER

VAPOR

0.0 0.0 6788.3290 1023.6397 695.1337 342.2380

8849.3405 5.8546- 1.1825+05

465.3563 48.3938 1 .o 0.0 0.0-

4815.5543 -1030.1768 -1.6754+07

-7.8934 -1.1931

1.2473-03 8.2520-03 6.6159

-3930.5842 481.3529 -1.1081+07

-3.1080 -0.5387

1.0506-03 6.0607-03 5.7687

17 HEATER HEATX5

MIXED

0.0 0.0 6788.3290 1023.6397 695.1337 342.2380

8849.3405 5.8546+04 7.7398+04

333.1500 48.3938 0.8990 o. 1010 0.0

-8768.0474 -1325.2978 -2.1553+07

-13.0071 -1.9660

1.9056-03 1.2607-02 6.6159 6.6159

-4828.9938 -729.9065 -1.1870+07

-4.4464 -0.6720

8.2927-04 5.4864-03 6.6159

18 HEATX5 FLASH

MIXED

0.0 0.0 6788.3290 1023.6397 695.1337 342.2380

8849.3405 5.8546+04 7.2171+04

313.1500 48.3938 0.8893 O. 1107 0.0

-9042.2773 -1366.7478 -2.2227+07

-1 3.8550 -2.0942

2.0436-03 1.3520-02

I

Page 79: INGENIENA QUIMICA (C. B.I.)

19 2 20 21 22

21 PURGA

22 PURGA MEZ

STREAMID 19 FROM : FLASH TO: VALV

2 cow HEATXl

20 FLASH PURGA

SUBSTREAM: MIXED PHASE: c0Mpo"Ts: KMOUHR c02 co H2 CH4 CH3OH H20 TOTAL FLOW: KMOUHR KGiHR L/MIN STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL C N G M C U S E C ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOUCC GWCC AVG MW

VAPOR VAPOR VAPOR LIQUID VAPOR

0.0 0.0 0.8790 1.4266 645.2239 331.51 18

325.1888 324.5787 2284.5583 100.6682 0.3050 15.2527

0.0 0.0 6787.4499 1022.2130 49.9097 10.7262

0.0 0.0 658.3826 99.1546 4.8412 1 .o404

0.0 0.0 6 129.0673 923.0584 45.0685 9.6858

979.0414 2.6671+04 720.1589

3050.5520 2.9908+04 6.7604+04

7870.2991 3.1875+04 7.3288+04

763.4 190 3091.9046 7 108.8959

7106.8800 2.8783+04 6.6179+04

3 13.1500 47.1550 0.0 1 .m 0.0

426.1500 26.6166 1 .m 0.0 0.0

313.1500 47.1550 1 .m 0.0 0.0

313.1500 47.1550 1 .m 0.0 0.0

3 13.1500 47.1550 1 .m 0.0 0.0

-6.0799+04 -223 1.7878 -1.6535+07

-1.27934-04 -1304.8440 -1.084oco7

-2602.6226 -642.6109 -5.6898i-06

-2602.6226 -642.6109 -5.5 191+05

-2602.6226 -642.6109 -5.1379i-06

-50.74 1 3 -1.8626

-0.6349 -6.476442

-9.2088 -2.2737

-9.2088 -2.2737

-9.2088 -2.2737

2.265842 0.6172 27.2420

7.5207-04 7.3734-03 9,8042

1.7898-03 7.2489-03 4.0500

1.7898-03 7.2489-03 4.0500

1.789843 7.2489-03 4.0500

23 24 25 26 27

STREAMID 23 FROM : -- TO: HEATXl

24 HEATXl

25

HEATX5 - 26

HEATX5 27 VALV

SUBSTREAM: MIXED PHASE: LIQUID COMPONENTS: KM0LA-R c02 0.0 co 0.0 H2 0.0 CH4 0.0

LIQUID LIQUID LIQUID MIXED

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.8790 1.4266

Page 80: INGENIENA QUIMICA (C. B.I.)

CH3OH H20 TOTAL FLOW: KMOLMR KGMR LlMIN STATE VARIABLES: TEMF'K PRES ATM VFRAC LFRAC smc ENTHALPY: CAUMOL CALJGM CALJSEC ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOUCC GMKC AVG MW

0.0 1.97224-04

0.0 1.9722+04

0.0 1.461 14-04

0.0 1.461 14-04

645.2239 33 1.5 118

1.97224-04 3.553oto5 7918.5420

1.46114-04 2.6322+05 5839.8817

1.461 14-04 2.6322+05 5874.2351

979.0414 2.66714-04 922.0930

1.97224-04 3.5530+05 7882.730 1

305.1500 3.4166 0.0 1 .m 0.0

3 11.3610 3.1300 0.0 1 .m 0.0

305.1500 3.4166 0.0 1 .oooo 0.0

313.1651 3.4166 0.0 1 .oooo 0.0

313.1500 4.0651 1.9584-03 0.9980 0.0

-6.8756+04 -3816.5849 -3.7667+08

-6.88844-04 -3823.7172 -2.7958+08

-6.87184-04 -38 14.5044 -2.78W8

-6.08324-04 -2233.0141 -1.6544+07

-6.8884+04 -3823.7 172 -3.7738+08

-40.3134 -2.2377

-39.8960 -2.2146

-40.3 134 -2.2377

-39.7765 -2.2079

-50.6959 -1.8609

4.1699-02 0.7512 18.0150

4.151 1-02 0.7478 18.0150

4.1699-02 0.7512 18.0 150

4.1455-02 0.7468 18.0 150

1.76%-02 0.4820 27.2420

STREAMID 3 FROM : HEATXl TO : FLASHl

4 FLASHl corn

5 FLASHl I

6 corn MEZ

7 MEZ ENF

SUBSTREAM: MIXED PHASE: c0Mpo"Ts: KMOIJHR c02 co H2 CH4 CH3OH H20 TOTAL FLOW: KMOIJHR KG/HR L/MM STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC smc ENTHALPY CALmOL CALJGM

VAPOR VAPOR LIQüiD VAPOR VAPOR

325.1888 324.5787 2284.5583 100.6682 0.3050 15.2527

325.1873 324.5787 2284.5583 100.6682 0.3033 7.3657

1.4700-03 1.7524-06 2.0673-05 5.6763 -06 1.7099-03 7.8869

325.1873 324.5787 2284.5583 100.6682 0.3033 7.3657

325.1873 324.5787 8413.6257 1023.7266 45.3718 17.0516

3050.5520 2.9908+04 4.9604i-04

3042.66 18 2.9766- 4.9489+04

7.8901 142.2034 3.1720

3042.6618 2.97664-04 3.520 1+04

1.0150+04 5.8549i-04 1 .O 150+05

313.1500 26.6166 1 .oooo 0.0 0.0

313.1500 26.6166 1 .oooo 0.0 0.0

3 13.1500 26.6166 0.0 1 .oooo 0.0

390.1500 47.1355 1 .m 0.0 0.0

336.5619 47.1355 1 .m 0.0 0.0

-1.3624+04 - 1389.57 12

-1.3509+04 - 1380.8673

-6.8709+04 -38 12.3480

-1.2946- -1323.3200

-5703.3648 -988.6777

Page 81: INGENIENA QUIMICA (C. B.I.)

CAUSEC -1.1544+07 ENTROPY:

CAUGM-K -0.2956 DENSITY: MOUCC 1 .O25043 GWCC 1.0049-02 AVG MW 9.8042

CALMOL-K -2.8983

STREAMID 8 FROM : EM: TO : COW3

SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR c02 co H2 CH4 CH3OH H20 TOTAL FLOW: KMOLfHR KG/HR WMIN STATE VARIABLES: TEMP K PRES ATM VFRAC LFRAC SFRAC ENTHALPY: CAL/MOL C W G M CAWSEC ENTROPY: CAL/MOL-K CAL/GM-K DENSITY: MOUCC GWCC AVG MW o

VAPOR

325.1873 324.5787 84 13.0473 1023.6395 45.3675 17.0507

1.0149+04 5.8547+04 9.9083+04

315.4491 45.1998 1 .oooo 0.0 0.0

-5856.9455 - 10 15.2809 -1.6511+07

-7.3423 -1.2727

1.707 1-03 9.848 1-03 5.7687

-1.1417+07 -1.5059+05 -1.0942+07 -1.6080+07

-2.8903 -39.7785 -2.4371 -6.9571 -0.2954 -2.2071 -0.2491 -1.2060

1 .O24743 4.1457-02 1 .4406-03 1.6666-03 1.0025-02 0.747 1 1.4093-02 9.6144-03 9.7829 18.0228 9.7829 5.7686

9 COW3 HEATX2

VAPOR

325.1873 324.5787 84 13 .O473 1023.6395 45.3675 17.0507

1.0149+04 5.8547+04 9.6787+04

342.1500 50.3295 1 .m 0.0 0.0

-5662.77 16 -981.62 16 -1.5964+07

-6.9702 - 1.2082

1.7476-03 1.0082-02 5.7687

Page 82: INGENIENA QUIMICA (C. B.I.)

a

x 5 Y X

Page 83: INGENIENA QUIMICA (C. B.I.)
Page 84: INGENIENA QUIMICA (C. B.I.)
Page 85: INGENIENA QUIMICA (C. B.I.)

