24
9/22/17 1 Formula(on and Process Science for Freeze Drying: Past, Present, Future Michael J. Pikal School of Pharmacy University of Connec(cut Topic Areas Formula(on Design Characteriza(on of Formula(on Process Design Control Scale Up

ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

Embed Size (px)

Citation preview

Page 1: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

1  

Formula(on  and  Process  Science  for  Freeze  Drying:  Past,  Present,  Future  

Michael  J.  Pikal  School  of  Pharmacy  

University  of  Connec(cut  

Topic  Areas  

•  Formula(on  – Design  – Characteriza(on  of  Formula(on  

•  Process    – Design    – Control  – Scale  Up    

Page 2: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

2  

Formula(on-­‐Past  •  Freeze  Dry  Pure  Drug  

•  S(ll  the  choice  when  no  stability  issue  and  dose  is  moderate  to  high  

•  Freeze  Dry  with  mannitol  •  Because  that’s  what  you  do!  •  Problem:  mannitol  is  a  good  bulking  agent  but  a  poor  stabilizer  

•  Freeze  Dry  with  Lactose  •  Tradi(on!  •  Problem:  Lactose  is  a  reducing  sugar  

– With  hGH,  dry  product  1  mo/25°C  =  half  adduct  degrada(on  product  

•  OVen  did  not  differen(ate  between  “bulking  agent”  and  stabilizer  func(on.  

•  Problem:  good  bulking  agent  (Mannitol)  is  poor  stabilizer  – Mannitol  crystallizes  therefore  removing  it’s  role  as  a  stabilizer  

Formula(on-­‐Present  •  Recognize  the  desirable  proper(es  of  a  stabilizer  

–  Remain  amorphous  and  in  same  phase  as  drug  –  Have  Tg  well  above  desired  storage  and  test  condi(ons  –  Have  Tg’  well  above  -­‐40°  for  ease  in  processing  –  Be  chemically  inert  –(  no  reducing  sugars)  –  “Immobilize”  the  drug  and  reactants  

•  Mechanism  not  completely  clear  –  For  proteins,  maintain  high  level  of  na(ve  structure    –  Stabilizer  to  drug  weight  ra(o  is  important  

•  Beaer  stability  as  level  of  stabilizer  increases  –  Recognize  that  not  all  stabilizers  are  equivalent  

•  Mechanisms  not  completely  clear  •  Recognize  that  buffers  may  shiV  pH  drama(cally  during  freezing  –  Use  only  enough  buffer  necessary  for  the  capacity  needed  

Page 3: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

3  

Some  Data  

6  [email protected]   6  

Degrada(on  Kine(cs  is  Not  “First  Order”  Square  Root  of  Time  Kine(cs  prevails  for  amorphous  solids  

2.01.51.00.50.00

1

2

3

4

5

6Freeze Dried AmorphousCrystalline

Dimer Formation During 40°C Storage in Dry Solid Forms of Insulin

|months

% D

imer

by

SEC

HPL

C

Note:  Here,  crystalline  is  less    stable  than  amorphous!!  

Dimer Formation in Crystalline and Amorphous Insulin

321093

94

95

96

97

98

99

100

Aggregation (SEC HPLC)Chemical Degradation (RP)

Examples of Square Root Time Kinetics for Degradation of Freeze Dried hGH at 40°C

|months

% M

onom

er o

r %

Rev

erse

Pha

se P

urity

monomer, trehalose-1

RP purity, trehalose-3

Aggregation and Chemical Degradation in hGH

Page 4: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

4  

Storage  Stability  is  Very  Sensi(ve  to  Formula(on    

Rate  Constants,  k(√t),  at  40°C  (40°C  <<  Tg)  

*  residual  water  in  range  0.7%  to  2.5%;  stability  not  correlated  with  %H2O  *  all  formula(ons  except  Gly:Mann  are  glassy  **  Trend  is  same  for  both  chemical  degrada(on  and  aggrega(on!    

