30
1 ANALISIS Y DISEÑO DE EXPERIMENTOS

Introduccion al diseño de experimentos

Embed Size (px)

DESCRIPTION

 

Citation preview

1

ANALISIS Y DISEÑO DE EXPERIMENTOS

DOX 6E Montgomery 2

Introducción al DDE• Un experimento es una prueba o serie de pruebas• Los experimentos se utilizan ampliamente en

el mundo de la ingeniería

-Proceso de caracterización y optimización

– Evaluación de las propiedades de los materiales

– Diseño y desarrollo de productos

– Determinacion de tolerancia y componentes de sistemas

DOX 6E Montgomery 3

Los experimentos en Ingenieria• Reducir el tiempo

de diseño / desarrollo de nuevos productos y procesos.

• Mejorar el rendimiento de los procesos existentes

• Mejorar la confiabilidad y el rendimiento de los productos

• Lograr procesos y productos robustos

• Evaluación de materiales, las alternativas de diseño, el establecimiento de tolerancias o ajustes de los componentes y del sistema, etc

DOX 6E Montgomery 4

Cuatro eras o etapas en la historia del DDE

• Origen en la agricultura, 1918 – 1940– R. A. Fisher & y colaboradores– Profundo impacto en la ciencia agrícola– Diseños Factoriales, ANOVA

• La primera era industrial, 1951 - finales de 1970– Box & Wilson, superficies de respuesta– Aplicaciones en la quimica & procesos industriales

• La segunda era industrial, finales 1970s – 1990– Iniciativas de mejora de la calidad en muchas empresas– Taguchi y parámetros de diseño robusto y robustez del

procesoLa era moderna inicios 1990

Definiciones básicasVariable Respuesta: es la variable en estudio, aquella cuyos cambios se desean estudiar. Es la variable dependiente.

Factor: es la variable independiente. Es la variable que manipula el investigador, para estudiar sus efectos sobre la variable dependiente.

Nivel Del Factor: es cada una de las categorías, valores o formas específicas del factor.

Factor Cualitativo: sus niveles se clasifican por atributos cualitativos.Factor Cuantitativo: sus niveles son cantidad numérica en una escala.

Factores observacionales: El investigador registra los datos pero no interfiere en el proceso que observa.Factores experimentales: El investigador intenta controlar completamente la situación experimental.

Experimento Unifactorial: es aquel en el se estudia un solo factor.

Experimento Multifactorial: es aquel en el que se estudia simultáneamente más de un factor.

Tratamientos: Conjunto de condiciones experimentales que serán impuestas a una unidad experimental en un diseño elegido.

En experimentos unifactoriales, un tratamiento corresponde a un nivel de factor.

En experimentos multifactoriales, un tratamiento corresponde a la combinación de niveles de factores.

Unidad Experimental: es la parte más pequeña de material experimental expuesta al tratamiento, independientemente de otras unidades.

Definiciones básicas

Error Experimental: Describe la variación entre las unidades experimentales tratadas de forma idéntica e independiente. Orígenes del error experimental:

-Variación natural entre unidades experimentales

-Variabilidad en la medición de la respuesta

-Imposibilidad de reproducir idénticas condiciones del tratamiento de una unidad a otra

-Interacción de tratamientos con unidad experimental

-Cualquier factor externo

Tratamiento Control: Un control al que no se le aplica tratamiento revelará las condiciones en que se realiza el experimento.

Mediciones: Son los valores de la variable dependiente, obtenidos de las unidades experimentales luego de la aplicación de tratamientos

Definiciones básicas

DOX 6E Montgomery 8

Principios Basicos del DDE• Aleatorizacion (Randomization)

– Ejecución de los ensayos en un experimento en orden aleatorio

– Idea de equilibrar los efectos de las variables no controladas.

• Replicación (Replication)

– Tamaño de la muestra ( mejora  la precisión de la estimación del efecto, la estimación de error o ruido de fondo)

– como un medio para estimar la variancia del error experimental

– Replication versus medidas repetidas? (see page 13, Montgomery)

• Bloqueo (Blocking)

– Hacer frenta a factores no controlables

– Dividir o particionar las unidades experimentales en grupos llamados bloques de modo que las observaciones realizadas en cada bloque se realicen bajo condiciones experimentales lo más parecidas posibles.

Vamos a aplicar todos los conceptos a un EJEMPLO:

Tres establecimientos nos consultan para que diseñemos sus experimentos.

