79
Introducción al Diseño de Filtros Digitales Diego Milone Procesamiento Digital de Señales Ingeniería Informática FICH-UNL 3 de mayo de 2012

Introducción al Diseño de Filtros Digitalespdsfich.wdfiles.com/local--files/clases-de-teoria/firiir2012.pdf · Introducción Diseño IIR Diseño FIR Modulación AlgoritmosdediseñoIIR

  • Upload
    lamlien

  • View
    241

  • Download
    0

Embed Size (px)

Citation preview

Introducción alDiseño de Filtros Digitales

Diego Milone

Procesamiento Digital de SeñalesIngeniería Informática FICH-UNL

3 de mayo de 2012

Introducción Diseño IIR Diseño FIR Modulación

Organización de la claseIntroducción

Concepto y clasificación de filtrosFiltros ideales y filtros realizables

Diseño de filtros IIRAlgoritmos de diseño IIRDiseños analógicos básicosTransformaciones en frecuencia

Diseño de filtros FIRPropiedades de los filtros FIRFiltros de fase linealMétodos de diseño FIR

ModulaciónConceptos básicos

Introducción Diseño IIR Diseño FIR Modulación

Organización de la claseIntroducción

Concepto y clasificación de filtrosFiltros ideales y filtros realizables

Diseño de filtros IIRAlgoritmos de diseño IIRDiseños analógicos básicosTransformaciones en frecuencia

Diseño de filtros FIRPropiedades de los filtros FIRFiltros de fase linealMétodos de diseño FIR

ModulaciónConceptos básicos

Introducción Diseño IIR Diseño FIR Modulación

Concepto

• ¿Qué es un filtro?

• Filtros vs. Sistemas

• Ejemplos...

Introducción Diseño IIR Diseño FIR Modulación

Concepto

• ¿Qué es un filtro?

• Filtros vs. Sistemas

• Ejemplos...

Introducción Diseño IIR Diseño FIR Modulación

Concepto

• ¿Qué es un filtro?

• Filtros vs. Sistemas

• Ejemplos...

Introducción Diseño IIR Diseño FIR Modulación

Clasificación de los filtros• Respuesta al impulso

• IIR (recursivos, AR/ARMA)• FIR (no-recursivos, MA)

• Banda de paso• Pasa-Bajos• Pasa-Altos• Pasa-Banda• Rechaza-Banda• Multibanda

Introducción Diseño IIR Diseño FIR Modulación

Clasificación de los filtros• Respuesta al impulso

• IIR (recursivos, AR/ARMA)• FIR (no-recursivos, MA)

• Banda de paso• Pasa-Bajos• Pasa-Altos• Pasa-Banda• Rechaza-Banda• Multibanda

Introducción Diseño IIR Diseño FIR Modulación

Clasificación de los filtros• Adaptativos vs. estáticos• Filtros de fase lineal• Filtros para compensación de fase

Introducción Diseño IIR Diseño FIR Modulación

Clasificación de las técnicas de diseño• Filtros IIR

• Prototipos analógicos• Butterworth• Chebyshev I y II• Elípticos• Bessel

• Diseño digital directo (Yule-Walk)

• Filtros FIR• Método de Fourier + Ventaneo• Otros (mínimos cuadrados, minimax, etc)

Introducción Diseño IIR Diseño FIR Modulación

Clasificación de las técnicas de diseño• Filtros IIR

• Prototipos analógicos• Butterworth• Chebyshev I y II• Elípticos• Bessel

• Diseño digital directo (Yule-Walk)• Filtros FIR

• Método de Fourier + Ventaneo• Otros (mínimos cuadrados, minimax, etc)

Introducción Diseño IIR Diseño FIR Modulación

Filtro pasa bajos ideal

• Magnitud• Fase• Frecuencia de corte (-3 dB)

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro pasa bajos• Bandas de paso, rechazo y transición