       Why?  

Human  Growth  Hormone  Formula(ons  

Storage Stability of hGH Formulations at 40°C

0.01

0.10

1.00

10.00

None

HES(1

)

Gly

(1):M

ann(5

)

Stach

yose

(1)

Treh

alose

(1)

Treh

alose

(3)

Treh

alose

(6)

Sucrose

(1)

Sucrose

(3)

Sucrose

(6)

Stabilizer System

Rate

Co

nsta

nt,

%/√

mo

kRP,%/√lmo

kSEC,%/√mo

*  

*  

STD  NEW  

Why  is  hGH  More  Stable  in  Sucrose  Formula(ons?  

•  Structure?  – More  “na(ve”  structure  in  sucrose?  

•  No,  at  least  not  secondary  structure!    

•  Dynamics?  – Less  molecular  mobility  in  sucrose?  

•  No,  at  least  not  if  mobility  is  measured  by  proximity  to  Tg  and/or  “structural  relaxa(on  (me”    

 

Page 5: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

5  

Is  the  Difference  Structure?  FTIR  Structure  of  1:6  hGH:Disaccharide  Formula(ons  

-0.070

-0.060

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

0.010

160016201640166016801700

wavenumber

Sucrose 1:6

Trehalose 1:6

No  Difference  between  Sucrose  and  Trehalose!                    Is  FTIR  the  appropriate  measure  of  structure?  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Suc, 40 Treh, 40 Suc, 50 Treh, 50

ln(tb)'or'1

0*kagg'

System, Temperature

hGH'Stability'and'TAM'Relaxa=on'Time:'Comparison'of'Disaccharides'

All'formula=ons'are'6:1'Disaccharide:hGH'(w/w)'ln(tb). TAM

10*k, agg

 The  trehalose  formula(on  has  longer  relaxa(on  (me  (lower  mobility)  than  the  sucrose  formula(on,  but  the  sucrose  formula(on  is  more  stable!  

Page 6: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

6  

Fast  Dynamics:  hGH  in  Sucrose  and  Trehalose  

1:6 hGH : Sugar

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400 450T [K]

Trehalose u^2Sucrose u^2

Tg sucrose

Tg trehalose

Amplitude  of  nano-­‐second  mo(ons  from  neutron  scaaering  

•  less  mobility  (I.e.,  lower  amplitude)  in  sucrose  systems,  un(l  well  above  Tg.  

Stability and Fast Dynamics •  Reciprocal of mean amplitude of fast motion by

neutron scattering, 1/<u2>

12 M. Cicerone et al. Soft Matter, 8, 2012

Page 7: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

7  

Relationship between the normalized aggregation rate constant and fast local mobility (1/<u2>) at 50 oC for five different proteins

Increasing  Sucrose  level  

-0.50

1.50

3.50

5.50

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

1/<u2>

Ln (

k/X

p) +

2

A

B

C

D

E

Linear (A)Linear (E)Linear (D)

• Excellent correlation between stability & “Fast Dynamics”.

Stability and “Fast Dynamics”

13

New  Technique  for  Characteriza(on  of  “Fast  Dynamics”  mean  square  amplitude,  <u2>  

Fluorescence  Red  Edge  Effect  

Lines  =  neutron  ScaAering;    Symbols  =  Fluorescence    Blue  =  trehalose  

Red  =  Sucrose  

•  Good  agreement  between  techniques!  

Page 8: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

8  

Surface  Effects  Maybe  Protein  at  Surface  is  “ReacDve”  

•  Interac(on  with  ice  during  freezing      –  unfolding  

•  Protein  at  surface  is  “concentrated”  –  Par(al  separa(on  from  stabilizer  

•  Protein  at  surface  is  in  “reac(ve  environment”  –  Greater  mobility!  

15  

Surface  diffusion  is  as  much  as  six  orders  of  magnitude  faster!  