TERCERA SECCION DE LA PLANTA DE METANOL

RUN CONTROL SECTION

RUN CONTROL INFORMATION

TYPE OF RUN: NEW

INPUT FiLE NAME: FIFTH.inp

OUTPUTPROBLEMDATAFILENAME: FIFTH VERSION NO. 1 LOCATED IN: C:\USERASFVIFTH

PDF SIZE USED FOR INPUT TRANSLATION: NUMBER OF FILE RECORDS (PSIZE) = 99999 "MBEROFIN-CORERECORDS = 400

PSiZE NEEDED FOR SIMULATION = 300

CALLING PROGRAM NAME: a P d LOCATED IN: C:\Ap85B\xeqhpmod

SIMULATION REQUESTED FOR ENTIRE FLOWSHEET

DESCRIPTION

PURIFICACION DEL METANOL CRUDO PARA OBTENER METANOL PURO

BLOCK STATUS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * * ALL UNIT OPERATION BLOCKS WERE COMPLETED NORMALLY * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 86: INGENIENA QUIMICA (C. B.I.)

.

FLOWSHEET CONNECTMTY BY STREAMS

STREAM 1 2 5

12 13 4

10 16 11

9B

SOURCE

DIV ME21 CAL COLUMl COLUMl COLUM2 HEATX MEz2 SEP

- DEST DIV MEZl ME22 ---- u

MEzl MEz3

CAL MEz3

--

FLOWSHEET CONNECTIVITY BY BLOCKS

BLOCK DIV MEzl MEz3 CAL COLUMl COLUM2 HEATX VALV MEz2 SEP

INLETS

2 4 10 9B

11

1

3 6

7 15 8

5 14 9

COMPUTATIONAL SEQUENCE

STREAM 15 3 17 14 6 7 8 9 9A

SOURCE

DIV ME23 COLuMl COLuMl cauM2 HEATX VALV SEP

-

OUTLETS 2 3

5 17 12

14 13 6 4 7 10 8 16

9 11

9A 9B

SEQUENCE USED WAS: DIV COLUMl COLüM2 HEATX VALV SEP MEZ3 ME21 ME22 CAL

DEST

COLUMl

ME22 COLUM2 HEATX VALV SEP

HEATX

-

-

OVERALL FLOWSHEET BALANCE

*** MASS AND EMERGY BALANCE *** IN OUT RELATIVEDIFF.

CONVENTIONAL coMpo"Ts(KMoL/HR)

CH3OH H20 H2 CH4

TOTAL BALANCE MOLE(KMOL/HR ) MASS(KG/HR ) E"ALPY(CAL/SEC )

645.188 645.188 -0.199114E-13 4217.15 4217.15 0.237232E-14 0.881137 0.881137 0.591325E-13 1.46856 1.46856 0.874986E-12

4864.69 4864.69 0.747833E-15 %670.5 %670.5 -0.19569OE-14 -0.91 1 1728+08 -0.9 1 1547E+08 0.4 1 1524E-03

Page 87: INGENIENA QUIMICA (C. B.I.)

PHYSICAL PROPERTIES SECTION

COMPONENTS

ID TYPE FORMULA NAMEORALIAS REPORT NAME CH3OH C cH40 cH40 ch30h H20 C H20 H20 H20 H2 C H2 H2 H2 CH4 C CH4 cH4 CH4

U-O-S BLOCK SECTION

BLOCK CAL MODELHEATER

INLET STREAM: 11 OUTLET STREAM: 12 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** 'IN

TOTAL BALANCE MOLE(KM0LMR ) 17.3660 MASS(KG/HR ) 475.074 E"ALPY(CAL/SEC ) -226697.

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE K SPECIFIED PRESSURE ATM MAxlMuM NO. ITERATIONS CONVERGENCE TOLERANCE

*** RESULTS *** OUTLETTEMPERATURE K OUTLETPRESSURE ATM HEAT DUTY CALJSEC VAPORFRACTION

V-L PHASE EQUILIBRIUM

cow X(I) CH3OH 0.73573 0.78790 H20 O. 128% 0.21 190

OUT RELATIVEDIFF.

17.3660 0.000000E+00 475.074 0.000000E+00 -210174. -0.728847E-O 1

373.150 0.29040 30

o.oO0100000

373.15 0.29040

16523. 1 .m

yo K(I) 0.73573 12.087 0.128% 7.9384

H2 0.50739E-01 O. 18702E-04 0.50739E-01 34721. CH4 0.84565E-01 O. 17406E-03 0.84565E-01 6223.4

BLOCK COLUMl MODEL RADFRAC

INLETS - 3 STAGE 22 OUTLETS -14 STAGE 1

13 STAGE 1 6 STAGE 41 4 STAGE 2

Page 88: INGENIENA QUIMICA (C. B.I.)

PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0rn) 973.755 973.755 0.233M2E- 15 MASS(KG/HR ) 26526.5 26526.5 -0.946302E-14 ENTHALPY(CUSEC -0.164537E+ -0.161678E+08 -0.173758E-01

...................... **** N U T D A T A *e** ......................

**** INpuTp- ****

NUMBER OF STAGES 41 ALGORITHM OPTION NEWTON INITIALIZATION OPTION STANDARD HYDRAULIC PARAMETER CALCULATIONS NO DESIGN SPECIFICATION METHOD SIMULT MAXIMUM NO. OF NEWTON ITERATIONS 25 MAXIMUM NUMBER OF FLASH ITERATIONS FLASH TOLERANCE o.Oo0100000 COLUMN EQUATIONS CONVERGENCE TOLERANCE

50

o. 100000-06

**** COL-SPECS **** MASS VAPOR DIST / TOTAL DIST MASS REFLUXRATE KG/HR 5oo.Oo0 MASS DISTILLATE RATE KGMR 166.138

1.00000

P-SPEC STAGE 1 PRES,ATM 1.16140 21 1.45180

*******************

TOP STAGE TEMPERATLIRE K 333.666 BOTTOM STAGE TEMPERATURE K 349.982 TOP STAGE LIQUID FLOW K M O M 15.9786 B(YTT0M STAGE LIQUlD FLOW KMOLhlR % 1.675 TOP STAGE VAPOR FLOW K M O M 6.51135 BOTTOM STAGE VAPOR FLOW KMOLh-lR 130.937 MOLAR REFLUX RATIO 2.453% MOLAR BOILW RATIO O. 13616 CONDENSER DUTY (W/O SUBCOOL) CUSEC -4 1,435.9 REBOILER DUTY C U S E C 327,333.

**** MAXIMUM FINAL REL4TIVE ERRORS **** DEW FQINT 0.32917E-10 STAGE= 14

Page 89: INGENIENA QUIMICA (C. B.I.)

BUBBLE POINT 0.32980E-10 STAGE= 14

ENERGY BALANCE 0.56536E-10 STAGE= 16 COMPONENT MASS BALANCE 0.22796E-09 STAGE= 16 COMPC"

e*** pRoFILES *e**

ENTHALPY STAGE TEWERATURE PRESSURE CAUMOL HEAT DUTY

K

1 333.67 2 340.20 3 340.60

21 347.16 22 347.53 23 349.82 32 349.83 33 349.83 34 349.83 35 349.83 40 349.83 41 349.98

STAGE

1 2 3

21 22 23 32 33 34 35 40 41

STAGE 1 2 3

21 22 23 32 33 34 35 40 41

ATM LIQUID

1.1614 -57491. 1.1759 -57433. 1.1904 -57534. 1.4518 -59456. 1,4518 -598%. 1.4518 -59826. 1.4518 -59826. 1.45 18 -59826. 1.4518 -59826. 1.4518 -59826. 1.4518 -59834. 1.4518 -60010.

FLOW RATE KMOLlHR

LIQUID VAPOR 15.98 6.511 16.29 22.49 16.30 28.37 16.28 28.37 1085. 28.35

1093. 123.5 1093. 131.0 1093. 131.0 1093. 131.0 1093. 131.0 1093. 131.0 961.7 130.9

* * * * X-PROFILE CH30H H20

.94655

.93391

.92264 .71707 .67438 .67529

.67530

.67530

.67530

.67530

.67446

.65761

.53306E-0 1

.66049E-01

.77315Eal .28289 .3256ü .32471

.3247U

.32470

.32470

.32470

.32554

.34239

VAPOR CAUSEC

-37425. -.41436#5 -45049. -45154. -46152. -46307. -49474. -49482. -49482. -49482. -49482. -49485. -49548. .32733+06

FEEDRAR PRODUCT RATE

LIQUID VAPOR MIXED LIQUID VAPOR .31856-05 6.5113

KMOL/HR KMOLlHR

5.5678

973.7546

% 1.67%

**** HZ

.94301E-O5

.30145E-05

.2%34E-05 .24001E65 .2 1232E-05 .13431E-08

.00000E+00

.00000E+00. .17802E-24 .44444E-23 .00000EUM .15599E-21

CH4 .13024E-03 .38566E-04 .37782E-04 ,29323E-04 .2597OE-04 .11742E-06 .00000E+00 10683E- 19

.00000EUM

.00000E+00

.6807 1E-19

.56826E-22

Page 90: INGENIENA QUIMICA (C. B.I.)