• Tolerancias en las bandas de paso y rechazo• Frecuencias de paso, corte y rechazo• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro pasa bajos• Bandas de paso, rechazo y transición• Tolerancias en las bandas de paso y rechazo

• Frecuencias de paso, corte y rechazo• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro pasa bajos• Bandas de paso, rechazo y transición• Tolerancias en las bandas de paso y rechazo• Frecuencias de paso, corte y rechazo

• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro pasa bajos• Bandas de paso, rechazo y transición• Tolerancias en las bandas de paso y rechazo• Frecuencias de paso, corte y rechazo• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro pasa altos• Bandas de paso, rechazo y transición• Tolerancias en las bandas de paso y rechazo• Frecuencias de paso, corte y rechazo• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro pasa banda• Bandas de paso, rechazo y transición• Tolerancias en las bandas de paso y rechazo• Frecuencias de paso, corte y rechazo• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros realizables

• Filtro rechaza banda• Bandas de paso, rechazo y transición• Tolerancias en las bandas de paso y rechazo• Frecuencias de paso, corte y rechazo• Fase

Introducción Diseño IIR Diseño FIR Modulación

Filtros digitales vs. analógicos++ Estabilidad (componentes electrónicos)++ Precisión−− Frecuencia limitada por la conversión A/D (=> costos)

Introducción Diseño IIR Diseño FIR Modulación

Organización de la claseIntroducción

Concepto y clasificación de filtrosFiltros ideales y filtros realizables

Diseño de filtros IIRAlgoritmos de diseño IIRDiseños analógicos básicosTransformaciones en frecuencia

Diseño de filtros FIRPropiedades de los filtros FIRFiltros de fase linealMétodos de diseño FIR

ModulaciónConceptos básicos

Introducción Diseño IIR Diseño FIR Modulación

Algoritmos de diseño IIR• Método 1

• Diseño analógico (filtro P-Bajos normalizado)• Transformación en frecuencia (analógica, en s)• Transformación conforme (bilineal)

• Método 2• Diseño analógico (filtro P-Bajos normalizado)• Transformación conforme (bilineal)• Transformación en frecuencia (digital, en z)

Introducción Diseño IIR Diseño FIR Modulación

Algoritmos de diseño IIR• Método 1

• Diseño analógico (filtro P-Bajos normalizado)• Transformación en frecuencia (analógica, en s)• Transformación conforme (bilineal)

• Método 2• Diseño analógico (filtro P-Bajos normalizado)• Transformación conforme (bilineal)• Transformación en frecuencia (digital, en z)

Introducción Diseño IIR Diseño FIR Modulación

Diseño analógico: Butterworth• Función de transferencia• Tolerancias en la banda de paso y rechazo• Forma de la respuesta en frecuencia• Diseño:

• Especificaciones típicas (wp, A y K0)• Fórmula para la estimación del orden (N)

