30
INTEGRAL & Magnetars: a high energy approach to extreme neutron stars Diego Götz CEA - Saclay - Irfu/Service d’Astrophysique N. Rea (UvA), S. Zane (MSSL), R. Turolla (Uni Padova), M. Lyutikov (Purdue Univ.) P. Esposito, S. Mereghetti, A. Tiengo, G.L. Israel (INAF), K. Hurley (UCB), E.V. Gotthelf (Columbia Univ.)

INTEGRAL & Magnetars: a high energy approach to extreme neutron starslpc2e.cnrs-orleans.fr/~pulsar/PSRworkshop/workshop2008/... · 2008. 11. 25. · 25/11/2008 CEA DSM Irfu/SApDiego

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • INTEGRAL & Magnetars: a high energyapproach to extreme neutron stars

    Diego GötzCEA - Saclay - Irfu/Service d’Astrophysique

    N. Rea (UvA), S. Zane (MSSL), R. Turolla (Uni Padova), M. Lyutikov (Purdue Univ.)P. Esposito, S. Mereghetti, A. Tiengo, G.L. Israel (INAF), K. Hurley (UCB), E.V.Gotthelf (Columbia Univ.)

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 2

    Main manifestations of Neutron Stars:

    • (Radio) Pulsars - Rotational energy

    >1500 pulsars observed in radio (+ several Pulsar Wind Nebulae)the youngest seen also at higher energiesmostly isolatedtypical rotation periods: 1.5 ms – 5 s

    • Accreting X-ray binaries - Gravitational energy

    several hundreds in High Mass and Low Mass X-ray binariesmany are transientstypical rotation periods 0.1-1000 s

    Magnetars do not fit in these two categories !

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 3

    Originally identified as a“class” based on:

    Periods in a narrow range

    and other properties thatdistinguished them from the“classical” X-ray pulsars inHigh Mass X-ray Binaries

    AXPs

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 4

    • No evidence for companion stars (very faint IR counterparts, no Doppler delays in pulses) • Rotational period of a few seconds (2-12 s)

    • Secular spin-down (0.05-4)x10-11 s/s

    • Lx ˜ 1034 - 1036 erg s-1 >> Rotational Energy Loss

    • Very soft X-ray spectrum below 10 keV (kT~0.5 keV)

    • 3 (or 4 ?) are in Supernova Remnants

    • 3 (or 4?) are transients

    Summary of AXP properties

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 5

    P dP/dt(s) (10-11 s/s)

    4U 0142+61 8.7 0.2 -1E 2259+586 7 0.05 CTB 1091E 1048-5937 6.4 2-3 -1E 1841-045 11.8 4 Kes 73AX J1845-03 7 - G296+0.1 Tr.RXS 1708-40 11 2 -CXO J0110-72 8 2 in SMCXTE J1810-197 5.5 1.8 - Tr./RCXO J1647-45 10.6 0.1 in Wes 1 Tr.1E 1547.0-5408 2.07 2.3 - Tr./RPSR J1846 (Kes 75) 0.326 2 PWN

    AXP Census - 10 confirmed 2 candidates

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 6

    Durations Spectra

    SGRs: Initially considered a peculiar class of Gamma-Ray Bursts

    short, “soft”, “repeating” , Lpeak>>> LEddington

    0.00 0.01 0.10 1.00 10.00 100.00 1000.00DURATION, SECONDS

    0

    25

    50

    75

    100

    125

    150

    NU

    MB

    ER

    OF E

    VE

    NTS

    836 GAMMA-RAY

    BURSTS

    0

    4

    8

    12

    16

    20

    NU

    MB

    ER

    OF E

    VE

    NTS

    42 SOFT GAMMA

    REPEATERS

    100

    101 10

    210

    310

    410

    510

    610

    7

    ENERGY, keV

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    FLU

    X, p

    hoto

    ns/

    cm2 s

    keV

    GAMMA-RAY BURST

    SOFT GAMMA REPEATER

    kT~30 keV

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 7

    SGRs “bursting activity” is not continuous

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 8

    Bursts from SGR 1806-20 observed with INTEGRAL

    Götz, et al. (2004), A&A 417, L45

    15-40 keV

    40-100 keV

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 9

    3 Giant Flares from 3 SGRs

    1979 March 5 - SGR 0526-66

    1998 August 27 - SGR 1900+14

    2004 December 27 – SGR 1806-20

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 10

    5 confirmed SGRs

    4 are in the Galactic plane typical distance ~several kpc

    one is in the N49 supernova remnant in the Large MagellanicCloud (d=55 kpc)

    1806-201900+14

    0526-66

    1627-41

    1801-23 ?

