21
Instructor Po-Yu Kuo 教教教教教 Lecture5: Voltage References (2) EL 6033 教教教教教 ( ) Analog Filter (I)

Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

Embed Size (px)

Citation preview

Page 1: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

Instructor : Po-Yu Kuo

教師:郭柏佑

Lecture5: Voltage References (2)

EL 6033類比濾波器 ( 一 )

Analog Filter (I)

Page 2: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

2

Outline

Introduction Performance Requirements Zener Diode Voltage Reference Bandgap Voltage References Bandgap Voltage References Implemented in

CMOS technologies

Page 3: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

3

CMOS Bandgap References (1)

CMOS is the dominant technology for both digital and analog circuit design nowadays

Independent bipolar transistors are not available in CMOS technology

CMOS voltage reference, however, can be achieved by making use of the concept of voltage reference. These CMOS circuits rely on using well transistors. These devices are vertical bipolar transistors that use wells as their bases and the substrate as their collectors

Page 4: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

4

CMOS Bandgap References (2)

These vertical bipolar well transistors have reasonable current gain(≈25), but very high series base resistance (≈1kΩ/□) due to the fact that the base contact is far away from the base

Independent bipolar transistors are not available in CMOS technology

The maximum collector current is thus limited to less than 0.1mA to minimize errors due to the base resistance

Page 5: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

5

CMOS Bandgap References (3) Two implementations:

For the n-well CMOS implementation, what is VBG of the reference circuit?

Page 6: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

6

CMOS Bandgap References (4)

Assume the opamp has very large gain and very small input currents such that its input terminals are at the same voltage, then

Since the current through R1 is the same as in R3

22 REBBG VVV

EBEBEBR VVVV 123

EBEBBG

EBRRRR

VR

RVV

VR

RV

R

RVor

R

V

R

V

3

12

3

13

3

11

3

3

1

1

Page 7: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

7

CMOS Bandgap References (5) In CMOS realization, the bipolar transistors

are often taken the same size, and different current densities(IC/IS) are realized by taking R1 greater than R2, which causes I2 to be greater than I1:

2

1

3

12

1

212

2

1

1

2221121

ln

ln

or

R

R

q

kT

R

RVV

I

I

q

kTVVV

R

R

I

IRIRIVV

EBBG

EBEBEB

RR

Page 8: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

8

Question Find the resistances of a bandgap voltage reference based on the

CMOS n-well process where I1 = 5A, I2 = 40A and VEB = 0.65V at T = 300K. Assume VBG = 1.24V

Ans: R1 = 118kΩ, R2 = 14.8kΩ and R3 = 10.1kΩ

Page 9: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

9

Other CMOS References Current mirror enforces the currents at

M1, M2 and M3 are equal

Voltage clamping by M4 and M5 to enforce V1=V2

PTAT loop formed by Q1, Q2 and R1

Cascode current mirror or other forms for better current matching at different supply voltages

nVR

RVV

RnVI

TEBref

T

ln

/ln

1

23

1

Page 10: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

10

Current Mirror with Opamp In CMOS reference using

current mirror with op amp, an op amp is used to enforce the drain voltage of M1 the same as of M2. This allows a better current matching of drain currents of M1 and M2

Page 11: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

11

Error Sources in Voltage-Reference Design Current mirror Voltage-clamping circuit BJT emitter area ratio (BJT matching) Resistor ratio (resistor matching) Base current Base resistance Systematic offset at different supply voltages Random offset of devices Temperature gradient within a chip

Page 12: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

12

Typical Low-Voltage Implementation Error-amplifier current mirror

enforces VA = VB

Min VDD = VREF + |Vov,M2|

Offset voltage → error

Offset voltage = function of VTH, mobility and transistor size → temperature dependent

Use simple amplifier

Reduce both systematic and random offset

Page 13: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

13

Offset Voltage Consideration

A larger N is used to minimize the required R2/R1, and the effect of the amplifier offset

Increase chip area

OFFTEBref

OFFT

VNVR

RVV

R

VNVI

ln

ln

1

22

1

Page 14: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

14

Base Resistance Consideration Large base resistance of parasitic

vertical BJT

Diode-connected BJT≠ VEB

As mentioned before, I <0.1mA

Not due to low-power design, but due to reduce voltage across RB

On layout, more N-well contacts to reduce RB

Page 15: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

15

Base Current Compensation β is small in CMOS technology

IC ≠ IE and IC is a function of β

Introduced β in IC causes extra errors and temperature dependence

Base current compensation by a dummy transistor Q1D

IE=IB+IC

IE of Q1 = I+1/ β

IC of Q1 = I

Q1D must match with Q1

Page 16: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

16

Resistor Trimming Resistor ratio can be fine-tuned by

using a series of resistor network associated with fuse

By burning the fuse, the resistor value can be adjusted to fine-tune the reference voltage and the temperature with zero tempco to aparticular value

Page 17: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

17

Current Source Generated by a Voltage Reference

Series-shunt feedback

High output current to drive resistive load

Low output resistance

Isolation to reduce cross-talk through reference circuit

Page 18: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

18

Current Source Generated by a Voltage Reference

Series-series feedback

I=VREF/R

VMIN = VOV + VREF

Page 19: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

19

CMOS Bandgap Reference with Sub-1-V Operation (1)

R1, R2 & R3 use same material

Good matching R1 and R2 for optimizing tempco

Good matching R2 and R3 for adjusting the value of VREF

M1, M2 & M3 have equal W, L

VREF≈0.5-0.7 V for matching VDS of M1-M3 at different VDD

TEBref VN

R

RV

R

RV ln

1

22

2

3

Page 20: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

20

CMOS Bandgap Reference with Sub-1-V Operation (2)

Native Nmos : VTHN = 0.2V

Not available in standard CMOS technologies

Page 21: Instructor : Po-Yu Kuo 教師:郭柏佑 Lecture5: Voltage References (2) EL 6033 類比濾波器 ( 一 ) Analog Filter (I)

21

Low-Voltage Design Problem of Error Amplifier

Worst case (smallest) VEB at maximum operational temperature

VEB > VTHN + 2Vov

Low-VTHN (<0.4V) technology

Body effect increases VTHN

Worst case (largest) VEB and |VTHP| at minimum temperature

VEB > VDD - |Vthp| - 2|Vov|

VDD(min) = VEB + |VTHP| + 2Vov