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Butterworth

|H(jω)|2 = 1

1 + ε2(ω

ωP

)2N

si |ω| ≤ ωP ⇒ |H(jω)|2 > 11+ε2

si |ω| ≥ ωR ⇒ |H(jω)|2 < 11+λ2

si N →∞ωR → ωPε→ 0λ→∞

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Butterworth

|H(jω)|2 = 1

1 + ε2(ω

ωP

)2N

si |ω| ≤ ωP ⇒ |H(jω)|2 > 11+ε2

si |ω| ≥ ωR ⇒ |H(jω)|2 < 11+λ2

si N →∞ωR → ωPε→ 0λ→∞

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Butterworth

|H(jω)|2 = 1

1 + ε2(ω

ωP

)2N

si |ω| ≤ ωP ⇒ |H(jω)|2 > 11+ε2

si |ω| ≥ ωR ⇒ |H(jω)|2 < 11+λ2

si N →∞ωR → ωPε→ 0λ→∞

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Butterworth

|H(jω)|2 = 1

1 + ε2(ω

ωP

)2N

si |ω| ≤ ωP ⇒ |H(jω)|2 > 11+ε2

si |ω| ≥ ωR ⇒ |H(jω)|2 < 11+λ2

si N →∞ωR → ωPε→ 0λ→∞

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Butterworth

|H(jω)|2 = 1

1 + ε2(ω

ωP

)2N

si |ω| ≤ ωP ⇒ |H(jω)|2 > 11+ε2

si |ω| ≥ ωR ⇒ |H(jω)|2 < 11+λ2

si N →∞ωR → ωPε→ 0λ→∞

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Butterworth

|H(jω)|2 = 1

1 + ε2(ω

ωP

)2N

si |ω| ≤ ωP ⇒ |H(jω)|2 > 11+ε2

si |ω| ≥ ωR ⇒ |H(jω)|2 < 11+λ2

si N →∞ωR → ωPε→ 0λ→∞

Introducción Diseño IIR Diseño FIR Modulación

Características del filtro de Butterworth• Respuesta monotónicamente decreciente• Respuesta máximamente plana cerca de ω = 0

• Fase tendiendo a −Nπ/2 para ω →∞

Introducción Diseño IIR Diseño FIR Modulación

Diseño Butterworth• Dados

• ωp : frecuencia de corte• A : relación de atenuación máxima• K0 : relación de ancho de transición

• Se requiere• N : orden del filtro

Introducción Diseño IIR Diseño FIR Modulación

Ecuación de diseño ButterworthSe debe cumplir:

N >logA

log(

1K0

)siendo:A = λ

ε =√

100,1AR−1100,1AP−1

K0 =ωPωR

Introducción Diseño IIR Diseño FIR Modulación

Diseño analógico: Chebyshev• Función de transferencia tipo I y tipo II• Forma de la respuesta en frecuencia• Tolerancias en la banda de paso y rechazo• Fórmula para la estimación del orden (N)

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Chebyshev tipo I|H(jω)|2 = 1

1+ε2V 2N

(ωωP

)

Polinomio de Chebyshev:

VN (x) = 2xVN−1(x)− VN−2(x)V0 = 1V1 = x

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Chebyshev tipo I|H(jω)|2 = 1

1+ε2V 2N

(ωωP

)Polinomio de Chebyshev:

VN (x) = 2xVN−1(x)− VN−2(x)V0 = 1V1 = x

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Chebyshev tipo I|H(jω)|2 = 1

1+ε2V 2N

(ωωP

)Polinomio de Chebyshev:

VN (x) = 2xVN−1(x)− VN−2(x)V0 = 1V1 = x

Introducción Diseño IIR Diseño FIR Modulación

Filtro de Chebyshev tipo I|H(jω)|2 = 1

1+ε2V 2N

(ωωP

)Polinomio de Chebyshev:

VN (x) = 2xVN−1(x)− VN−2(x)V0 = 1V1 = x

Introducción Diseño IIR Diseño FIR Modulación

Características de los filtros de Chebyshev• Tipo I: ondulaciones en la banda de paso y monotónico

decreciente en la banda de rechazo

• Tipo II: ondulaciones en la banda de rechazo y monotónicodecreciente en la banda de paso

• Diferentes formas para orden par o impar

Introducción Diseño IIR Diseño FIR Modulación

Características de los filtros de Chebyshev• Tipo I: ondulaciones en la banda de paso y monotónico

decreciente en la banda de rechazo• Tipo II: ondulaciones en la banda de rechazo y monotónico

decreciente en la banda de paso

• Diferentes formas para orden par o impar

Introducción Diseño IIR Diseño FIR Modulación

Características de los filtros de Chebyshev• Tipo I: ondulaciones en la banda de paso y monotónico

decreciente en la banda de rechazo• Tipo II: ondulaciones en la banda de rechazo y monotónico

decreciente en la banda de paso• Diferentes formas para orden par o impar

Introducción Diseño IIR Diseño FIR Modulación

Características de los filtros de Chebyshev• Tipo I: ondulaciones en la banda de paso y monotónico

decreciente en la banda de rechazo• Tipo II: ondulaciones en la banda de rechazo y monotónico

decreciente en la banda de paso• Diferentes formas para orden par o impar

Introducción Diseño IIR Diseño FIR Modulación

Ecuación de diseño Chebyshev (tipos I y II)Se debe cumplir:

N >cosh−1A

cosh−1(

1K0

)siendo:A = λ

ε =√

100,1AR−1100,1AP−1

K0 =ωPωR

Introducción Diseño IIR Diseño FIR Modulación

Diseño analógico: filtros elípticos• Función de transferencia• Forma de la respuesta en frecuencia• Tolerancias en la banda de paso y rechazo• Fórmula para la estimación del orden (N)

Introducción Diseño IIR Diseño FIR Modulación

Filtros elípticos

|H(jω)|2 = 1

1 + ε2F 2N

(ωωP

)

FN (x): función elíptica Jacobiana

Introducción Diseño IIR Diseño FIR Modulación

Filtros elípticos

|H(jω)|2 = 1

1 + ε2F 2N

(ωωP

)FN (x): función elíptica Jacobiana

Introducción Diseño IIR Diseño FIR Modulación

Filtros elípticos

|H(jω)|2 = 1

1 + ε2F 2N

(ωωP

)FN (x): función elíptica Jacobiana

Introducción Diseño IIR Diseño FIR Modulación

Características de los filtros elípticos• Ondulaciones en las bandas de paso y rechazo• Corte más abrupto que los anteriores (para igual orden)• Diferentes formas para orden par o impar

Introducción Diseño IIR Diseño FIR Modulación

Ecuación de diseño para filtros elípticosSe debe cumplir:

N >log(16A)

log(

1q

)siendo:q = q0 + 2q50 + 15q90 + 150q130

q0 =1−(1−K2

0)0,25

2[1+(1−K2

0)0,25

]

Introducción Diseño IIR Diseño FIR Modulación

Algoritmos de diseño IIR• Método 1

• Diseño analógico (filtro P-Bajos normalizado)• Transformación en frecuencia (analógica, en s) ⇐• Transformación conforme (bilineal)

• Método 2• Diseño analógico (filtro P-Bajos normalizado)• Transformación conforme (bilineal)• Transformación en frecuencia (digital, en z) ⇐

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “analógica”• Pasa-bajos → Pasa-bajos s→ s

ωP

• Pasa-bajos → Pasa-altos s→ ωPs

• Pasa-bajos → Pasa-banda s→ s2+ωP1ωP2

s(ωP2−ωP1)

• Pasa-bajos → Rechaza-banda s→ s(ωP2−ωP1)s2+ωP1ωP2

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “analógica”• Pasa-bajos → Pasa-bajos s→ s

ωP

• Pasa-bajos → Pasa-altos s→ ωPs

• Pasa-bajos → Pasa-banda s→ s2+ωP1ωP2

s(ωP2−ωP1)

• Pasa-bajos → Rechaza-banda s→ s(ωP2−ωP1)s2+ωP1ωP2

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “analógica”• Pasa-bajos → Pasa-bajos s→ s

ωP

• Pasa-bajos → Pasa-altos s→ ωPs

• Pasa-bajos → Pasa-banda s→ s2+ωP1ωP2

s(ωP2−ωP1)

• Pasa-bajos → Rechaza-banda s→ s(ωP2−ωP1)s2+ωP1ωP2

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “analógica”• Pasa-bajos → Pasa-bajos s→ s

ωP

• Pasa-bajos → Pasa-altos s→ ωPs

• Pasa-bajos → Pasa-banda s→ s2+ωP1ωP2

s(ωP2−ωP1)

• Pasa-bajos → Rechaza-banda s→ s(ωP2−ωP1)s2+ωP1ωP2

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “digital”• Pasa-bajos → Pasa-bajos z−1 → z−1−α