    0501+4516

    Soft Gamma Repeaters

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 11

    “SGR-like” bursts seen from six AXPs

    1E2259+586

    Kaspi et al. 2003

    1E 1048 3 bursts in 8 yrs1E 2259 >80 bursts in few hoursXTE J1810 4 bursts in 3 yrs4U 0142 5 burst in 8 yrs CXO J1647 1 burstPSR J1846 5 bursts in 10 years

    Gavriil et al. 20061E 1048

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 12

    Israel et al. (2007) CXO inWes 1

    Transient Phenomena in AXPs

    Gotthelf & Helfand (2007)

    Swift/BAT

    XTE 1810

    Gavriil at al. (2008)PSR J1846

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 13

    Esposito et al. 2008, MNRAS, in press, arXiv:0807.1658

    SGR 1627-41 cooling

    Γ ~3.3

    Γ ~1.5

    The persistent spectrum is much brighterand harder

    Burst active phase

    2 components flux decay

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 14

    “Magnetar” modelDuncan & Thompson 1992, ApJ 392, L9 Thompson & Duncan 1995, MNRAS 275, 255Thompson et al. 2000, ApJ 543, 340 Thompson, Lyutikov & Kulkarni 2002, ApJ 574, 332.

    • If the “proto-NS” isinitially spinning at~few ms an efficientdynamo can produceB~1015 G

    • Magnetars spin-downquickly to P>10 s in104/B215 yrs

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 15

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 16

    MAGNETIC ENERGY ROTATIONAL ENERGY

    EB ~ (1/12) B2 R3 ER = ½ I Ω2

    EB ~ 2 1046 (P/5 s) P-11 ER = 8 1044 (P/5 s)-2.

    Magnetic energy dominates over rotational energy after the NS hasslowed down to periods of a few seconds

    B = 3.2 x 10 19 (PP)1/2.

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 17

    Known manifestations of Neutron Stars:

    • (Radio) Pulsars - Rotational energy>1500 pulsars observed in radio (+ several Pulsar Wind Nebulae)the youngest seen also at higher energiesmostly isolated - typical periods 0.002 – 5 s

    • Accreting X-ray binaries - Gravitational energyseveral hundreds in High Mass and Low Mass X-ray binariesmany are transients - typical periods 0.1-1000 s

    • Magnetars – Magnetic energy - B~1015 Gauss4 Soft Gamma-ray Repeaters + ~10 Anomalous X-ray Pulsars

    • “middle aged” isolated NS - Thermal energya few nearby NS – T~105-106 K

    • Type I X-ray bursts - Nuclear energya subclass of Low Mass X-ray binaries

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 18

    Götz et al. (2006)

    SGRs

    AXPs

    Clear evidence for non-thermalpersistent emission.Energetically important contribution: L(>10 keV) ~1036 erg/s

    Spectrum above 10 keV hardens forAXPs, while for SGRs it softens

    No clear physical model has yetbeen developed for the broad-bandspectra of Magnetars.

    Persistent hard X-ray emission can be dueto: Bremsstrahlung photons produced in a

    thin layer close to the neutron star (Thompson& Belobodorov 2005). Cutoff at ~100 keV. at 100 km altitude in the magnetosphere

    through multiple resonant cyclotronscattering (Thompson et al. 2002). Cutoff at ~1MeV A third scenario involving resonant

    magnetic Compton up-scattering of soft X-ray photons by a non-thermal population ofhighly relativistic electrons has beenproposed by Baring et al. (2007)

    Magnetars’ hard tails discovered by INTEGRAL

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 19

    0.5 – 10 keV emission well represented by a blackbodyplus a power law: WHY?? Correlation in spectral hardening, luminosity, spin downrate - as in SGR 1806, during the pre (and post)-giant flare(24 Dec 2005) evolution Evolution of “transient” AXPs Model the hard tails

    Our “immediate” goal:

    Modelling Magnetars’ High Energy Emission

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 20

    A key feature of twisted MSs is that they support current flows (inexcess of the Goldreich-Julian current).

    Thermal seed photons (i.e. emitted from the star surface) travellingthrough the magnetosphere experience efficient resonant cyclotronscattering onto charged magnetospheric particles (e- and ions)

    ⇒ the thermal surface spectrum get distorted !

    Twisted Magnetospheres

    Thompson, Lyutikov and Kulkarni(2002):

    Magnetars (AXPs and SGRs) differfrom radiopulsars since their internalmagnetic field is twisted up to 10times the external dipole.

    At intervals, it can twist up theexternal field

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 21

    While the twist grows, charged particles (e- and ions) produces both :

    an extra heating of the star surface (by returning currents)-> X-ray luminosity increases

    and a large resonant cyclotron scattering depth-> spectral hardening increases

    The B-field flares out slightly -> open field flux > then in a dipole-> spin down torque increases

    a) Crustal cracks occur when the crust cannot bear the stressanymore or b) a global rearrangement of the field lines. -> a forcedopening of the field outwards -> launch of an hot fireball

    And everything is reversed during the aftermath (simplification of theexternal B-field and by a partial magnetospheric untwisting -> rapiddrop in the flux, spectral softening, period derivative decrease, etc..)

    Qualitatively ok, and quantitatively?

    Twisted Magnetospheres

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 22

    PULSE PERIOD

    POWER LAW INDEX(2-10 keV)

    2-10 keV FLUX XMM

    20-70 keV FLUXINTEGRAL

    IPN BURST RATE

    SGR 1806-20

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 23

    Twisted magnetospheres are filled with plasma which may modify radiation properties.

