12
M. Bahrami ENSC 388 (F 09) Intro and Basic Concepts 1 Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. Precise definition of basic concepts forms a sound foundation for development of a science and prevents possible misunderstandings. Careful study of these concepts is essential for a good understanding of topics in thermodynamics. Thermodynamics and Energy Thermodynamics can be defined as the study of energy, energy transformations and its relation to matter. The analysis of thermal systems is achieved through the application of the governing conservation equations, namely Conservation of Mass, Conservation of Energy (1st law of thermodynamics), the 2nd law of thermodynamics and the property relations. Energy can be viewed as the ability to cause changes. First law of thermodynamics: one of the most fundamental laws of nature is the conservation of energy principle. It simply states that during an interaction, energy can change from one form to another but the total amount of energy remains constant. Second law of thermodynamics: energy has quality as well as quantity, and actual processes occur in the direction of decreasing quality of energy. Whenever there is an interaction between energy and matter, thermodynamics is involved. Some examples include heating and airconditioning systems, refrigerators, water heaters, etc. Dimensions and Units Any physical quantity can be characterized by dimensions. The arbitrary magnitudes assigned to the dimensions are called units. There are two types of dimensions, primary or fundamental and secondary or derived dimensions. Primary dimensions are: mass, m; length, L; time, t; temperature, T Secondary dimensions are the ones that can be derived from primary dimensions such as: velocity (m/s 2 ), pressure (Pa = kg/m.s 2 ). There are two unit systems currently available SI (International System) and USCS (United States Customary System) or English system. We, however, will use SI units exclusively in this course. The SI units are based on decimal relationship between units. The prefixes used to express the multiples of the various units are listed in Table 11. Table 1: Standard prefixes in SI units. MULTIPLE 10 12 10 9 10 6 10 3 10 2 10 3 10 6 10 9 10 12 PREFIX tetra, T giga, G mega, M kilo, k centi, c mili, m micro, μ nano, n pico, p

Intro and Basic Concepts-Therm

Embed Size (px)

DESCRIPTION

thermodynamics

Citation preview

  • M.BahramiENSC388(F09)IntroandBasicConcepts 1

    BasicConceptsofThermodynamicsEverysciencehasitsownuniquevocabularyassociatedwithit.Precisedefinitionofbasicconcepts formsasound foundation fordevelopmentofascienceandpreventspossiblemisunderstandings.Carefulstudyoftheseconceptsisessentialforagoodunderstandingoftopicsinthermodynamics.ThermodynamicsandEnergyThermodynamicscanbedefinedas thestudyofenergy,energytransformationsand itsrelationtomatter.Theanalysisofthermalsystemsisachievedthroughtheapplicationofthe governing conservation equations, namely Conservation of Mass, Conservation ofEnergy (1st lawof thermodynamics), the2nd lawof thermodynamicsand thepropertyrelations.Energycanbeviewedastheabilitytocausechanges.First law of thermodynamics: one of the most fundamental laws of nature is theconservationofenergyprinciple. It simplystates thatduringan interaction,energycanchangefromoneformtoanotherbutthetotalamountofenergyremainsconstant.Second law of thermodynamics: energy has quality as well as quantity, and actualprocessesoccurinthedirectionofdecreasingqualityofenergy.Whenever there is an interaction between energy and matter, thermodynamics isinvolved. Some examples include heating and airconditioning systems, refrigerators,waterheaters,etc.DimensionsandUnitsAny physical quantity can be characterized by dimensions. The arbitrary magnitudesassignedtothedimensionsarecalledunits.Therearetwotypesofdimensions,primaryorfundamentalandsecondaryorderiveddimensions.Primarydimensionsare:mass,m;length,L;time,t;temperature,TSecondarydimensionsaretheonesthatcanbederivedfromprimarydimensionssuchas:velocity(m/s2),pressure(Pa=kg/m.s2).TherearetwounitsystemscurrentlyavailableSI(InternationalSystem)andUSCS(UnitedStatesCustomarySystem)orEnglishsystem.We,however,willuseSIunitsexclusivelyinthiscourse.TheSIunitsarebasedondecimal relationshipbetweenunits.TheprefixesusedtoexpressthemultiplesofthevariousunitsarelistedinTable11.