STAGE 1 2 3 21 22 23 32 33 34 35 40 41

STAGE 1 2 3 21 22 23 32 33 34 35 40 41

**** Y-PROFILE CH3OH H20 .68300 .29373E-O1 NO25 .46377E-O1 .86384 33772E-01 .75577 .16185 .73933 .17823 30489 .19486 .80509 .19491 30509 .19491 30509 .19491 30509 .19491 30476 .19524 .79822 .20178

**** H2

.lo788 .3 1240E-0 1 .30889E-O1 30888E-Ol .30909E-O1 .1865óE+I .00000E+00 .00000E+00 .24724E-20 .6 1725E-19 .00000E+00 .22845E-l7

**** K-VALUES CH3OH H20 .72157 55103 .93184 .70217 .93626 .69549 1.0540 37212 1.0%3 .54741 1.1919 .60011 1.1922 50027 1.1922 .60027 1.1922 .60027 1.1922 60027 1.1932 .59935 1.2138 3934

**** H2

11440. 10363. 10423. 12870. 14557. 13890. 13888. 13888. 13888. 13888. 13922. 14645.

BLOCK COLUMZ MODEL RADFRAC

CH4 .17974

S2132E-01 S1501E-01 .5 1495E-0 1 .5 1529E-0 1 .228 19E-03 .00000E+00 .20760E-16 .00000E+00 .00000E+00 .13261E-15 .11643E-18

CH4 1380.1 1351.8 1363.1 1756.1 1984.2 1943.4 1943.3 1943.3 1943.3 1943.3 1948.1 2048.9

INLETS -6 STAGE 63 OUTLETS -7 STAGE 1

10 STAGE 86 PROPERTY OPTION SET: SY SOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

MOLE(K.MOL/HR ) 961.675 % 1.675 0.33 1&9E-14

E"ALPY(CAL/SEC ) 4.160305E+08 -O.l63172E+08 O. 175738E-01

TOTAL BALANCE

MASS(KG/HR ) 26 195.4 26195.4 O. 194430E- 1 4

. . . . . . . . . . . . . . . . . . . . . .

**** INpUTPARAMETEM ****

NUMBER OF STAGES 86 ALGORITHM OPTION NEWTON INITIALIZATION OPTION STANDARD HYDRAULIC PARAMETER CALCULATIONS NO

a

Page 91: INGENIENA QUIMICA (C. B.I.)

DESIGN SPECIFICATION METHOD SIMULT MAXIMUM NO. OF NEWION ITERATiONS 25 MAXIMUM NUMBER OF FLASH ITERATIONS FLASH TOLERANCE o.Oo0100000 COLUMN EQUATIONS CONVERGENCE TOLERANCE

50

o. 100000-06

**** COL-SPECS **** MASS VAPOR DIST / TOTAL DIST MASSREFLUXRATIO MASS DISTILLATE RATE KGMR

P-SPEC STAGE 1 PRES,ATM 86 0.60000

TEMP-EST STAGE 1 TEMP,K 86 379.150 63 349.986

******************* ***I RESULTS ***e *******************

TOP STAGE TEMPERATWE K BOlTOM STAGE TEMPERATüRE K TOP STAGE LIQUID FLOW K M O m

0.0 4.00000 22,907.4

0.25000

343.150

308.999 362.346 3,116.65

BOTTOM STAGE LIQUID now m o m 182.513 TOP STAGE VAPOR FLOW KMOL/HR 0.0 BOTTOM STAGE VAPOR FLOW KMOUHR 3,541.77 MOLAR REFLüX RATIO 4.00000 MOLAR BOILUP RATIO 19.4056 CONDENSER DUTY (W/O SUBCOOL) CAUSEC -0.105294+08 REBOILER DUTY CAUSEC O. 102427+08

**** MAXIMUM FINAL RELATIVE ERRORS ****

DEW POINT 0.44409E-09 STAGE= 82 BUBBLE POINT 0.44410E-09 STAGE= 82 COMPONENT MASS BALANCE ENERGY BALANCE 0.23504E-09 STAGE= 82

O. 17544E-07 STAGE= 86 COMP=CH3OH

\

ENTHALPY

K ATM LIQUID VAPOR CAUSEC STAGE TEMPERATURE PRESSURE C W O L HEAT DUTY

1 309.00 0.25000 -59533. -49180. -.10529+08 2 309.71 0.25412 45142. -49803. 3 332.17 0.25824 48242. -53639. 62 353.35 0.50118 -67846. -55621. 63 353.54 0.50529 47842. -55620.

Page 92: INGENIENA QUIMICA (C. B.I.)

64 358.25 84 362.00 85 362.18 86 362.35

STAGE

1 2 3

62 63 64 84 85 86

STAGE 1 2 3

62 63 64 84 85 86

STAGE 1 2 3

62 63 64 84 85 86

STAGE 1 2 3

62 63 64 84 85 86

0.50941 -67784. -57294. 0.59176 -67706. -57294. 0.59588 -67703. -57293. 0.60000 -67699. -57292. .10243+08

FLOW RATE FEEDRATE KMOUHR KMOUHR

LIQUID VAeOR LIQUID VAPOR MIXED 3117. 0.0000E+00 28%. 38%. 2780. 3675. 2851, 3630. 3676. 3630. %1.6754 3705. 3494. 3723. 3540. 3724. 3541. 182.5 3542.

**** X-PROFILE **** CH3OH H20 .81166 ,18834 .28513 .71487

S8795E-02 .99412 .27913E-02 .99721 .28014E-02 .99720 .40861E-04 .999% .00000E+00 1.oooO .00000E+00 1.oooO .00000E+00 1.oooO

* * * * Y-PROFILE **** CH30H H20 37638 .12362 3 1 1 6 6 .18834 .3%76 .60324 .17642 .82358 .17640 32360

.29477E42 .99705

.76212E-14 1.oooO

.10382E-13 1.oooO

.18448E-13 1.oooO

**** K-VALUES **** CH30H H20 1.0797 .65635 2.8466 .26347 67.482 .60681 63.203 32589 62.%9 32592 72.140 .99709 67.580 1.oooO 67.368 1.oooO 67.159 1.oooO

BLOCK: DiV M0DEL:FSPLIT

PRODUCT RATE KMOUHR

LIQUID VAPOR 779.1623

182.5 13 I

Page 93: INGENIENA QUIMICA (C. B.I.)

INLET STREAM: 1 OUTLETSTREAMS: 2 3 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LJHR) 979.042 979.042 4.23224 1E-15 MASS(KG/HR ) 26670.5 26670.5 0.000000EW E"ALPY(CAL,/SEC ) -0.16543 1EM8 -0.16543 lE+ O8 0.000000EM

*** INPUTDATA *** FRACTION OF FLOW sTRM=2 m c = 0.0054oO0

*** RESULTS *** STREAM= 2 SPLIT= 0.0054000 KEY= O

3 0.99460 O

BLOCK HEATX M0DEL:HEATX

HOT SIDE:

INLET STREAM: 7 OUTLETSTREAM: 8 PROPERTY OPTION SET: SYSOP3

------

COLD SIDE:

INLET STREAM: 15 OUTLET STREAM: 16 PROPERTY OPTION SET: SYSOP3

--I----

REDLICH-KWONG-WAVE EQUATION OF STATE

REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENEXGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 4664.81 4664.81 0.000000E+00 MASS(KG/HR ) 92907.4 92907.4 0.000000E#O ENTHALPY(CAL/SEC ) -0.874592Ei-08 -0.874593Ei-08 O. 164000E-05

*** INPUTDATA *** FLASH SPECS FOR HOT SIDE. TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANC€ 0.000100000

FLASH SPECS FOR COLD SIDE: TWO PHASE FLASH MAXIMUM NO. ITERATIONS CONVERGENCETOLERANCE

30 o.oO0100000

COUNTERCURRENT HEAT EXCHANGER WITH SPECIFIED HOT OUTLET TEMPERATURE

Page 94: INGENIENA QUIMICA (C. B.I.)

. HOT STREAM 0- TEMPERA= (K ) HOT STREAM PRESSURE DROP (ATM COLD STREAM PRESSURE DROP (ATM )

)

HEAT TRANSFER COEFFICIENTS HOT STREAM PHASE LIQUID LIQUID BOILING LIQUID LIQUID VAPOR LIQUID LIQUID BOILING LIQUID BOILING LIQUID BOILING LIQUID VAPOR BOILING LIQUID LIQUID VAPOR BOILING LIQUID VAPOR VAPOR VAPOR

COLD STREAM PHASE

*** R)7smm *** HOT STREAM INLET TEMPERATURE (K ) HOT STREAM OUTLET TEMPERATURE (K ) COLD STREAM INLET TEMPERATURE (K ) COLD STREAM OUTLET TEMPERATURE (K ) EXCHANGER HEAT DUTY (CAUSEC ) HEAT TRANSFER AREA (SQM )

303.150 0.0 0.0

(CAUSEC-SQCM-K ):

0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302 0.020302

308.999 303.150

295.150 296.676

34,295.2 16.8819

AREA CALCULATION RESULTS:

SECTION CONDITIONS AREA HEAT DUTY (HOT-COLD) (SQM ) (CAUSEC)

1 L-L 16.8819 34,295.2

SECTION TEMPERATURE LEAVING SECTION HOT STREAM CbLD STREAM ( K ) ( K )

1 303.150 296.676

BLOCK ME21 MODEL: MIXER

INLETSTREAMS: 2 4 OUTLETSTREAM: 5 PROPERTY OPTION SET: SY SOP3 FtEDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVEDIFF.