Stability  (50°C)  Correla(ons  in  IgG1:Sucrose  (1:4)  

•  Fair  correla(on  of  stability  with  %  of  protein  on  surface  -­‐addi(onal  variable  (not  discussed)  is  thermal  history  varia(on  giving  mobility  

varia(on    

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.5

1

1.5

2

2.5

3

3.5

4

Estim

ated

% (w

/w) o

f the

tota

l pr

otei

n on

the

surf

ace

k'ag

greg

atio

n at

50o

C (%

agg

./mon

th0.

5 )

Estimated % of the total protein on the surface k' aggregation (50C)

Spray dried Foam dried

LYO ANNLYO

Page 9: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

9  

Comparison  of  Kine(c  Model  with  Data:    AggregaDon  aHer  16  weeks  at  50°C  

•  Most  degrada(on  occurs  in  the  surface  region!!        •  very  low  protein  (0.1%)  &  5%  saccharide  =  large  heterogeneity  effect  (>20x)  

 •  Some  difference  with  stabilizer  (HES  poor  stabilizer)  17  

Formulation-Future •  Specific  Effects  do  seem  to  be  present-­‐Inves(gate  

–  Different  proteins  behave  differently:  Why?  •  Sucrose  stabilizes  hGH  beaer  than  trehalose,  but  with  KGF,  no  real  difference  

•  Answer  Ques(ons:  –  Other  cri(cl  factors,  what  are  they?  

•  Likely  that  “coupling”  between  matrix  and  protein  varies  between  stabilizers  

–  How  to  measure?  •  Is  protein  structure  really  driving  stability  differences?  

–  What  is  role  of  ter(ary  structure:  how  to  measure  in  solid?  

•  Specific  surface  area  measurement  and  <u2>  by  fluorescence  will  see  much  greater  use  in  characterizing  formula(ons  

•  Develop  stabilizer  systems  (that  work)  that  have  much  higher  collapse  temperatures  than  sucrose  or  trehalose      

Page 10: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

10  

Process-­‐Past  •  Distant  past-­‐No  pressure  control  •  Revela(on!-­‐  Pressure  is  important  

–  “spoiling  the  vacuum”  increases  drying  rate  •  The  nitrogen  bleed  “sweeps”  out  the  water  vapor  

–  NOT  REALLY!!!        •  Process  monitoring  by  thermocouples  (TC)  in  product  

–  Operate  by  fixed  (me,  based  on  “some”  lab  studies,  or  on  TC  response  

–  Problems:  significant  scale  up  problems,  and  TC  response  guarantees  the  TC  vials  are  OK,  but  the  other  40,000  vials  dry  differently  

–  Scale  up  based  on  “experience”,  and  luck!  •  Interdependence  of  formula(on  and  process  (phase  chemistry)  

oVen  not  recognized  –  Eutec(c  temperature  recognized  and  “melt-­‐back”  must  be  avoided  

•  OVen  insufficient  laboratory  studies  –  No  “Quality  by  Design”or  QbD:  rather  QbA  “quality  by  accident”  

 

Process-­‐Present  •  Chamber  pressure  control  recognized  as  cri(cal      

–  “spoiling  the  vacuum”  accelerates  drying  because  heat  transfer  is  more  efficient  and  product  dries  at  higher  temperatures.  

•  Measurement  of  collapse  temperature  recognized  as  important  •  Importance  of  varia(on  in  ice  nuclea(on  temperature  recognized  

–  Control  of  ice  nuclea(on  now  possible  –  Is  Scale-­‐Up  problem,  but  implementa(on  in  mfg  slow    

•  End  Point  of  1°  Drying  now  can  be  easily  detected  –  However,  these  techniques  are  not  rou(nely  used  in  mfg  

•  Temperature  in  secondary  drying  can  impact  stability;  high  T,  beaer  stability  •  Qualifica(on  of  dryer  for  representa(ve  heat  and  mass  transfer  now  

recognized  as  important  –  However,  quan(ta(ve  qualifica(on  data  commonly  not  obtained  