    Table1:StandardprefixesinSIunits.MULTIPLE 1012 109 106 103 102 103 106 109 1012PREFIX tetra,T giga,G mega,M kilo,k centi,c mili,m micro, nano,n pico,p

  • M.BahramiENSC388(F09)IntroandBasicConcepts 2

    Important note: in engineering all equationsmust be dimensionally homogenous. Thismeansthateveryterminanequationmusthavethesameunits.Itcanbeusedasasanitycheckforyoursolution.Example1:UnitConversionTheheatdissipationratedensityofanelectronicdeviceisreportedas10.72mW/mm2bythemanufacturer.ConvertthistoW/m2.

    2

    2

    2 1072010001

    1100072.10

    mW

    mWW

    mmm

    mmmW

    ClosedandOpenSystemsAsystem isdefinedasaquantityofmatteroraregion inspacechosen forstudy. Themassorregionoutsidethesystemiscalledthesurroundings.

    Fig.1:System,surroundings,andboundaryBoundary:therealorimaginarysurfacethatseparatesthesystemfromitssurroundings.Theboundariesofasystemcanbefixedormovable.Mathematically,theboundaryhaszerothickness,nomass,andnovolume.Closedsystemorcontrolmass:consistsofafixedamountofmass,andnomasscancrossitsboundary.But,energy inthe formofheatorwork,cancrosstheboundary,andthevolumeofaclosedsystemdoesnothavetobefixed.Opensystemorcontrolvolume:isaproperlyselectedregioninspace.Itusuallyenclosesadevicethat involvesmassflowsuchasacompressor.Bothmassandenergycancrosstheboundaryofacontrolvolume.Importantnote:somethermodynamicsrelationsthatareapplicabletoclosedandopensystemsaredifferent.Thus,itisextremelyimportanttorecognizethetypeofsystemwehavebeforestartanalyzingit.Isolated system:Aclosed system thatdoesnotcommunicatewith the surroundingsbyanymeans.Rigidsystem:Aclosedsystemthatcommunicateswiththesurroundingsbyheatonly.

    SYSTEMBOUNDARY

    SURROUNDINGS

  • M.BahramiENSC388(F09)IntroandBasicConcepts 3

    Adiabatic system: A closed or open system that does not exchange energy with thesurroundingsbyheat.

    Fig.2:Closedsystem,masscannotcrosstheboundaries,butenergycan.

    Fig.3:Controlvolume,bothmassandenergycancrosstheboundaries.

    EnergyInthermodynamics,wedealwithchangeofthetotalenergyonly.Thus,thetotalenergyofasystemcanbeassignedavalueofzeroatsomereferencepoint. Totalenergyofasystemhastwogroups:macroscopicandmicroscopic.Macroscopic forms of energy: forms of energy that a system posses as awholewithrespect to some outside reference frame, such as kinetic and potential energy. Themacroscopicenergyofasystem isrelatedtomotionandthe influenceofsomeexternaleffectssuchasgravity,magnetism,electricity,andsurfacetension.

    energy

    mass

    CLOSEDSYSTEMm =const.

    mass

    energy

    CONTROLVOLUME

  • M.BahramiENSC388(F09)IntroandBasicConcepts 4

    Kinetic energy: energy that a system posses as a result of its relativemotionrelativetosomereferenceframe,KE

    kJmVKE2

    2

    whereVisthevelocityofthesystemin(m/s). Potentialenergy:istheenergythatasystempossesasaresultofitselevationinagravitationalfield,PE

    kJmgzPE wheregisthegravitationalaccelerationandzistheelevationofthecenterofgravityofthesystemrelativetosomearbitraryreferenceplane.

    Microscopicformsofenergy:arethoserelatedtomolecularstructureofasystem.Theyareindependentofoutsidereferenceframes.Thesumofmicroscopicenergyiscalledtheinternalenergy,U.Thetotalenergyofasystemconsistsofthekinetic,potential,andinternalenergies:

    kJmgzmVUPEKEUE 2

    2

    where the contributions of magnetic, electric, nuclear energy are neglected. Internalenergy isrelated to themolecularstructureand thedegreeofmolecularactivityand itmaybeviewedasthesumofthekineticandpotentialenergiesofmolecules.

    Thesumof translational,vibrational,androtationalenergiesofmolecules is thekinetic energy of molecules, and it is also called the sensible energy. At highertemperatures,systemwillhavehighersensibleenergy.

    Internalenergyassociatedwith thephaseofa system iscalled latentheat.Theintermolecularforcesarestrongestinsolidsandweakestingases.