TOTAL BALANCE MOLE(KMOL/HR ) 10.8547 10.8547 0.000000EW MASS(KG/HR ) 308.937 308.937 0.183997E-15 ENTHALPY(CALBEC ) -159006. -159006. -0.234168E-07

*** INPUTDATA *** TWO PHASE FLASH MAXIMUM NO. ITEMTIONS 30 CONVERGENCETOLERANCE o.Oo0100000 OüTLET PRESSURE: M J M OF INLET STREAM PRESSURES

Page 95: INGENIENA QUIMICA (C. B.I.)

BLOCK: ME22 MODELMIXER

INLETSTREAMS: 5 14 OUTLET STREAM: 11 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVEDIFF.

TOTAL BALANCE MOLE(KMOL/HR) 17.3660 17.3660 0.000000EW MASS(KG/HR ) 475.074 475.074 0.000000E+00 ENTHALPY(CAL/SEC ) -226697. -226697. 4.987178E-08

*** iNPUTDATA *** TWO PHASE FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o . oO01m OUTLET PRESSURE: MINIMUM OF MLET STREAM PRESSURES

BLOCK: ME23 MODELMIXER

INLET STREAMS: 10 9B OUTLET STREAM: 17 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-WAVE EQUATION OF STATE

*** MASSANDENERGYBALANCE *** . IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KMOL/HR) 329.264 329.264 0.000000E+00

E"ALPY(CAL/SEC ) -0.624191EM7 -0.624191EM7 O. 107732E-07 MASS(KG/HR ) 5931.71 593 1.71 4.153328E-15

*** INPUTDATA *** TWO PHASE, FLASH MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o . o O 0 1 m OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES

BLOCK: SEP MODELSEP INLET STREAM: 9 OüTLETSTREAMS: 9A 9B PROPERTY OPTION SET: SY SOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATNEDIFF.

TOTAL BALANCE MOLE(KM0LdHR ) 779.162 779.162 0.000000E+00

E"ALPY(CAL/SEC ) 4129188EM8 -0.129724Ei-08 0.4127223342 MASS(KG/HR ) 22907.4 22907.4 0.317624E-15

*** INPUTDATA ***

FLASH SPECS FOR STREAM 9A TWO PHASE TP FLASH

Page 96: INGENIENA QUIMICA (C. B.I.)

PRESSUREDROP ATM 0.0 MAxlMuM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

FLASH SPECS FOR STREAM 9B TWO PHASE TP FLASH PRESSUREDROP ATM 0.0 MAxlMuM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

FRACTION OF FEED SUBSTREAM= MIXED STREAM=9A CPT=CH3OH FRACTION= 1 .00000

H20 O. 1oOOOo-05 CH4 0.0

*** RESULTS ***

COMPONENT = CH3OH STREAM SUBSTREAM SPLITFRACTION 9A MIXED 1.00000 9B MIXED 1.000000-06

COMPONENT = H20 STREAM SUBSTREAM SPLITFRACTION 9A MIXED O. 100000-05 9B MIXED 1 .m

BLOCK VALV MODEL HEATER

MLET STREAM: 8 OUTLETSTREAM: 9 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE J3QUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0LMR ) 779.162 779.162 0.000000E+00 MASS(KG/HR ) 22907.4 22907.4 0.000000E+00 E"ALPY(CAL/SEC ) -0.129193EH)S -0.129188EH)S -0.392279E-04

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 303.150 SPECIFIED PRESSURE ATM 3.29080 MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE o.Oo0100000

*** RESULTS *** OUTLETTEMPERATüRE K 303.15 OUTLETPRESSURE ATM 3.2908 HEAT DUTY CAUSEC 506.80 VAPOR FRACTION 0.00000E+00

Page 97: INGENIENA QUIMICA (C. B.I.)

_I_- - -- --

V-L PHASE EQUILIBRIUM :

COMP F(I) XU) Y(I) KO) CH3OH 0.81166 0.81166 0.88113 0.65621E41 H20 0.18834 0.18834 0.11887 0.38149E-01

STREAM SECTION

1 10 11 12 13 --I

STREAMID 1 10 11 12 13 FROM : -- COLUM2 ME22 CAL COLuMl TO : DIV ME23 CAL - SUBSTREAM: MIXED PHASE: MIXED c0Mpo"Ts: m o m CH3OH 645.1883 H20 331.5034 H2 0.881 1 CH4 1.4685

KMOIJHR 979.04 15 KG/HR 2.6670+04 IJMIN 926.2560

TEMP K 313.1500 PRES ATM 4.0651 VFRAC 1.9993-03 LFRAC 0.9980 SFRAC 0.0

CAL/MOL -6.0830+04

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY:

C W G M -2232.9942 C U S E C -1.6543+07

ENTROPY: CAUMOL-K -50.6942 CAL/GM-K -1.8609

DENSITY: MOUCC 1.76 16-02 GWCC 0.4799

AVG MW 27.2414

LIQUID

5.0134-14 182.5131

0.0 0.0

182.5 13 1 3287.9735

76.4379

362.3464 .6ooo

0.0 1 .oooo

0.0

-6.7699+04 -3757.9252 -3.43 22+06

-36.7487 -2.0398

3.9795-02 0.7169

18.0150

MIXED VAPOR LIQUID

12.7767 12.7767 3.0153-06 2.23% 2.23% 1.6981-07

0.881 1 0.8811 3.0040-11 1.4685 1.4685 4.1488-10

17.3660 17.3660 3.1856-06 475.0743 475.0743 9.%8345 4578.3236 3.0433+04 2.8916-06

337.2831 373.1500 333.6657 1.1614 0.2904 1.1614 0.6722 1 .oooo 0.0 0.3277 0.0 1 .oooo

0.0 0.0 0.0

-4.6995+04 -4.3569+04 -5.7491+04 -1717.8557 -1592.6503 -1837.2612 -2.2670+05 -2.1017+05 -5.087342

-32.1362 -19.3414 -55.6718 -1.1747 4.7070 -1.7791

6.3218-05 9.5106-06 1.8361-02 1.729443 2.6018-04 0.5745 27.3565 27.3565 31.2919

Page 98: INGENIENA QUIMICA (C. B.I.)

STREAMID 14 FROM : COLUMl TO : MEz2

SUBSTREAM: MIXED PHASE: VAPOR c0Mpo"Ts: m o m

CH3OH 4.4472 H20 0.1912 H2 0.7024 CH4 1.1703

KM0m 6.5113 KG/HR 166.1376 YMIN 2527.3395

TEMP K 333.6657 PRES ATM 1.1614 WRAC 1.oooO LFRAC 0.0 SFRAC 0.0

CfWMOL -3.7425+04 CAIJGM -1466.774 1

TOTAL. FLOW:

STATE VARIABLES:

ENTHALPY:

CAUSEC 4.769 1+04 ENTROPY: CALMOL-K -22.3584 CAIJGM-K -0.8762

MOUCC 4.2939-05 GWCC 1.0956-03 AVG MW 25.5150

DENSITY:

15

HEATX e

LIQUID

0.0 3885.6508

0.0 0.0

3885.6508 7.0000c04 1542.1566

295.1500 2.6133 0.0 1 .oooo 0.0

4.9092+04 -3835.2417 -7.4574+07

-41.0036 -2.2760

4.1994-02 0.7565

18.0 1 50

16 17 2 HEATX ME23 DIV e - MEZl

LIQUID LIQvn, MIXED

0.0 6.3241-04 3.4840 3885.6508 329.2637 1.7901

0.0 0.0 4.758 1-03 0.0 0.0 7.9302-03

3885.6508 329.2643 5.2868 7.- 5931.7059 144.0206

1543.7875 134.7740 5.0017

2%.6758 336.0420 313.1500 2.6133 0.6O00 4.0651

0.0 0.0 1.9993-03 1 .oooo 1.oooo 0.9980 0.0 0.0 0.0

-6.9o6oco4 4.8246+04 4.0830+04 -3833.4853 -3788.2676 -2232.9942 -7.4540+07 -6.2419+06 -8.9333+04

-40.8966 -38.3150 -50.6942 -2.270 1 -2.1268 -1.8609

4.1949-02 4.07 18-02 1.76 16-02 0.7557 0.7335 0.4799

18.0 150 18.0150 27.2414

Page 99: INGENIENA QUIMICA (C. B.I.)