•  Quality  by  Design  (QbD)  philosophy  presented,  and  execu(on  of  QbD  being  discussed  –  However,  not  universally  applied  to  product  and  process  development  

Page 11: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

11  

Some  Data  

Predic(ve  Collapse  Temperature  Measurement  OpDcal  Coherence  Tomography  

•  Looks  at  collapse  in  a  vial  rather  than  thin  film  •  Data  for  5%  Sucrose:  

–  DSC:  Tg’  =  -­‐  34°C  –  Conven(onal  FD  Microscopy:  Tc  =  -­‐32°C  –  OCT:  Tc  =  -­‐28°C  

•  Data  for  1:3  BSA:Sucrose  –  Tg’  =  -­‐28°C  –  Conven(onal  FD  Microscopy:  Tc    =-­‐26°C  to  -­‐28°C  –  OCT:  No  Collapse!  (only  shrinkage)  –  Product  freeze  dried  in  lab  freeze  dryer,              Tp(max)  ≈  -­‐21°C.  No  collapse  observed!    

•  4  hr  primary  drying  with  OCT  driven  cycle;    •  20  hr  primary  drying  with  FD  Microscopy  cycle  •  SEM  and  SSA  suggest  “micro-­‐collapse”  •  No  difference  visual  

22

Page 12: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

12  

Ice  Nuclea(on  is  Scale-­‐Up  Issue  •  Observa(on:  In  laboratory,  supercooling  much  less  than  in  manufacturing  (non-­‐TC  vials)  –  lower  level  of  ice-­‐nuclea(ng  par(culates  in  manufacturing?  

•  Result:  product  runs  warmer  (≈1-­‐2°C)  and  1°  drying  is  longer  (≈10-­‐30%)  in  manufacturing!  

•  Solu(ons:    –  Set  shelf  colder  (≈3°C)  in  manufacturing  and  run  about  30%  longer  in  1°  

drying.    –  Anneal  to  increase  size  of  ice  crystals  and  decrease  difference  between  

lab  and  produc(on.  –  Nucleate  to  fix  degree  of  super-­‐cooling  

Video  of  Ice  Nuclea(on                              courtesy  of  Praxair  

1.  Uncontrolled Nucleation Nucleation over long time and over large temperature range.

2. Controlled Nucleation Near instantaneous nucleation, at fixed temperature (-5°)

Page 13: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

13  

 •  Run  ≈  “constant”  product  temperature  2°-­‐5°  below  collapse  temperature;  this  is  the  TARGET  PRODUCT  TEMPERATURE  

-­‐  must  know  what  collapse  temperature  is!        

•  Maintain  chamber  pressure  10-­‐30%  of  P(H2O)  -­‐  near  upper  limit  of  30%  for  low  collapse  temperature  (i.e.,  ≈  -­‐30°C)  -­‐  near  lower  limit  of  10%  for  high  collapse  temperature  (i.e.,  ≈  -­‐15°C)  

 •  Heat  input  must  decrease  with  (me  to  hold  at  “target”  product  temperature  

-­‐  may  oVen  tolerate  small  (i.e.,  2°C-­‐3°C)  increase  in  product  temperature  -­‐  if  so,  maintain  constant  heat  input  for  simplicity  in  process  design  

-­‐  if  need  to  hold  constant  product  temperature,  must  decrease  heat  input  -­‐  decrease  shelf  temperature  or  decrease  chamber  pressure  

 

•  Determine  shelf  temperature  vs  (me  program  (by  experiment  or  calcula(on)  -­‐  Do  experiments:  use  fill  volume  and  containers  of  interest!  -­‐  Find  appropriate  shelf  temperature  to  maintain  target  product  temperature  

   

Guidelines  for  Process  Development:  Primary  Drying  Primary  Drying:  General  Principles  

Page 14: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

14  

Modeling  of  Primary  Drying  •  Guide  Formula(on  and  Process  Op(miza(on  Efforts  – Help  design  and  interpret  experiments  – Facilitate  defini(on  of  “Design  Space”  

• More  later!  