    The internal energy associated with the atomic bonds in a molecule is calledchemicalorbondenergy. The tremendousamountofenergyassociatedwith thebondswithinthenucleolusofatomitselfiscalledatomicenergy.

    Energyinteractionswithaclosedsystemcanoccurviaheattransferandwork.

  • M.BahramiENSC388(F09)IntroandBasicConcepts 5

    Fig.14:Formsofenergy.

  • M.BahramiENSC388(F09)IntroandBasicConcepts 6

    PropertiesofaSystemAny characteristic of a system is called a property. In classical thermodynamics, thesubstanceisassumedtobeacontinuum,homogenousmatterwithnomicroscopicholes.Thisassumptionholdsaslongasthevolumes,andlengthscalesarelargewithrespecttotheintermolecularspacing.Intensiveproperties:arethosethatareindependentofthesize(mass)ofasystem,suchastemperature,pressure,anddensity.Theyarenotadditive.Extensive properties: values that are dependant on size of the system such asmass,volume,andtotalenergyU.Theyareadditive.

    Generally,uppercaselettersareusedtodenoteextensiveproperties(exceptmassm), and lower case letters are used for intensive properties (except pressure P,temperatureT).

    Extensive properties per unit mass are called specific properties, e.g. specificvolume(v=V/m).

    Fig.15:Intensiveandextensivepropertiesofasystem.

    StateandEquilibriumAtagivenstate,allthepropertiesofasystemhavefixedvalues.Thus,ifthevalueofevenonepropertychanges,thestatewillchangetodifferentone.Inanequilibriumstate,therearenounbalancedpotentials(ordrivingforces)withinthesystem. A system in equilibrium experiences no changes when it is isolated from itssurroundings.

    Thermal equilibrium:when the temperature is the same throughout the entiresystem.

    mVTP

    0.5m0.5VTP

    0.5m0.5VTP

    extensiveproperties

    intensiveproperties

  • M.BahramiENSC388(F09)IntroandBasicConcepts 7

    Mechanicalequilibrium:whenthere isnochange inpressureatanypointofthesystem. However, the pressuremay varywithin the system due to gravitationaleffects.

    Phaseequilibrium: inatwophasesystem,whenthemassofeachphasereachesanequilibriumlevel.

    Chemical equilibrium: when the chemical composition of a system does notchangewithtime,i.e.,nochemicalreactionsoccur.

    ProcessesandCyclesAnychangeasystemundergoesfromoneequilibriumstatetoanotheriscalledaprocess,andtheseriesofstatesthroughwhichasystempassesduringaprocessiscalledapath.

    Fig.6:Tospecifyaprocess,initialandfinalstatesandpathmustbespecified.

    Quasiequilibriumprocess: canbeviewedasa sufficiently slowprocess thatallows thesystemtoadjustitself internallyandremainsinfinitesimallyclosetoanequilibriumstateat all times. Quasiequilibrium process is an idealized process and is not a truerepresentationoftheactualprocess.Wemodelactualprocesseswithquasiequilibriumones.Moreover,theyserveasstandardstowhichactualprocessescanbecompared.Processdiagramsareusedtovisualizeprocesses.Notethattheprocesspath indicatesaseriesofequilibrium states,andwearenotable to specify the states foranonquasiequilibriumprocess.Prefixisoisusedtodesignateaprocessforwhichaparticularpropertyisconstant.

    Isothermal:isaprocessduringwhichthetemperatureremainsconstant Isobaric:isaprocessduringwhichthepressureremainsconstant Isometric:isprocessduringwhichthespecificvolumeremainsconstant.

    Asystemissaidtohaveundergoneacycleifitreturnstoitsinitialstateattheendoftheprocess.

    State2

    State1

    Processpath

    A

    B

  • M.BahramiENSC388(F09)IntroandBasicConcepts 8

    Fig.17:AfourprocesscycleinaPVdiagram.

    The stateofasystem isdescribedby itsproperties.Thestateofasimplecompressiblesystemiscompletelyspecifiedbytwoindependent,intensiveproperties.A system is called simple compressible system in the absence of electrical,magnetic,gravitational,motion,andsurfacetensioneffects(externalforcefields).Independentproperties: twopropertiesare independent ifoneproperty canbevariedwhiletheotheroneisheldconstant.PressurePressureistheforceexertedbyafluidperunitarea.