3 4 5 6 7

STREAMID 3 FROM : DIV TO : COLUMl

SUBSTREAM: MIXED PHASE: MIXED COMPONEiNTS: KMoL/HR CH3OH 641.7043 H20 329.7133 H2 0.8763 CH4 1.4606

K M O m 973.7546 KGMR 2.6526+04 UMM 921.2542

TEMP K 313.1500 PRES ATM 4.0651 VFRAC 1.9993-03 LFRAC 0.9980 SFRAC 0.0

CALMOL -6.0830+04

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY:

CAUGM -2232.9942 CAUSEC -1.6454+07

ENTROPY: CALMOL-K -50.6942 CAL/GM-K -1.8609

DENSITY: MOUCC 1.76 16-02 GWCC 0.4799

AVG MW 27.2414

4 COLuMl ME21

VAPOR

4.8454 0.2582 O. 1739 0.2902

5.5678 164.9161

2164.7840

340.1059 1.1759

1 .oooo 0.0 0.0

-4.5049+04 -1520.9285 -6.%74+04

-26.4294 -0.8923

4,286745 1.2697-03

5 MEZl MEz2

MlxED

8.3294 2.0483 O. 1787 0.2981

10.8546 308.9367

2000.7863

341.1059 1.1759

0.471 1 0.5288

0.0

-5.273 5 - W - 1852.8805 -1.5901+05

-38.1245 -1.3395

9.0420-05 2.5735-03

29.6193 28.461 1

6 7 COLuMl COLUM.2 mUM2 HEATX

LIQüID LIQUID

632.41 16 632.41 16 329.2638 146.7507 1.5001-19 0.0 5.4648-20 0.0

961.6754 779.1623 2.6195- 2.2907+04 741.9365 631.5753

349.9824 308.9988

0.0 0.0 1.oooo 1.oooo 0.0 0.0

1.4518 0.2500

-6.0010+04 -5.9533- -2203.0462 -2024.9347 -1.6030+07 -1.2885+07

-47.7844 -54.5271 -1.7542 -1.8546

2.1603-02 2.056142 0.5884 0.6045

27.2393 29.4001

Page 100: INGENIENA QUIMICA (C. B.I.)

899A9B

STREAMID 8 9 9A 9B FROM : HEATX VALV SEP SEP TO : VALV SEP I MEz3

SUBSTREAM: MIXED PHASE: LIQUID c0Mpo"Ts: KMoL/HR CH3OH 632.41 16 H20 146.7507 H2 0.0 CH4 0.0

KMOLJHR 779.1623 . KGRIR 2.2907+04 L/MM 627.3497

TEMF'K 303.1500 PRES ATM 0.2500 VFRAC 0.0 LFRAC 1 .m SFRAC 0.0

C M O L -5.%92+04 CAL/GM -2030.3243 CAUSEC -1.29 19+07

TOTAL FLOW:

STATE VARIABLES:

ENTHALPY:

ENTROPY: CAL/MOL-K -55.0448 CAL/GM-K -1.8722

DENSITY: MOUCC 2.0700-02 GWCC 0.6085

AVG MW 29.4001 O

LIQUID

632.41 16 146.7507

0.0 0.0

779.1623 2.2907+04 627.2394

303.1500 3.2908

0.0

0.0 1.oooO

-5 .968w -2030.2447 -1.29 1 W 7

-55.0488 -1.8724

2.070302 0.6086

29.4001

632.41 10 1.4675-04

0.0 0.0

632.41 11 2.0264-w 568.4916

303.1500 3.2908 0.0 1 .m 0.0

-5.7851+04 -1805.4703 - 1 .O 163+07

-59.9520 - 1.87 10

1.8541-02 0.5940

32.0420

LIQUID

6.324 1 -04 146.7506

0.0 0.0

146.7512 2643.7323

58.5710

303.1500 3.2908

0.0 1 .oooo

0.0

-6.8926+04 -3826.0039 -2.8097-

-40.4495 -2.2453

4.1759-02 0.7522

18.0150

Page 101: INGENIENA QUIMICA (C. B.I.)

a c;)

5 P= 5 e, 4 E-. z -4 J e, 5 J W

z O u u W u2 -4 iz W u P= W b

n

Y

w s

c(

O z 4 E-( W E w a z O u u 5 CI O P= e,

Y

9 P

I J

Page 102: INGENIENA QUIMICA (C. B.I.)

i i c I

! i

L

z i E

E i

Page 103: INGENIENA QUIMICA (C. B.I.)
Page 104: INGENIENA QUIMICA (C. B.I.)

i I

c

* * * * *EXPERIMENTACION** * * *

La experimentación que se realizó h e con el flash localizado en la segunda sección, después del reactor. Esta se hizo con el fin de obtener una mayor separación de metanol-agua, para lograr una producción más grande que la obtenida en la simulación de la planta completa.

r

La experimentación he un éxito y obtuvimos los siguientes resultados:

CORRIDA ANTERIOR EXPERlMENTACION T = 313.15 OK P = 47.155 ATM FLUJO-= = 645.2239 KMOLIH FLUJOmm = 682.662 KMOLIH FLUJOCH30KV = 49.90976 KMOIJH FLUJO-wv = 12.4604 KMOm

T = 287.15 OK P = 48 atm;

Estos resultados nos permitieron calcular la producción anual (TONIAÑO) para la capacidad máxima de producción.

Page 105: INGENIENA QUIMICA (C. B.I.)

+ +++ +++ +++

+ +++ + +++ +++ +++ +++ + + + +++ +++ +++ +++

+ +++ +++ +++ + +++ +++ +++ +++ + + + +++ +++ +++ +++ + + + +++ +++ +++ +++ + + +

+ +++ +++ +++ +++ +++ + +++ +++ +++ +++ +++ + + + +++ +++ +++ +++ +++ +++ +++ +++ + + + +++ +++ +++ +++ +++ + + + + + + + + + +++ +++ +++ +++ + + + + + + +++ +++ +++ +++ +++ +++ + + + + + + +++ +++ +++ +++ +++ + + + + + + + + + +++ +++ + + + +++ +++ + + + + + + + + + + + + +++ +++

+ + + + + + + + + + + + + + + + + + + + +++ +++ + + + +++ + + + + + + + + + + + + + + + + + + +++ + + + + + + + + +

+ + +++ + + +++ +++ +++

+ ASPENTEC

FLOWSHEET SIMULATION FOR THE PROCESS iNDUSTRIES

TM AAAAA SSSSS PPPPP EEEEE NN N PPPPP L u u sssss A A S P P E N N N P P L u u s AAAAA SSSSS PPPPP EEEEE N N N PFTPP L u u sssss A A S P E N N N P L u u S A A SSSSS P EEEEE N N P LLLLL ULTUUU sssss

ASPEN PLUS IS A TRADEMARK OF

251 VASSAR STñEET CAMBRIDGE, MASSACHUSETTS 02139

HOTLINE: ASPEN TECHNOLOGY, INC. U.S.A. 617/497-9010

EUROPE (32) 2/7324300

617/497-9010

VERSION: PC-DOS JULY 17, 1992 RELEASE: 8.5-4E FRIDAY INSTALLATION: ASPENTEC 2:39:30 P.M.

Page 106: INGENIENA QUIMICA (C. B.I.)

-11

b

EXPERIMENTACION DEL MODULO FLASH DE LA 2A. SECCION DE LAPLANTA

RUN CONTROL SECTION

DESCRIPTION --- VARIACIONES EN LAS CONDICIONES DEL FLASH CON EL FIN DE OBTENER MAYOR PUREZA DEL METANOL.

BLOCK STATUS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * * ALL UNIT OPERATION BLOCKS WERE COMPLETED NORMALLY * *

*

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS ____-------__-------- STREAM SOURCE DEST STREAM SOURCE DEST 1 -u- FLASH 2 FLASH -- 3 FLASH ----

FLOWSHEET CONNECTIVITY BY BLOCKS -------------------- BLOCK INLETS OUTLETS FLASH 1 23

SEQUENCE USED WAS: FLASH

OVERALL FLOWSHEET BALANCE ------------------- *** MASS AND ENERGY BALANCE ***

IN OUT RELATIVEDIFF. CONVENTIONAL COMPONENTS (KMOLlHR)

CH3OH 695.123 695.123 0.239843E-10 H20 342.207 342.207 0.242847E-10 cH4 1023.61 1023.61 -0.316988E-11 H2 6788.40 6788.40 -0.320207E-11

Page 107: INGENIENA QUIMICA (C. B.I.)

TOTAL BALANCE MoLE(KM0Im.R) 8849.34 8849.34 0.205551E-15 MAss(KG/HR 1 58545.2 58545.2 O. 100445E-10 E"ALPY(CAWSEC ) -0.222264EM -0.229365EM 0.309585E-01

PHYSICAL PROPERTIES SECTION

ID TYPE FORMULA NAMEORALIAS REpoaTNAME CWOH C CH40 a40 cH3m H20 C HZ0 H20 H20 CH4 C cH4 CH4 cH4 H2 C H2 H2 H2

U-0-S BLOCK SECTION

BLOCK: FLASH MODEL: FLASH2

INLET STREAM: 1 OUTLETVAPORSTREAM: 2 OUTLET LIQUID STREAM: 3 PROPERTY OPTION SET: SYSOP3 REDLICH-KWONG-SOAVE EQUATION OF STATE

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.

TOTAL BALANCE MOLE(KM0Im.R) 8849.34 8849.34 0.205551E-15 MASS(KG/HR ) 58545.2 58545.2 O. 100445E-10 ENTHALPY(CAUSEC ) -0.222264EM8 -0.229365EM8 0.309585E-01

*** INPUTDATA *** TWO PHASE TP FLASH SPECIFIED TEMPERATURE K 287.150 SPECIFIED PRESSURE ATM 48.oooO MAXIMUM NO. ITERATIONS 30 CONVERGENCE TOLERANCE 0.000100000

*** RESULTS *** OUTLETTEMPERATLJRE K 287.15 OUTLET PRESSURE ATM 48.000 HEAT DUTY CAWSEC -0.71008E+06 VAPORFRACTION 0.88426

V-L PHASE EQUILIBRIUM

cow F(I) XI) y a K(I) CH3OH 0.78551E-01 0.66650 0.15924E-02 0.23892E-02 H20 0.38670E-01 0.33174 0.30990E-03 0.93418E-03 CH4 O. 11567 O. 12359E-02 O. 13065 105.71 H2 0.76711 0.51974E-03 0.86745 1669.0

Page 108: INGENIENA QUIMICA (C. B.I.)