•  Assist  in  Trouble  Shoo(ng  Problems  – Quan(fy  the  effects  of  heat  transfer  varia(ons  on  product  temperature  history  

•  container  effects  •  vial  posi(on  effects  

Steady  State  Models:  The  “LyoCalculator”  

•  Advantages:  –  very  quickly,  and  easily,  can  inves(gate  ice  temperature  and  drying  (me  for  primary  drying  

•  with  minimal  suitable  mass  and  heat  transfer  input  data  –  Normally,  about  as  accurate  as  experiment,  some(mes  beaer!  

•  Useful  in  “what  if”  experiments  and  an  aid  in  process  design  

•  Limita(ons  –  Cannot  provide  informa(on  during  periods  of  shelf  temperature  increase  (i.e.,  during  non-­‐steady  state)  

–  Cannot  provide  informa(on  on  residual  moisture  in  “dry”  layer.  •  With  current  “LyoCalculator”  

–  Is  normally  limited  to  one-­‐dimensional  problems  (i.e.,  slab  geometry)  

•  cannot  inves(gate  impact  of  intra-­‐vial  heterogeneity  in  heat  transfer  or  material  proper(es.    

Page 15: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

15  

Simple Steady State Heat and Mass Transfer Theory

Mass Transfer : dmdt

= ApP0 T( ) − Pc( )

ˆ R ps

; lnP0 =−6144.96

T+ 24.01849

Heat Transfer : dQdt

= Av ⋅ Kv Pc( ) ⋅ Ts − T − ΔT( ); ΔT → function of dm/dt

Coupling : dQdt

= ΔH s ⋅dmdt

ΔH s Ap / Av( ) ⋅ P0 T( ) − Pc( )ˆ R ps

- K v Ts − T − ΔT( )= 0

• One Equation, one unknown (T): Solve for T, get dm/dt. and then calculate drying time- Basis of the “Lyo-Calculator”

The  LyoCalculator  

Page 16: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

16  

Experiment and Calculations Agree Well: Blue = Exp., Red = Calc.

Product 5% w/w

Vial Fill cc

Shelf, interior, °C

Pc, Torr

1° Drying Time, hr

Shelf Surface,Ts

Mean Tp

Max Tp

PVP W5816 8 -5 0.1 25.8 -9.6 -27.8 -25.3 26.9 -9.9 -27.3 -24.6 Mannitol W5816 8 -5 0.1 33.4 -8.6 -22.4 -20.2 34.8 -8.9 -22.9 -18.5 Mannitol W5816 8 +15 0.1 19.2 +6.2 -17.0 -14.2 19.1 +8.0 -17.0 -11.8 Mannitol W5816 8 +15 0.4 14.0 +5.7 -13.0 -11.9 15.8 +6.6 -11.8 -8.0 Mannitol 5303 20 +15 0.4 19.2 +6.1 -14.5 -12.8 19.0 +8.1 -13.5 -9.7

OLD METHODOLGY:M. Pikal, PDA Journal, 39, 115-138 (1985)

Now available as “Lyo-Calculator”

Role of “Design of Experiments” (DOE) in Primary Drying Design

•  Virtually, no role at all –  DOE is useful when mechanistic understanding is

poor –  The physics of primary drying is well understood (i.e. “Lyo-Calculator)

•  General statistics dogma: DOE is an efficient way to generate a “response surface” (or Design Space) –  Not true for freeze drying in general, and is very

inefficient for primary drying.