    PamN 2Area

    ForcePressure Influids,gasesandliquids,wespeakofpressure;insolidsthisisstress.Forafluidatrest,thepressureatagivenpointisthesameinalldirections.

    Fig.8:Pressureofafluidatrestincreaseswithdepth(duetoaddedweight),butconstant

    inhorizontalplanes.

    V

    P

    1

    2

    3

    4

    P(z)

    z

    Area=A

    ghPAAhg

    AmgP

    P

    Area

    liquid ofWeight

    h

    A

  • M.BahramiENSC388(F09)IntroandBasicConcepts 9

    Theactualpressureatagivenpositioniscalledtheabsolutepressure,anditismeasuredrelativetoabsolutevacuum.

    gaugepressure=absolutepressureatmosphericpressure

    atmabsatmvac

    atmatmabsgauge

    PPPPPPPPPP

    Fig.9:Absolute,gauge,andvacuumpressures.

    Inthermodynamicscalculations,alwaysuseabsolutepressure.Mostpressuremeasuringdevicesarecalibrated to read zero in theatmosphere (theymeasurePgauge orPvac).Beawareofwhatyouarereading!AdevicethatmeasurespressureusingacolumnofliquidiscalledaManometer.Thecrosssectionalareaofthetubeisnotimportant.Themanometermeasuresthegaugepressure.

    Fig.10:Basicmanometer,P2=P1.

    kPaghPP atm 1

    Patm

    Pgauge

    Pabs

    Absolute(vacuum)=0

    P

    Pvac

  • M.BahramiENSC388(F09)IntroandBasicConcepts 10

    BourdonTubeisadevicethatmeasurespressureusingmechanicaldeformation.PressureTransducersaredevicesthatusepiezoelectricstomeasurepressure. veryaccurateandrobust canmeasurefrom106to105atm canmeasurePgaugeorPabs Barometerisadevicethatmeasuresatmosphericpressure.Itisamanometerwithanearvacuumononeend

    Fig.11:Burdongauge.

    Example2:PressureThepistonofacylinderpistondevicehasamassof60kgandacrosssectionalareaof0.04m2,asshown inFig.12.Thedepthof the liquid in thecylinder is1.8mandhasadensityof1558kg/m3.The localatmosphericpressure is0.97bar,andthegravitationalaccelerationis9.8m/s2.Determinethepressureatthebottomofthecylinder.Solution:thepressureatthebottomofthecylindercanbefoundfromthesummationoftheforcesduetoatmosphericpressure,pistonweight,andtheweightoftheliquidinthecylinder.

    ghAmgPP

    WWAPW

    atmbottom

    Pistonliquidatmbottom

  • M.BahramiENSC388(F09)IntroandBasicConcepts 11

    bars

    mNbar

    smkgmN

    msmmkgm

    smkgbarPbottom

    3918.1/10

    1./1

    /1

    8.1/8.9/155804.0

    /8.96097.0

    252

    2

    232

    2

    Fig.12:Sketchforexample2.

    TemperatureTemperatureisapointerforthedirectionofenergytransferasheat.

    Fig.13:Heattransferoccursinthedirectionofhighertolowertemperature.

    Whenthetemperaturesoftwobodiesarethesame,thermalequilibriumisreached.Theequalityoftemperatureistheonlyrequirementforthermalequilibrium.The0thlawofthermodynamics:statesthatiftwobodiesareinthermalequilibriumwithathirdbody,theyarealsointhermalequilibriumwitheachother.The0th lawmakesathermometerpossible.

    A=0.04m2

    h=1.8m

    P=?

    mPiston =60kgPatm=0.97bar

  • M.BahramiENSC388(F09)IntroandBasicConcepts 12

    In accordancewith the 0th law, any system that possesses an equation of state thatrelates temperature T to other accurately measurable properties can be used as athermometere.g.anidealgasobeystheequationofstate:

    mRPVT

    ExperimentallyobtainedTemperatureScales:theCelsiusandFahrenheitscales,arebasedonthemeltingandboilingpointsofwater.Theyarealsocalledtwopointscales.Conventional thermometry depends onmaterial properties e.g.mercury expandswithtemperatureinarepeatableandpredictablewayThermodynamic Temperature Scales (independent of the material), the Kelvin andRankinescales,aredeterminedusingaconstantvolumegasthermometer.