STREAM SECIlON

1 2 3

STREAMID 1 2 3 FROM : - FLASH FLASH TO : FLASH - - SUBSTREAM: MIXED PHASE: MIXED VAPOR LIQUID c0Mpo"Ts: KMoLmR CH3OH H20 CH4 H2

KMOLJHR KG/HR Lh4l.N

TEW K PRES ATM VFRAC LFRAC SFRAC

ENTHALPY: CAL/MOL CALíGM CUSEC

ENTROPY:

TOTAL FLOW:

STATE VARIABLES:

CAL/MOL-K CAL/GM-K DENSITY: MOUCC GMCC

AVG MW o

695.1226 12.4604 682.6622 342.2074 2.4250 339.7824 1023.6135 1022.3476 1.2658 6788.3973 6787.8650 0.5323

8849.3410 7825.0981 1024.2428 5.85454-04 3 . 0 5 2 W 2.80164-04 7.21714-04 6.5729+04 737.0505

313.1500 287.1500 287.1500 48.3938 48.oooO 48.oooO

0.8892 1.oooO 0.0 O. 1 107 0.0 1.oooO

0.0 0.0 0.0

-9041.9162 -2511.6137 á.1428+04 -1366.7211 -643.7731 -2245.7419 -2.2226+07 -5.4593+06 -1.7477+07

-1 3.8547 -9.78 16 -53.1538 -2.0942 -2.5072 -1.9432

2.0436-03 1.9842-03 2.3161-02 1.3520-02 7.7410-03 0.6335 6.6157 3.9014 27.3533

Page 109: INGENIENA QUIMICA (C. B.I.)

. z O V 4 P z w c

c(

E W P( X w

P F m \ B Y

I

t h 2 , 9 ' E W I

i

I c I

Page 110: INGENIENA QUIMICA (C. B.I.)

P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P

***EQUIPO DE PROCESO***

CALENTADORES - ENFRIADORES (TANQUE CON SERpENTlN I . R N 0 )

SECCION EQUIPO 1 Calen

Cal B-56 Ed2

2 E d Heater

3 Cal

MATERIAL Acero al carbón Acero al carbón Acero al carbón Acero al carbón Acero al carbón Acero al carbón Acero al carbón

D(m) 2 2 2 2 2 2 2

COSTO(NS) 592,611 .O5 5'656,741.87 584,914.81 292,45 7.40 442,534.23 3'925,086.19 84.658.72

COLUMNAS DE DESULACION (EQUIPADA CON PLATOS DE CAPUCHON)

MATERIAL : Acero al carbón

EQUIPO H (m) D(m) ESPACIAMENTOlPLATOS COSTO(N$) Colum 1 50 6 1.25 m 29' 163,929.74 coium2 70 8 0.824 m 77'770,479.35

I m C N I A D O ñ E S DE CALOR (ZXIBLE PASO, CABEZA FLOTANTE)

MATERIAL : Acero al carbón LONGITUD : 3 m DIAMETRO : 2 m

SECCION EQUIPO 1 Inter 1

Inter2 Inter3 Inter4 Inter5 Inter6 Enf

2 Inter1 Inter2 Inter3 Inter4 Inter5

3 Heatx

COSTO(N$) 7,888.57 13,853.24 13,083.58 17,701.36 18,470.99 12,3 13.99 14,23 8.05 14,622.86 14,23 8.05 14,238.05 14,238.05 19,240.6 1 25,000.00

Page 111: INGENIENA QUIMICA (C. B.I.)

RUCTORES (ENCHAQUETADOS)

MATERIAL : Acero al carbón

SECCION EQUIPO H(m) D(m) COSTO(N$) 1 Rstoic 1-2 10.5 5 32'1 70,3 14.27 2 Rstoic 8 2.5 8'042,578.57

SUPERCALENTADOR @IS@O ESPECIAL EN PRECALENTADORES)

MATERIAL : Acero al carbón LONGITUD : 4.5 m. DIAMETRO : 2 m.

LONGITUD TOTAL : 28 m.

SUB-SECCION(Por ctes.) COSTO(N$)

43 - 44 4'887,117.12 45 - 46 677,269.77 33 - 34 962,03 O. 93 51 - 52 296.3 1 38 - 39 1 '3 08,3 62.09 40 - 41 76,928.50

COSTO TOTAL N$ 8'597,004.69

***EQUIPO AUXILIAR***

TORRES DE ENFRIAMIENTO (DE íTR0 INDUCIDO)

MATERIAL : Acero al carbón ALTURA:5m DIAMETRO : 2 m COSTO UNITARIO :N$2'793,737.82 TOTAL DE TORRES : 10 COSTO TOTAL : N$27'937,378.20

CALDERAS

ALTURA : 5 m. DIAMETRO : 4 m. COSTO UNITARIO : N$846,587.22 TOTAL, DE CAL,DEMS : 9 COSTO TOTAL :N$7'619,284.98

Page 112: INGENIENA QUIMICA (C. B.I.)

TANQUES DE A M A C m M E W O

MATERIAL : Acero ai caibón CAPACIDAD : 220,000 gal CANTIDAD : 8 COSTO UNITARIO : N$387,602.96 COSTO TOTAL : N$3'100,823.69

BOMBA (CENTRIFUGA)

MATERIAL : Acero al carbón CAPACIDAD : 125.3172 gpm COSTO : N$13,968.69

COMPRESORES (PoLImoPIcos)

MATERIAL : Acero al carbón

EQUIPO CAPACIDAD(ft3/min) COSTO(N$) cow1 3,861.51 577,218.56 c o w 2 1,747.48 423,293.6 1 COW3 3,498.70 569,522.3 1 TURB 419.25 25,3 97.62

TUBERIA (CEDULA 40)

MATERIAL : Acero al carbón

DIAMETRO NOMINAL(in) LONGITUD TOTAL(in) COSTO(N$) 2 62,992.13 1'333,543.3 1 4 35,433.07 900,000.00 6 35,433.07 974,763.78

I

TS

MATERIAL : Acero al carbón DIAMETRO NOMINAL : 2 in CANTIDAD : 24 COSTO UNITARIO : N$l10.06 COSTO TOTAL : N$2,641.44

Page 113: INGENIENA QUIMICA (C. B.I.)

VAL WUS (GLOBO)

MATERIAL : Acero al carbón

CANTIDAD DIAMETRO COSTO COSTO NOMINAL(in) UNITARIO(NS) TOTAL@%)

5 2 2,539.76 12,698.80 1 4 5,079.52 5,079.52 1 6 9,3 12.46 9,3 12.46

VAL WUS DE ALIVIO (PARA DIVISORES")

MATERIAL : Acero al carbón DIAMETRO NOMINAL : 2 in COSTO UNITARIO : N$4,848.63 TOTAL DE UNIDADES : 24 COSTO TOTAL : N$ll6,367.12

VAL WUS DE ALIVIO Y CONIlTRoLADORES

DE PRESION : 20 MATERIAL : Acero al carbón DIAMETRO NOMINAL : 2 in COSTO UNITARIO : N$6,618.77 COSTO TOTAL : N$132,375.40

DE TEMPERATURA : 20 MATERIAL: Acero al carbón DIAMETRO NOMINAL : 2 in COSTO UNITARIO : N$6,233.96 COSTO TOTAL : N$124,679.20

DE FLUJO : 20 MATERIAL: Acero al carbón DIAMETRO NOMINAL : 2 in COSTO UNITARIO : N$l2,313.99 COSTO TOTAL : N$ 246,279.80

Page 114: INGENIENA QUIMICA (C. B.I.)

CONCLUSIONES

El objetivo fijado para la elaboración de este proyecto se cumplió, puesto que se produce mayor cantidad de metanol en las Simulaciones realizadas, y además los resultados obtenidos de la experimentación &eron muy favorables ya que implican mayor producción de la prevista.

El reactor de la Sección de Síntesis puede ser mejorado manteniendo condiciones óptimas de operación para que se realice la conversión total de los reactivos, porque a pesar de especificar conversión total al simulador de procesos ASPEN-PLUS no se logró; de lo contrario la separación en el flash daría como resultado mayor producción de metanol.

De construirse otra planta para la producción de metanol, no sólo sería autosuficiente el país, sino que podría exportarse gran parte de la producción.

Los resultados de este proyecto muestran la importancia de la simulación digital en el desarrollo y diseño de procesos, ya que al mover ciertas variables como la temperatura y la presión y observar el comportamiento de un proceso se desarrolla un sentido lógico de sus consecuencias, dando lugar a la toma de decisiones correctas.

De acuerdo a los cálculos realizados se determinó que el costo de la inversión se recuperará en un tiempo máximo de 7 años. Esto nos permite afirmar que la industria petroquímica es muy rentable.

Page 115: INGENIENA QUIMICA (C. B.I.)