Page 17: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

17  

DOE: Box-Behnken Design Independent variables: (3) chamber Pressure, shelf

temperature, Ice nucleation temperature Responses:(3) 1° drying time (hr), mean product temp. maximum product temp in 1° drying, sublimation rate

• 15 freeze drying experiments, average 2 days per experiment---> 30 days run time • Physics Driven: do runs in green, 4 runs--> 8 days

Exp. # Pattern Pchamber T shelf Ice Nucl. Temp 1° dry hr Tp mean Tp(max) mean dm/dt1 0.4 -5 -12.5 33.9 -18.7 -15.1 0.2282 0.25 -5 -5 31.4 -21.3 -17.2 0.2463 /++0 0.4 15 -12.5 16 -13.8 -8.2 0.4834 0.1 -5 -12.5 35.5 -23.6 -18.6 0.2185 /000 0.25 5 -12.5 22.1 -17.8 -12.6 0.3506 0.25 15 -20 17.3 -14.4 -8.2 0.4477 0.1 15 -12.5 19.4 -18.4 -11.8 0.3988 0.25 -5 -20 35 -19.9 -15.6 0.2219 0.1 5 -20 26.4 -19.8 -13.8 0.29310 /000 0.25 5 -12.5 22.4 -18.3 -13.4 0.34511 /+0+ 0.4 5 -5 21.1 -16.8 -12.3 0.36612 0.4 5 -20 23 -15.2 -10.4 0.33613 /000 0.25 5 -12.5 21.2 -17.2 -12 0.36514 /0++ 0.25 15 -5 16.1 -16.5 -10.6 0.48015 0.1 5 -5 24.1 -21.9 -16.1 0.321

Using Physics •  Vial Heat Transfer Coefficients

–  Previously determined for all vials used by company, vs. Pressure-3 days required for each vial type

•  Dry Layer Resistance- 4 experiments! –  Unique to formulation and ice nucleation temperature –  Need runs at three ice nucleation temperatures

•  See GREEN on previous slide –  Rp evaluated from MTM data and/or cycle product temperatures.

–  Prudent to do one of the runs that give high product temperature to compare with center point temp.

•  Provides two replicate runs for Rp @ center point ice nucl. •  Provides validation of calculations in extreme case

–  Resistance normally independent of temperature, but not near collapse temperature!

• Total Run Time of 8 days, save 22 d, $66MM

Page 18: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

18  

The  Non-­‐Steady  State  Model    in  Two  Dimensions  

(three  dimensions  with  an  axis  of  symmetry)    “Passage  FD  or  equivalent”    

 •  Based  upon  a  set  of  coupled  differen(al  equa(ons  (M.  J.  Millman,  A.  I.  Liapis,  and  J.  M.  Marchello,  AIChE  J.  31,  1594-­‐1604(1985)  

–  conserva(on  of  mass  –  conserva(on  of  energy  –  input  data  for  mass  and  heat  transfer  coefficients  –  flexible  boundary  condi(ons  

•  allows  a  variety  of  problems  to  be  studied  •  Uses  Finite  Element  Analysis    

–  allows  extension  to  2-­‐D  &  study  of  complex  geometries  

•  Employs  a  “Modular  SoVware  Package”                      –  for  ease  and  flexibility  of  use  

36

PAT:  DeterminaDon  of  End  Point  of  1°  Drying  

5% Sucrose

Needs  1.   Use  the  

technology  2.   Confront  the  

“can’t  steam  sterilize  myth”  

3.   Stop  QbA  (quality  by  accident)  -­‐fixed  (me  cycle    

4.   Start  QbD    

Compara(ve  Pressure:  Pirani  vs  MKS  

Page 19: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

19  

Advanced  Freeze  Drying  PAT  Tunable  Diode  Laser  AbsorpDon  Spectroscopy  (TDLAS)  Flux  Monitoring  

for  LyophilizaDon  via  Doppler  ShiH  ! TDLAS has been used for real-time, in-line freeze-dryer monitoring

– Water vapor concentrations– Gas flow velocity

– (< 5 to >200 m/s – Mass Flux determinations

(<3x10-4 grams/sec to–  >4x10-2 grams/sec)– Determination of mass flow rate for determination of choked flow