1−αz−1

α = sin((ωN−ωP )/2)sin((ωN+ωP )/2)

• Pasa-bajos → Pasa-altos z−1 → − z−1+α1+αz−1

• Pasa-bajos → Pasa-banda z−1 → z−2− 2αkk+1

z−1+ k−1k+1

k−1k+1

z−2− 2αkk+1

z−1+1

• Pasa-bajos → Rechaza-banda z−1 → z−2− 2α1+k

z−1+ 1−k1+k

1−k1+k

z−2− 2αk+1

z−1+1

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “digital”• Pasa-bajos → Pasa-bajos z−1 → z−1−α

1−αz−1

• Pasa-bajos → Pasa-altos z−1 → − z−1+α1+αz−1

α = − cos((ωN+ωP )/2)cos((ωN−ωP )/2)

• Pasa-bajos → Pasa-banda z−1 → z−2− 2αkk+1

z−1+ k−1k+1

k−1k+1

z−2− 2αkk+1

z−1+1

• Pasa-bajos → Rechaza-banda z−1 → z−2− 2α1+k

z−1+ 1−k1+k

1−k1+k

z−2− 2αk+1

z−1+1

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “digital”• Pasa-bajos → Pasa-bajos z−1 → z−1−α

1−αz−1

• Pasa-bajos → Pasa-altos z−1 → − z−1+α1+αz−1

• Pasa-bajos → Pasa-banda z−1 → z−2− 2αkk+1

z−1+ k−1k+1

k−1k+1

z−2− 2αkk+1

z−1+1

α =cos ((ωP2 + ωP1)/2)

cos ((ωP2 − ωP1)/2)

k = cos ((ωP2 − ωP1)/2) tan (ωN/2)

• Pasa-bajos → Rechaza-banda z−1 → z−2− 2α1+k

z−1+ 1−k1+k

1−k1+k

z−2− 2αk+1

z−1+1

Introducción Diseño IIR Diseño FIR Modulación

Transformaciones en frecuencia “digital”• Pasa-bajos → Pasa-bajos z−1 → z−1−α

1−αz−1

• Pasa-bajos → Pasa-altos z−1 → − z−1+α1+αz−1

• Pasa-bajos → Pasa-banda z−1 → z−2− 2αkk+1

z−1+ k−1k+1

k−1k+1

z−2− 2αkk+1

z−1+1

• Pasa-bajos → Rechaza-banda z−1 → z−2− 2α1+k

z−1+ 1−k1+k

1−k1+k

z−2− 2αk+1

z−1+1

α =cos ((ωP2 + ωP1)/2)

cos ((ωP2 − ωP1)/2)

k = tan ((ωP2 − ωP1)/2) tan (ωN/2)

Introducción Diseño IIR Diseño FIR Modulación

Organización de la claseIntroducción

Concepto y clasificación de filtrosFiltros ideales y filtros realizables

Diseño de filtros IIRAlgoritmos de diseño IIRDiseños analógicos básicosTransformaciones en frecuencia

Diseño de filtros FIRPropiedades de los filtros FIRFiltros de fase linealMétodos de diseño FIR

ModulaciónConceptos básicos

Introducción Diseño IIR Diseño FIR Modulación

Filtros FIR: ventajas y desventajas++ Se puede lograr fase lineal++ Presentan mayor estabilidad++ Diseño hardware eficiente++ Frecuencias de corte abruptas++ Cortos transitorios de inicialización−− Requieren más cálculos

Introducción Diseño IIR Diseño FIR Modulación

Filtros FIR: relaciones importantes• Coeficientes FIR• Respuesta al impulso• Convolución• Sistemas MA