CALCULOS REALIZADOS PARACADAEQUIPO

Para los cálculos de los precios de equipos:

a) Primero se procedió a observar qué especificaciones se requieren y en qué unidades para obtenerlos según la bibliografía consultada [6]; por ejemplo:

Para obtener el precio de la bomba fie necesaria su capacidad en unidades de (gal/min) y la presión máxima en unidades a tm os f " porque hi gráfica correspondiente está reportada "Costo @lis) vs gpmatm".

b) Debido a que los precios obtenidos son de 1979, se procede a convertir el costo de cada equipo a precios actuales, a partir de la siguiente ecuación (Indice nacional de precios al consumidor, INPC):

Precio - = Precio&, x N C d ~ ~ m t a i o r

37266.6 110.0494

- donde INPC,, -

or - -

A continuación se dan los cálculos en forma compacta.

***BOMBA ***

- CAPACIDAD - PRESION MAXIMA = COSTO @lis) COSTO ($)

- - - - - COSTO (N$) -

* * *C4LDERAS * * *

(CALDERAS)

- ALTURA - DIAMETRO - CANTIDAD COSTO (Dlls) - COSTO ($) COSTO (N%) -

- - - - - - -

IMPORTE TOTAL N$13,96&69

125.3172 gpm 4.84 atm

' 1,650.00 41,250.00 13,968.69

IMPORTE TOTAL N$7'619,284.98

5 m. 4 m. 9 100.11 2,502.68 846,587.22

Page 116: INGENIENA QUIMICA (C. B.I.)

***CQLENTADORESENFRCQDORES*** IMPORTE TOTAL NS I1 '579,001.27

SECCION 1

CALEN

CARGA COSTO @1k) COSTO (S) COSTO (N$)

CAL

CARGA COSTO (Dlls) COSTO ($) COSTO (N$)

B56

CARGA COSTO 011s) COSTO ($) COSTO (N$)

ENF2

CARGA COSTO (Dlls) COSTO ($) COSTO (N$)

SECCION 2

ENF

CARGA COSTO @Us) COSTO ($) COSTO (N$)

14'586,415.20 BTUh 70,000.00 1'750,000.00 592,611 .O5

143'677,476.00 BTUh 668,181.82 16'704,545.46 5'656,741.87

- 9'135,307.88 BTUh 69,090.9 1 1'727,272.73 584,9 14.8 1

- 4'942,745.28 BTUh 34,545.45 863,636.36 292,457.40

- 6'179,717.88 BTUh 52,272.73 1'306,818.18 442,534.23

Page 117: INGENIENA QUIMICA (C. B.I.)

HEATER

CARGA COSTO (Dlls)

COSTO (N$) - - 3'925,086.19 COSTO ($)

SECCION 3

CAL

CARGA COSTO (Dlls)

COSTO (N$) - - 84,658,72 COSTO ($)

***COLUMNAS DE DESTI'CION***

- - 68'594,454.00 BTUh - 463,636.36 - 11'590,909.09 - -

- - 236,146.72 BTUh - 10,000.00 - 250,000.00 - -

IMPORTE TOTAL N$106'934,409.1 O

COLUM 1

DIAMETRO - ALTURA - COSTO POR PLATO O PIE DE ALTURA (Dlls) = 21,Ooo COSTO (Dlls) COSTO ($) COSTO (N$) -

COLUM 2

26.25 ft 229.66 ft

DIAMETRO ALTURA - COSTO POR PLATO O PIE' DE ALTURA (Dlls) = 40,000

19.68 ft 164.042

3'444,813 1.89 - 86'122,047.25

29' 163,929.74

- -

- - - -

- - -

- COSTO (Dlls) -

COSTO (N$) -

***coMPREsoRE***

cow 1

CAPACIDAD - COSTO (Dlls) - COSTO ($) COSTO (N$) -

- - - COSTO ($)

- - - - -

9'186,351.71 229'658,792.80 77'770,479.3 5

IMPORTE TOTAL N$ 1 '595,432.10

3,861.51 ft3/min 68,18 1.82 1'704,545.46 577,218.56

Page 118: INGENIENA QUIMICA (C. B.I.)

cow 2

CAPACIDAD COSTO @Us) COSTO ($). COSTO (NS)

cow 3

CAPACIDAD COSTO 011s) COSTO ($) COSTO (N$)

TURB

CAPACIDAD COSTO @11s) COSTO ($) COSTO (N$)

1,747.4827 ft3/min

1'250,000.00 423,293,6 1

5o,OoO.00

3,498.7013 ft3/min 67,272.73 1'68 1,8 18.18 569,522,3 1

419.2514 ft3/min 3,000.00 75,000.00 25,397.62

***COMPUTADORAS PARA CONTROLADORES*** IMPORTE TOTAL N$63,000.00

9 - CANTIDAD - COSTO (N$) - - 7,000.00

***CONTROLADORES*** IMPORTE TOTAL NS 251,667.20

DIAMETRO NOMINAL

PARA PRESION

CANTIDAD COSTO (Dlls) - COSTO ($) COSTO (N$) -

- - - - - -

PARA TEMPERATURA

CANTIDAD = - 9 COSTO @Us) -

COSTO ($) COSTO (N$) -

- - - - -

2 in - -

10 781.82 19,545.45 6,6 1 8.77

10 736.36 18,409.10 6,233.96

Page 119: INGENIENA QUIMICA (C. B.I.)

PARA FLUJO

10 CANTIDAD - - - 1,454.55 - 36,363.63

COSTO (Dlls)

COSTO (N$) - - 12,313.99 COSTO (S)

-

-

***IíIvTERcMIBIADORES DE CALOR*** IMPORTE TOTAL NS 182,593.27

SECCION 1

INTER 1 INTER2

480.62 ft2 - - 92.02 ft2 AREA - - - 931.81 COSTO (Dlls) - - 1,636.36 - - 23,295.21 COSTO ($) - - 40,909.07

13,853.24

- AREA COSTO (011s) COSTO (S) - COSTO (NS) - - 7,888.57 COSTO (NS) -

INTER 3 INTER 4

1,522.11 ft2 - AREA - - 359.51 ft2 AREA - - - 2,090.91 - 52,272.71

COSTO (Dlls) - - 1,545.45 COSTO (Dlls) - - 38,636.25 COSTO (a) -

COSTO (NS) - - 13,083.58 COSTO (NS) - - 17,701.36 COSTO (S)

INTER 5 INTER 6

320.72 ft2 1,454.54 36,363.6 1 12,3 13.99

- AREA - - 1,858.08 f t2 AREA - - - 2,18 1.82 COSTO (Dlls) -

COSTO (S) - - 54,545.43 COSTO ($) - COSTO (NS) - - 18,470.99 COSTO (N$) -

- -

COSTO (Dlls)

-

ENF

823.92 ft2 1,68 1.82 42,045.43

COSTO (NS) - - 14,238.05

- AREA - - COSTO 011s) -

COSTO ($) - -

Page 120: INGENIENA QUIMICA (C. B.I.)

____-_I- -

J

SECCION 2

INTER 1

AREA COSTO (Dlls) COSTO ($) COSTO (NS)

INTER 5

AREA COSTO (Dlls) COSTO ($) COSTO (N$)

SECCION 3

HEATX

AREA COSTO (Dlls) COSTO ($) COSTO (N$)

** *RE4 cToz¿Es***

SECCION 1 RSTOIC 1-2

- CAPACIDAD - PRESION DE DISEÑO COSTO (Dlls) - COSTO ($) COSTO (N$) -

- - - -

SECCION 2

RSTOIC 2

- CAPACIDAD - PRESION DE DISEÑO COSTO (Dlls) - COSTO ($) COSTO (N$) -

- - - -

INTER 2, INTER 3, INTER 4

694.44 ftl 1,68 1.82

694.44 ftz AREA

- 42,045.43 1,727.27 COSTO (Dlls)

14,622.86 COSTO (NS) - - 14,238.05 43,181.80 COSTO (S)

- - - - -

2,730.22 ft2 2,272.73 56,8 18.26 19,240.61

181.72 ft2

25,000.00 8,465.87

1,000.00

IMPORTE TOTAL N$40'212,892.84

.43'577,510.7 gpm 234.6795 Ibh2 - -

3'800,000.00 95'000,OOO. O0 32'170,314.27

46,989.1678 gpm

950,000.00 23'750,000.00 8'042,578.57

853.38 ]brin2 - -

Page 121: INGENIENA QUIMICA (C. B.I.)