! TDLAS mass flux determinations in satisfactory agreement with:

!  gravimetric mass loss determinations! MTM mass flux

! TDLAS can be used to measure product temperature (with Kv input)_

TDLAS  Product  Temperature–  Sucrose  5%  

-50

-45

-40

-35

-30

-25

-20

-15

-10

0 2 4 6 8 10 12 14 16 18

Hours

t°C

T shelf surface

TC Front

TC Center 1

TC Center 2

TC Center 3

TC Back

TDLAS Product Temperature

Page 20: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

20  

Stability  and  Thermal  History:    Annealing  Impacts  Stability!  

 •  ANNEALING:  (accident  or  planned)  –  Hold  sample  at  T<Tg  for  given  (me(s),  as  in  secondary  drying  –  Energy  decreases,  Structure  Increases,  Free  Volume  Decreases,  Mobility  Decreases,  Stability  improves!        

•  Means  that  terminal  secondary  drying  temperature  high,  storage  stability  improves  

   

3

3.5

4

4.5

5

5.5

6

0 0.5 1 1.5 2 2.5 3

(Months)^0.5

DK

P A

rea%

Unannealed Annealed @ 60C for 20 hours

Aggrega(on:  small  molecule  &  protein     Aspartame: sucrose (1:10) formulation  

 

0

2

4

6

8

10

ECA:Sucrose(1:10) ECA:Trehalose(1:10) IgG1:Sucrose(1:1)

System

Rate

Co

nsta

nt

for A

gg

reg

ati

on

(√

t)

Fresh Freeze Dried

Annealed 10 hr

Scale-­‐Up  Issues  

•  Freezing  (ice-­‐nuclea(on)  Differences*  –  causes  mass  transfer  differences:  impacts  drying  temperature  and  (me  

•  Heat  and  Mass  Transfer  Differences  –  lab  and  manufacturing  dryers  not  always  same  

•  Timing  is  Different  –  “everything”  takes  longer  in  produc(on!  

•  Measurement  Differences  –  temperature,  pressure  measured  same  way?  

Page 21: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

21  

Scale-­‐Up:  Correc(ng  for  Difference  in  Ice  Nuclea(on  Temperature  

1. Lab runs at ≥ 2 ice nucleation temperatures

-measure Specific Surface Area (SSA)

-measure dry layer resistance Rp (MTM or from cycle data)

2. Measure SSA of product produced in sterile run (Clinical trial batch).

3. Estimate resistance of “sterile batch” using SSA vs. <Rp> correlation.

- <Rp> is linear in SSA

4. Use simple steady state heat and mass transfer theory to estimate lab to mfg cycle difference (LyoCalculator).

Process  Implica(ons  of  Posi(on  Effects  and  Ice  Nuclea(on  temperature:  Product  Tmax  10°C  lower  ice  nucleaDon  temperature  in  Mfg  

-35

-30

-25

-20

-15

-10

-5

0

Mannitol/Lab Mannitol/Mfg Protein-Suc/Lab

Protein-Suc/Mfg

Sucrose/Lab Sucrose/Mfg

Tmax

, °C

Compare Tp(max), Lab vs. Mfg: Including Vial position effects AND Ice Nucleation temperature (10° difference Mfg to Lab)

Tmax, center

Tmax, side Tchg

• 2°C to 4°C difference in max. product T, lab to mfg (significant)• Effects can be calculated with Rp and Kv input to LyoCalclator

Page 22: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

22  

43  

Freeze  Drying  in  Syringes  and  Cartridges  Bad  Heat  Transfer  

Sublima(on  Rate  (dm/dt)  in  Plexiglass  Holder  Close  Packed  Array  

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

4.5E-05

0 50 100 150 200 250 300

Chamber Pressure, P c (mTorr)

Sub

limat

ion

Rat

e, d

m/d

t (g

/s)

Center Syringes Edge Syringes

Note:  1.  Sublima(on  Rate  decreases  as  Pressure  Decreases        2.  ≈70%  faster  sublima(on  for  edge  syringes  (hoaer)  

•  Need  beaer  heat  transfer  system  (Al  block)  

QbD-­‐  Should  it  be  MORE  WORK?  •  Answer:  No,  not  in  the  “long  run”!  