Introducción Diseño IIR Diseño FIR Modulación

Fase lineal: interpretación gráfica• Descomposición de una onda cuadrada en dos componentes

senoidales

• Aplicación de un filtro de fase constante a ambascomponentes por superposición

• Aplicación de un filtro de fase lineal a ambas componentespor superposición

• Filtro sin fase lineal (y con magnitud constante) deforma laonda en el tiempo

Introducción Diseño IIR Diseño FIR Modulación

Fase lineal: interpretación gráfica• Descomposición de una onda cuadrada en dos componentes

senoidales• Aplicación de un filtro de fase constante a ambas

componentes por superposición

• Aplicación de un filtro de fase lineal a ambas componentespor superposición

• Filtro sin fase lineal (y con magnitud constante) deforma laonda en el tiempo

Introducción Diseño IIR Diseño FIR Modulación

Fase lineal: interpretación gráfica• Descomposición de una onda cuadrada en dos componentes

senoidales• Aplicación de un filtro de fase constante a ambas

componentes por superposición• Aplicación de un filtro de fase lineal a ambas componentes

por superposición

• Filtro sin fase lineal (y con magnitud constante) deforma laonda en el tiempo

Introducción Diseño IIR Diseño FIR Modulación

Fase lineal: interpretación gráfica• Descomposición de una onda cuadrada en dos componentes

senoidales• Aplicación de un filtro de fase constante a ambas

componentes por superposición• Aplicación de un filtro de fase lineal a ambas componentes

por superposición• Filtro sin fase lineal (y con magnitud constante) deforma la

onda en el tiempo

Introducción Diseño IIR Diseño FIR Modulación

Fase lineal: definiciones• Definiciones de módulo y fase• Definición de retardo de fase: τφ(ω) = −φ(ω)

ω

• Definición de retardo de grupo τγ(ω) = −dφ(ω)dω

• Fase lineal: φ(ω) = τω

(... τφ y τγ constantes ...)

Introducción Diseño IIR Diseño FIR Modulación

Diseño FIR por Fourier y ventaneo1. Especificación de los requerimientos (mód. y fase)2. Muestreo de la respuesta en frecuencia3. Aplicación de la TDF inversa4. Truncado temporal (ventanas temporales)5. Corrección de amplitud6. Corrección para obtener la causalidad

Introducción Diseño IIR Diseño FIR Modulación

Truncado y ventaneo temporalObjetivos:

• Reducción del orden del filtro resultante• Reducción de los artefactos del truncado

• reducción de los lóbulos laterales• “reducción” del ancho en el lóbulo central

Interpretación gráfica

Introducción Diseño IIR Diseño FIR Modulación

Ventanas• Ventana rectangular: ωR[n] = 1

• Ventana de Hanning: ωh[n] = 12 −

12 cos(2πn/N)

• Ventana de Hamming: ωH [n] = 2750 −

2350 cos(2πn/N)

• Ventana de Bartlett:

ωB[n] =

{2n/N si 0 < n ≤ N/22− 2n/N si N/2 < n ≤ N

• Ventana de Blackman:

ωK [n] =21

50− 1

2cos(2πn/N) +

2

25cos(4πn/N)

Introducción Diseño IIR Diseño FIR Modulación

Ventanas• Ventana rectangular: ωR[n] = 1

• Ventana de Hanning: ωh[n] = 12 −

12 cos(2πn/N)

• Ventana de Hamming: ωH [n] = 2750 −

2350 cos(2πn/N)

• Ventana de Bartlett:

ωB[n] =

{2n/N si 0 < n ≤ N/22− 2n/N si N/2 < n ≤ N

• Ventana de Blackman:

ωK [n] =21

50− 1

2cos(2πn/N) +

2

25cos(4πn/N)

Introducción Diseño IIR Diseño FIR Modulación

Ventanas• Ventana rectangular: ωR[n] = 1

• Ventana de Hanning: ωh[n] = 12 −

12 cos(2πn/N)

• Ventana de Hamming: ωH [n] = 2750 −

2350 cos(2πn/N)

• Ventana de Bartlett:

ωB[n] =

{2n/N si 0 < n ≤ N/22− 2n/N si N/2 < n ≤ N

• Ventana de Blackman:

ωK [n] =21

50− 1

2cos(2πn/N) +

2

25cos(4πn/N)

Introducción Diseño IIR Diseño FIR Modulación

Ventanas• Ventana rectangular: ωR[n] = 1

• Ventana de Hanning: ωh[n] = 12 −

12 cos(2πn/N)

• Ventana de Hamming: ωH [n] = 2750 −

2350 cos(2πn/N)

• Ventana de Bartlett:

ωB[n] =

{2n/N si 0 < n ≤ N/22− 2n/N si N/2 < n ≤ N

• Ventana de Blackman:

ωK [n] =21

50− 1

2cos(2πn/N) +

2

25cos(4πn/N)

Introducción Diseño IIR Diseño FIR Modulación

Ventanas• Ventana rectangular: ωR[n] = 1

• Ventana de Hanning: ωh[n] = 12 −

12 cos(2πn/N)

• Ventana de Hamming: ωH [n] = 2750 −

2350 cos(2πn/N)

• Ventana de Bartlett:

ωB[n] =

{2n/N si 0 < n ≤ N/22− 2n/N si N/2 < n ≤ N

• Ventana de Blackman:

ωK [n] =21

50− 1

2cos(2πn/N) +

2

25cos(4πn/N)

Introducción Diseño IIR Diseño FIR Modulación

Ventanas

−0.6 −0.4 −0.2 0 0.2 0.40

0.5

1Ventana cuadrada

−0.2 0.2

−80−60−40−20

0−0.6 −0.4 −0.2 0 0.2 0.40

0.20.40.60.8

Ventana de Hamming

−0.2 0.2−80

−60

−40

−20

0

−0.6 −0.4 −0.2 0 0.2 0.40

0.20.40.60.8

Ventana de Bartlett

−0.2 0 0.2

−80−60−40−20

0−0.6 −0.4 −0.2 0 0.2 0.40

0.20.40.60.8

Ventana de Blackman

−0.2 0 0.2

−80

−60

−40

−20

0

Introducción Diseño IIR Diseño FIR Modulación

Ventanas: ancho del lóbulo central• Rectangular: 4π/N• Bartlet: 8π/N• Hanning: 8π/N• Hamming: 8π/N• Blackman: 12π/N

Introducción Diseño IIR Diseño FIR Modulación

Ventanas: relación de energía entrelóbulos laterales y central

• Rectangular: -13 dB• Bartlet: -25 dB• Hanning: -31 dB• Hamming: -41 dB• Blackman: -57 dB

Introducción Diseño IIR Diseño FIR Modulación

Organización de la claseIntroducción

Concepto y clasificación de filtrosFiltros ideales y filtros realizables

Diseño de filtros IIRAlgoritmos de diseño IIRDiseños analógicos básicosTransformaciones en frecuencia

Diseño de filtros FIRPropiedades de los filtros FIRFiltros de fase linealMétodos de diseño FIR

ModulaciónConceptos básicos

Introducción Diseño IIR Diseño FIR Modulación

Modulación: conceptos básicos

• Modulación en amplitud (sinusoidal)• Demodulación sincrónica y asincrónica• Multiplexado en frecuencia• Modulación en frecuencia

Introducción Diseño IIR Diseño FIR Modulación

Bibliografía básica

• D.J. DeFatta, J.J. Lucas, W.S. Hodgkiss, Digital SignalProcessing: A System Design Approach (Capítulos 4 y 5),John Wiley, 1988.

• R. Kuc, Introduction to Digital Signal Processing(Capítulos 6, 7, 8 y 9), Mcgraw-Hill, 1988.

• A.V. Oppenheim, A.S. Willsky, Signals and Systems(modulación en amplitud y en frecuencia, Secciones7.1,7.2,7.3,7.5,7.6), Prentice-Hall, 1999.