***SEPARADORES*** lMpoRTE TOTAL NS 2'809,130.30

I m 2 m 5

- 66,363.64 - 1'659,090.91

- - - DIAMETRO

ALTURA - CANTIDAD COSTO (Dlls) COSTO ($)

- - - -

56 1,826.06 - COSTO (N$) -

** *SUPERcQLENTADOR *** IMPORTE TOTAL NS 8'597,001.69

SU€"

CORRIENTE 43 - 44

CARGA(BTU/h) = COSTO 011s) COSTO ($)

- - - - - COSTO (N$) -

CORRIENTE 33 - 34

CARGA(BTU/h) =

COSTO ($)

- COSTO (Dlls) -

COSTO (N$) - - - -

CORRIENTE 38 - 39

CARGA(E3TUh) = COSTO (Dlls) - COSTO ($) COSTO (N$) -

- - - -

CORRIENTE 45 - 46

109'262,340 CARGA (BTU/h) = - 577,272.73 COSTO (Dlls) -

14'431,818.18 COSTO ($) - 4'887,117.12 COSTO (N$) -

- -

CORRIENTE 51 - 52

- 22'661,395.2 AREA (W) - 113,636.36 COSTO @Ills) - 2'840,909.09 COSTO ($) - 962,030.93 COSTO (N$) -

- - -

CORRENTE 40 - 41

32'428,548 CARGA (BTU/h) = - 154,545.45 COSTO (Dlls) - 3'863,636.36 COSTO($) - 1'308,362.06 COSTO (N$) -

- -

***TMQUES DE AWC17NAMIENTO***

14'889,405.6 80,000.00 2'000,000.00 677,269.77

2,368.0603 35.00 875.00 296.3 1

16'378,632

82'250,000.00 761,928.50

9o,oO0.00

IMPORTE TOTAL NS 3'1 00,823.69

CAPACIDAD - - 220,000 gal

COSTO (Dlls) - 8 45,833.33 1'145,833.25

- CANTIDAD -

COSTO (N$) - - 3 87,602.96 COSTO ($)

- - -

Page 122: INGENIENA QUIMICA (C. B.I.)

***TORRES DE ENFRIAMIENTO*** IMPORTE TOTAL NS 27'937,37&20

- - - ALTURA

DIAMETRO - CANTIDAD - COSTO (Dlls) COSTO ($)

- - - - - - COSTO (N$) -

DIAMETRO NOMINAL in 2 4 6

***ys ***

DIAMETRO NOMINAL CANTIDAD COSTO (Dlls) COSTO ($) COSTO (N$)

***VAL wus*** DIAMETRO NOMINAL

in 2 4 6

5 m 2m 10 330,000.00 8'250,000.00 2'793,737.82

IMPORTE TOTAL NS 3'208,307.09

LONGITUD TOTAL COSTO POR in (N$) in 62,992.13 21.17 35,433.071 24.40 35,433.07 1 27.51

IMPORTE TOTAL NS 2,641.00

IMPORTE TOTAL NS 28090.68

CANTIDAD COSTO (N$)

5 2,539.76 1 5,079.52 1 9,3 12.46

***VALVULAS DE ALIVIO***

DIAMETRONOMINAL = 2 in

PARA DIVISORES

CANTIDAD - COSTO (Dlls) - COSTO ($) - COSTO (N$) -

IMPORTE TOTAL NS 368,034.32

24 5 72.727 14,3 18.175 4,848.63

- - - -

Page 123: INGENIENA QUIMICA (C. B.I.)

PARA CONTROLADO RES^

PARA PRESION - CANTIDAD -

COSTO 011s) COSTO (S) COSTO (N$) -

- - - - -

PARATEMPERATURA

- CANTIDAD - COSTO @Ik) COSTO ($) COSTO (N$) -

- - - - -

10 781.818 19,545.45 6,618.77

10 736.36 18,409.10 6,233.96

PARA FLUJO

- CANTIDAD - - COSTO 011s) -

COSTO ($) - COSTO (N$) -

- -

10 1,454.54 36,363.63 12,3 13.99

***INFORME DE COSTOS* * *

MATERIAS PRIMAS

GAS NATURAL

El costo del gas natural que reporta el ANIQ está en unidades de N$/MMCAL, por lo que se tuvo que convertir a N$/TON de la siguiente manera:

Compuesto Capacidad caiorífica (Caymo1"C) Xi P. M. (g/mol) CH4 11.4106 0.9527 16 c*H, 19.1226 0.0388 30 C,H* 27.6642 8.4OE-3 44

1 1.8452 Caymo1"C 16.7768 dmol

- - - - cPPROM

pMPROM

Precio del gas natural = 0.03265 N$/MMCAL (1E-ó MMCAucaí) = 3.265E-8 N$/cal (1 1.8452 ~al/mol~C)(21~C)(1/16.7768 dmol)

= 0.4422 N$/TON = 1.3626E-4 N$/g (lo00 &)(1/2.205 kg/lb)(2OOO lb/TON)

Page 124: INGENIENA QUIMICA (C. B.I.)

~ ..------

I

Consumo anual de gas natural = NS 8'472,254 Consumo mensual de gas natural = NS 706,021.18

AGUA

NS 60,OOO.OO - Consumo anual de agua - Consumo mensual de agua = NS5,OOO.OO

PRODUCTO

METANOL

Producción

- - - Precio (Abril, 1994) -

Precio (Junio, 1994) - Venta anual -

- - - -

38,936.504 kgh 42.93 TONh 376,044.858 TON/ailo NS779.16nON N$786.84/TON N$295'887,593.80 (Capadad máxima) N$ 224'938,170.00 (Capacidad media) N$ 153'988,745.80 (Capacidad mínima)

COSTO TOTAL DE EQUIPO - - N$2 10'58 1,922.1 O COSTO DE INSTRWNTACION = COSTO POR mz DE TERRENO = N$7O.OO COSTO DEL TERRENO - - N$17'5OO,OOO.00 COSTO DE SUELDO MENSUAL = N$414,875.00 I

COSTO DE SUELDO ANUAL = N$4'954,500.00 COSTO DE INSTRUMENTOS DE

COSTO DE MATERIAL DE

IMPORTE TOTAL DE PERMISOS = IMPORTE TOTAL DE

N$682,70 1.50

TRABAJO - - N$49,OOO.00

TRABAJO - - N$4O,OOO.00 N$25O'OOO,OOO.00

CONTRATISTAS - - N$ 1,250'OOO,OOO.OO

El cálculo del Monto de la Inversión se determina a partir de la siguiente ecuación:

donde

I.C.F. = CD + co + CNP

CD = f& + 41 fD 4

2.16 2.50 Costo de equipo Costo de instrumentación

- - - - - - E

I CD - - N$458'038,340.70

- -

Page 125: INGENIENA QUIMICA (C. B.I.)

f o= 1.36 - 0.073 In CD = h C D - - -43'879,995.63

c o

- - PERMISOS + CONTRATISTAS - - 1,500'000,000.00

CNP

c,

El Capital de Trabajo se calcula por tres métodos diferentes que se muestran a continuación (en orden creciente de contiabilidad):

a)

c)

15% de la Inversión de Capital Fijo.

Suma de Inventarios, Cuentas Recibibles y Dinero de operación. I b) 30% de las Ventas Anuales.

Se optó por el segundo método por motivos de apertura.

C. T. = N$88'766,268.14

El Costo de Producción (anual) es la suma del material crudo y los salarios:

C.P. = N$ 13'431,754.00 (Capacidad máxima) - - N$ 11'193,128.34 (Capacidad media) - - N$8'954,502.67 (Capacidad mínima)

El Retorno de Inversión (% airo) es calculado a partir de la siguiente ecuación:

ROI = (RETORNO A " V E R S I 0 N ) x 100 17.00 Yo - -

Page 126: INGENIENA QUIMICA (C. B.I.)

E

F

,

Page 127: INGENIENA QUIMICA (C. B.I.)

’, -hg.2rC a I d e Y 4

I

Page 128: INGENIENA QUIMICA (C. B.I.)

J- -_?

I I I I !

-1 i !

~ a- - ., -- -*

Page 129: INGENIENA QUIMICA (C. B.I.)

!

Page 130: INGENIENA QUIMICA (C. B.I.)
Page 131: INGENIENA QUIMICA (C. B.I.)

I

Page 132: INGENIENA QUIMICA (C. B.I.)

sir

1:

Page 133: INGENIENA QUIMICA (C. B.I.)

-.

i'

' --

Page 134: INGENIENA QUIMICA (C. B.I.)

i i j . ( Z c\ c c e s o v l o s

cono .

c c)"r

Page 135: INGENIENA QUIMICA (C. B.I.)
Page 136: INGENIENA QUIMICA (C. B.I.)

BIBLIOGRAFIA.

1. Luyben, William L.; Wenzel Leonard A.; "Chemical Process Analysis" (Mass and Energy Balances); Ed. Prentice-Hall International Series, pp. 51-56, U.S.A. (1988).

2. Nawman, Bruce E.; "Chemical Reactor Design"; Ed. John Wiley & Sons; pp. 161, 167, 210-223,225; U.S.A. (1987).

3. Bird, L. B.; Stewart, W. E.; Lightfoot, E. D.; "Fenómenos de Transporte", Ed. REPLA; pp. 9- 1 - 9-35; New York (1 982).

4. Perry, H. R.; Chilton, C. H.; "Manual del Ingeniero Químico", 5a. Edición; Ed. McGraw-Hill; México (1 973).

5. Kirk, R. E.; Othmer, D. F.; "Enciclopedia de Tecnología Química"; Ed. John Wiley & Sons, New York (1 978).

6. Peters, Max S.; Timmerhaus, Klaus D.; "Plant Design and Economics for Chemical Engineers", Ed. McGraw-Hill; New York (1979).

7. Foust, Alan S. et al; "Principios de Operaciones Unitarias", Ed. CECSA; México (1990).

8. Luyben, W. L.; "Process Modeling, Simulation, and Control for Chemical Engineers"; Ed. McGraw-Hill; New York (1 973).

9. Weismantel, G. et al; "Octane Boosters Compete for Gasoline Pool"; Chem. fig. Vol. 85, NO. 23, 1978; 101-104.