– Development  (me  and  $$$  counts  with  delays  due  to  problems  that  surface!  

•  Efficiencies:  – Make  use  of  “Pla}orm  Technologies”  

•  First  (me  through,  lots  of  work,  but  then  …  

– Do  what  is  necessary-­‐”meaningful  risk  analysis”  – Do  not  overdo  DOE!  

•  QbD  does  NOT  demand  DOE,  only  demands  good  science!  

 

Page 23: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

23  

Role of “Design of Experiments” (DOE) in Primary Drying Design

•  Virtually, no role at all – DOE is useful when mechanistic

understanding is poor – The physics of primary drying is well

understood (i.e. “Lyo-Calculator) •  General statistics dogma: DOE is an

efficient way to generate a “response surface” (or Design Space) – Not true for freeze drying in general, and is

very inefficient for primary drying.

DOE: Box-Behnken Design Independent variables: (3) chamber Pressure, shelf

temperature, Ice nucleation temperature Responses:(3) 1° drying time (hr), mean product temp. maximum product temp in 1° drying, sublimation rate

• 15 freeze drying experiments, average 2 days per experiment---> 30 days run time • Physics Driven: do runs in green, 4 runs--> 8 days

Exp. # Pattern Pchamber T shelf Ice Nucl. Temp 1° dry hr Tp mean Tp(max) mean dm/dt1 0.4 -5 -12.5 33.9 -18.7 -15.1 0.2282 0.25 -5 -5 31.4 -21.3 -17.2 0.2463 /++0 0.4 15 -12.5 16 -13.8 -8.2 0.4834 0.1 -5 -12.5 35.5 -23.6 -18.6 0.2185 /000 0.25 5 -12.5 22.1 -17.8 -12.6 0.3506 0.25 15 -20 17.3 -14.4 -8.2 0.4477 0.1 15 -12.5 19.4 -18.4 -11.8 0.3988 0.25 -5 -20 35 -19.9 -15.6 0.2219 0.1 5 -20 26.4 -19.8 -13.8 0.29310 /000 0.25 5 -12.5 22.4 -18.3 -13.4 0.34511 /+0+ 0.4 5 -5 21.1 -16.8 -12.3 0.36612 0.4 5 -20 23 -15.2 -10.4 0.33613 /000 0.25 5 -12.5 21.2 -17.2 -12 0.36514 /0++ 0.25 15 -5 16.1 -16.5 -10.6 0.48015 0.1 5 -5 24.1 -21.9 -16.1 0.321

Page 24: ISLFD East 2017 - Freeze-dryingislyophilization.org/wp-content/uploads/2017/05/2017-East_Speaker... · Examples of Square Root Time Kinetics for Degradation Freeze Dried hGH at 40°C

9/22/17  

24  

Process-­‐Future  •  Implement  what  we  now  know  how  to  do!    (hopefully)  

•  Perfect  our  ability  to  predict  impact  of  natural  process  varia(ons  on  thermal  history  

•  Develop  beaer  holders  for  syringes  &  cartridges  •  Develop  TDLAS  for  use  in  single  vials  •  Develop  Con(nuous  Freeze  Drying  Technology  

–  Several  efforts  claim  (par(al)  success  •  Advantages  Suggested  

–  Beaer  control  –  Beaer  quality  –  Faster  freeze  drying  

–  Claimed  advantages  need  “valida(on”  by  comparison  with  “best  technology”  for  batch  freeze  drying  with  publica(on  in  the  literature!