Se trata de establecimientos que se dedican al cultivo de peces.

Es necesario aclarar que en experimentos de este tipo es importante considerar, para lograr Unidades Experimentales Uniformes, entre otros los siguientes factores:

•Genéticos

•Nutricionales

•Capacidad fisiológica

•Edad

•Peso inicial de cultivo

•Enfermedades

Continuación del ejemplo:

Establecimiento 1•Bocachico (Prochilodus magdalenae

•Se estudian 3 dietas distintas (D1, D2, D3)

•Se pretende determinar con cual alimento los peces ganan mas peso

Establecimiento 2•Bocachico de 3 distintas regiones

•Se estudian 3 dietas distintas (D1, D2, D3)

•Se pretende determinar con cual alimento los peces ganan mas peso

Establecimiento 3•Tilapia roja y tilapia plateada

•Se estudian 3 dietas distintas (D1, D2, D3)

•Se pretende determinar con cual alimento los peces ganan mas peso

CUESTIONARIO

¿Se trata de un experimento uni o multifactorial?¿Cuáles son los factores?¿Cuáles son los tratamientos?¿Cuál es la variable respuesta?¿Cuál es la unidad experimental?¿Cuántas replicaciones haríamos?¿Cuántos animales necesitamos?¿Cómo haríamos el diseño?

Respondamos el cuestionario:

Establecimiento 1¿Se trata de un experimento uni o multifactorial? Unifactorial¿cuáles son los factores? El único factor es la Dieta¿Cuáles son los tratamientos? cada una de las 3 dietas¿Cuál es la variable respuesta? Ganancia en peso en g.¿Cuál es la unidad experimental? 30 peces por piletas o acuarios.¿Cuántas replicaciones haríamos? un mínimo de tres¿Cuántos animales necesitamos? 30 peces *3 dietas* 3 replicas= 270 peces¿Cómo haríamos el diseño? Diseño completamente al azar DCA

D1 D2

D2

D3

Control local: Chequeamos condiciones ambientales y calidad el agua. Calibramos balanzas.

Aleatorización: Consideramos 9 piletas con 30 peces cada una

D3

D2 D1

D1 D3

Establecimiento 2¿Se trata de un experimento uni o multifactorial? Unifactorial¿cuáles son los factores? El único factor es la Dieta¿Cuáles son los tratamientos? cada una de las 3 dietas¿Cuál es la variable respuesta? Ganancia en peso en g.¿Cuál es la unidad experimental 30 peces por piletas o acuarios.¿Cuántas replicaciones haríamos? un mínimo de tres¿Cuántos animales necesitamos? 30 peces *3 dietas* 3 Bloques= 270 peces¿Cómo haríamos el diseño? Diseño en bloques completos al azar DBCA

D1 D2

D2

D2

Control local: Chequeamos condiciones ambientales y calidad el agua. Calibramos balanzas.

Bloquizamos por regiones para reducir la variación del error experimental.

Aleatorización: Consideramos 9 piletas con 30 peces cada una.

D3

D3 D1

D1 D3

b1

b2

b3

Establecimiento 3¿Se trata de un experimento uni o multifactorial? Multifactorial¿Cuáles son los factores? Dietas(D1,D2,D3) y Especie (Roja (R) y plateada(P))¿Cuáles son los tratamientos? RD1, RD2, RD3, PD1, PD2, PD3¿Cuál es la variable respuesta? Ganancia en peso en g.¿Cuál es la unidad experimental? 30 peces por piletas o acuarios¿Cuántas replicaciones haríamos? un mínimo de tres¿Cuántos animales necesitamos? 3 Replicaciones * 6 Tratamientos*30 Peces =540 peces¿Cómo haríamos el diseño? Diseño Factorial

D1R D2P

D2R

D2R

D3P

D3R D1P

D1P D3R

D1R D2R

D2P

D2P

D3P

D3R D1P

D1R D3P

Control local: Chequeamos condiciones ambientales y calidad el agua. Calibramos balanzas.

Aleatorización: Consideramos 18 piletas con 30 peces cada una.