    Main point: closed field lines in NS magnetospheres are not dead.Populated by hot, highly over-dense plasma, n >> nGJ

    (e.g. Thompson, Lyutikov & Kulkarni 2002; Liutykov & Gavriil 2006)

    !

    "RCS~

    RL

    re

    #

    $ %

    &

    ' ( "T ~ 10

    5"T

    at 1 keV

    !

    RL~ 8R

    NS

    BNS

    Bcrit

    "

    # $

    %

    & '

    1/ 3

    1keV

    h(B

    "

    # $

    %

    & '

    1/ 3

    with

    Resonant Cyclotron Scattering in Magnetars

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 24

    Lyutikov & Gravriil, 2006: A simplified, 1D semi-analytical treatment of resonant cyclotronup-scattering of soft thermal photons

    Resonant Thomson scattering occurs in a thin, plane parallel slab. Photons can onlypropagate along the slab normal, i.e. either towards or away from the star.

    Static, non-relativistic, warm medium; ne constant. No electron recoil (hν mimics a thermal, 1D, motion (βT » mean e- energy » temperature ofthe 1D electron plasma). No bulk motion.

    The e- velocity distribution averages to zero:-> a photon has the same probability to undergo up or downscattering-> no frequency shift due to the thermal motion of e-

    Photon boosting by particle thermal motion in Thomson limit occurs only due to the spatial variation of the magnetic field.

    For a photon propagating from high to low magnetic fields, multiple resonantcyclotron scattering will, on average, up-scatter the transmitted radiation-> hard tail.

    Preliminary investigations (1D)

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 25

    Same number of free parameters, same as for the empirical as theblackbody+power law model; same statistical significance

    !

    "RCS

    = #RCSn$edzOptical depth (1-10)

    !

    "T

    Electron thermal velocity (0.1-0.5)

    Surface Temperature (keV)

    !

    kT (0.1-1.3)

    Resonant Cyclotron Scattering in Magnetars

    Rea, Zane, Turolla, Lyutikov & Götz (2008)

    Distorsion of a seed blackbodyspectrum through resonantcyclotron scattering ontomagnetospheric electrons, for twovalues of the blackbodytemperature, 0.2 keV and 0.8 keV.Black lines: the RCS model for βT= 0.2 and τres = 2, 4, 8 (frombottom to top). Grey lines: βT = 0.4and τres = 2, 4, 8 (from bottom totop). The normalizations of thevarious curves are arbitrary. FromRea et al. 2008

    Flux

    1 - Energy (keV) - 10

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu25/11/2008 26

    4U 0142+61

    RXS J1708-4009

    1E 1841-045

    BB+PL+PL

    BB+PL+PL

    1 - Energy (keV) - 200

    BB+PL

    4U 0142+61

    RXS J1708-4009

    1E 1841-045

    RCS+PL

    RCS+PL

    RCS+PL

    Flu

    xRCS: AXPs with hard X-ray emission

    KT consistent for all sources (0.33 keV) while β ∈ (1-2) and τ ∈ (0.2-0.4)

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 27

    RCS

    RCS

    BB+PL

    BB+PL

    BB+PL

    BB+PL

    RCS

    RCS

    1E 1048-5937

    1E 1547-5408

    CXO 1647-4552

    XTE 1810-197

    Flu

    x

    1 - Energy (keV) - 10

    RCS: Transient AXPs

    Much softer spectra; β increases as flux decreases

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu25/11/2008 28

    BB+PL

    SGR 1900+14

    BB+PL

    Fl

    ux

    1 - Energy (keV) - 200

    RCS+PL

    SGR 1900+14

    SGR 1806-20

    RCS+PL

    SGR 1806-20

    F

    lux

    1 - Energy (keV) - 10

    RCS: SGRs with hard X-ray emission

    Rea, Zane, Turolla, Lyutikov & Götz (2008))

    Harder spectra below 10 keV. Additional PL needed at lowenergies, which extends up to 200 keV

    BB+PL

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 29

    Magnetospheric e- density of n~1.5x1013 cm-3 = 103 nGJ

    τ res

    L1-10keV (1034 erg/s)

  • Diego Götz - Pulsars Workshop - IAP ParisCEA DSM Irfu/SAp25/11/2008 30

    • Twisted magnetosphere model, within magnetar scenario, in generalagreement with observations below 10 keV• Resonant scattering of thermal, surface photons produces spectra withright properties

    – ESA press release “XMM-Newton and INTEGRAL clues on magneticpowerhouses” 14/10/2008

    • More accurate treatment of cross section including QED effects andelectron recoil (Nobili, Turolla & SZ MNRAS in press)

    • Many issues need to be investigated further

    Use the model archive to fit model spectra to observations,investigate what causes the long term variability in AXPS andTAXPS

    Phase resolved spectroscopy 10-100 keV tails: up-scattering by (ultra)relativistic (e±)

    particles ?Necessity of more sensitive broad band observations (Simbol-X, NuStar)

    Detailed models for magnetospheric currents

    Conclusions & Future Developments