DOX 6E Montgomery 15

Planificación, realización y análisis de un experimento

1. Reconocimiento del y estado del problema.

2. Eleccion de los factores, niveles, y rangos

3. Selection de la variable(s) respuesta

4. Eleccion del diseño

5. Llevar a cabo el experimento

6. Análisis estadístico

7. Conclusiones y recomendaciones

16

EXPERIMENTOS CON UN SOLO FACTOR

Experimentos con un solo factor

-Familia de diseños para comparar tratamientos:

• (1) Diseño completamente al azar (DCA)

• (2) Diseño en bloque completamente al azar (DBCA)

• (3) Diseño en cuadro latino.(DCL)

• (4) Diseño en cuadro grecolatino.(DCGL)

La diferencia fundamental entre estos diseños es el número de factores de bloque que incorporan o controlan

17

Experimentos con un solo factor

Por lo general el interés del experimentador se centra en comparar los tratamientos en cuanto:

• Medias poblacionales

• y en relación a sus varianzas y su capacidad actual y futura para cumplir con los requerimientos de calidad y productividad

18

Experimentos con un solo factor

Desde el punto de vista estadístico, la hipótesis fundamental a probar cuando se comparan varios tratamientos es:

• En función de las medias:

• En función de los tratamientos

19

Experimentos con un solo factor

Las hipótesis anteriores se prueba con la técnica estadística llamada análisis de varianza (ANOVA) con uno, dos, tres o cuatro criterios de clasificación, dependiendo del número de factores de bloques incorporados al diseño.

20

Experimentos con un solo factor

El Modelo estadístico que se supone describe el comportamiento de la variable observada para la familia de diseños para comparar tratamientos con un solo factor se resume en el siguiente cuadro

Donde Y es la variable de respuesta salida, µ la media global, τi el efecto

del i-ésimo tratamiento,γ, δ, φ, son los efectos de tres factores de

bloqueo y ε el error aleatorio.21

Diseño completamente al azar y ANOVA

Este diseño se llama completamente al azar por que todas las corridas experimentales se realizan en orden aleatorio completo, ya que al no haber bloques, no existe ninguna restricción a la aleatorización, es decir, si durante el estudio se ha-en en total N pruebas, estas se corren al azar, de manera que los posibles efectos ambientales y temporales se repartan equitativamente enter los tratamientos.

22

Diseño completamente al azar y ANOVA

El nombre de análisis de varianza (ANOVA) viene del hecho de que se utilizan cocientes de varianzas para probar la hipótesis de igualdad de medias. La idea general de esta técnica es separar la variación total en las partes con la que contribuye cada fuente de variación en el experimento..

23

Diseño completamente al azar y ANOVA

Los datos generados por un diseño completamente al azar para

comparar dichas poblaciones, se pueden escribir como en siguiente tabla.

• Yij en esta tabla es la j-ésima observación que se hizo en el tratamiento i; ni son las repeticiones observadas en el tratamiento i. recomendable utilizar el mismo número de repeticiones (ni = n) en cada tratamiento, a menos que hubiera alguna razón para no hacerlo. Cuando ni= n para toda i se dice que el diseño es balanceado.

24

Diseño completamente al azar y ANOVA

Para probar las hipótesis

mediante la técnica de ANOVA con un criterio de clasificación, lo primero es descomponer la variabilidad total de los datos en sus dos componentes: la variabilidad debida a tratamientos y la debida al error aleatorio.

Antes de comenzar con el análisis del DCA se introduce alguna notación que simplifica la escritura de las expresiones involucradas en dicho análisis.

25

Diseño completamente al azar y ANOVA

26

Diseño completamente al azar y ANOVA

Una medida de la variabilidad total presente en las observaciones de la tabla es la suma total de cuadrados dada por

donde Y.. es la suma de los sumando y restando adentro del

paréntesis la media del tratamiento i (Yi) y desarrollando el cuadrado se tiene:

27

Diseño completamente al azar y ANOVA

donde el primer componente de la ecuación es la suma de los cuadrados de los tratamientos

y el segundo es la suma de los cuadrados del error

Toda la información necesaria para calcular el estadístico F0 hasta llegar al

P- value se escribe en la llamada tabla de análisis de varianza (ANOVA)

28

Diseño completamente al azar y ANOVA

29

Diseño completamente al azar y ANOVA

Ejemplo:

Un ingeniero civil esta interesado en saber si las mezclas influyen en la resistencia del cemento. Para ello estudia la consistencia del cemento fabricado a partir de cuatro tipos de mezclas. Los resultados del experimento se recogen en la siguiente tabla:

1Factor de interés. 5Modelo estadístico

2Niveles del Factor: 6.Hipótesis del problema

3Variable de interés 7.Significancia de la Prueba

4Replicas por nivel30