30
  1  APPUNTI di ISTITUZIONI DI INGEGNERIA AEROSPAZIALE PARTE 1 a  PREMESSA........................................................................................................................................................................ 1  1 - IL V ELIVOLO E LE SUE PARTI............................................................................ .................................................... 3  1.2 – L’ ala - def inizioni e geom etrie............................................................................................................................... 4  1.3 - La fusoliera- de finizioni e ge ometrie................................................................ ...................................................... 9  1.4 - Piano di coda orizzontale – definizioni e geometrie – stabilizzatore, equilibratore o timone di profondità, stabilatore.................................................................... .................................................................................................. 10  1.5 - Piano di coda verticale – definizioni e geometrie- der iva e timone di direzione.................. ................................ 11  1.6 - Piano di coda a far falla (butterlfy)-def inizioni e geometrie.................................................................................. 12  1.7 - Alettoni e d ipersostentatori ( flaps,slats), di ruttori – definizioni e geometrie ....................................................... 12  1.8 - Motore a getto ...................................................................................................................................................... 14  1.9 - Motore alternativo – motoelica.......................................................................................................................... ... 16  1.10 - Turboelica, turbofan ........................................................................................................................................... 17  1.10 - Carrelli.......................................... ...................................................................................................................... 17  2 - FORZE AGENTI SUL VELIVOLO........................................................................................................................... 20  2.1 - Forze agenti in volo .............................................................................................................................................. 20  2.1.1 - Le forz e principali in volo simmetrico .......................................................................................................... 20  2.1.2 - Il pes o ( la massa e il fa ttore di carico)................................... ....................................................................... 20  2.1.3 Cenni sui profili.. ............................................................................................................................................. 22  2.1.4 - La portanza .................................................................................................................................................... 27  2.1.5 - La resistenza .................................................................................................................................................. 28  2.1.6 - La spinta o trazione ....................................................................................................................................... 28  2.1.7 - Il momento di beccheggio ............................................................................................................................. 29  2.1.8 - La forza laterale ............................................................................................................................................. 30  2.1.9 - Il momento di imbardata........................................................................................ ........................................ 30  2.1.10 - Il m omento di rollio... .................................................................................................................................. 30  PREMESSA L’insegnamento di ISTITUZIONI DI INGEGNERIA AEROSPAZIALE è stato introdotto  principalmente con lo scopo di far familiarizzare sin dalla partenza lo studente, che segue il corso triennale, con la terminologia elementare dei veicoli aerospaziali. L’insegnamento di Istituzioni serve quindi a far prendere conoscenza delle definizioni basilari. Delinea inoltre una traccia di riferimento per l’intero corso triennale. L’insegnamento si compone di due sezioni La prima ha impronta essenzialmente aeronautica, anche se alcuni argomenti trattati, come la scelta della struttura, la scelta dei materiali metallici, i compositi ed il progetto strutturale hanno un sicuro riferimento anche a problemi spaziali. Non mancano informazioni introduttive e riferimenti concernenti anche gli argomenti che si incontreranno negli insegnamenti del terzo e quarto raggruppamento disciplinare. La seconda sezione descriverà principalmente gli elementi di base dei veicoli spaziali. Darà inoltre anche gli elementi di base della parte impiantistica di velivoli e veicoli spaziali Questi appunti si riferiscono alla prima sezione e sono basati essenzialmente sui seguenti riferimenti  bibliografici: 1) Corso NASA/GLENN RESEARCH CENTER , che può essere trovato su INTERNET visitando il sito http://www.lerc.nasa.gov/WWW/K-12/airplane/short.html  

ISTITUZIONI-Di Ing. Aerospaziale

Embed Size (px)

Citation preview

Page 1: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 1/30

1

 

APPUNTI

di

ISTITUZIONI DI INGEGNERIA AEROSPAZIALE

PARTE 1a

 

PREMESSA................................................................................................................... ..................................................... 1 1 - IL VELIVOLO E LE SUE PARTI............................................................................ .................................................... 3 

1.2 – L’ala - definizioni e geometrie......................................... ............................................................... ....................... 4 1.3 - La fusoliera- definizioni e geometrie................................................................ ...................................................... 9 1.4 - Piano di coda orizzontale – definizioni e geometrie – stabilizzatore, equilibratore o timone di profondità,stabilatore.................................................................... .................................................................. ................................ 10 1.5 - Piano di coda verticale – definizioni e geometrie- deriva e timone di direzione.................. ................................ 11 1.6 - Piano di coda a farfalla (butterlfy)-definizioni e geometrie.................................................................................. 12 1.7 - Alettoni ed ipersostentatori (flaps,slats), diruttori – definizioni e geometrie ....................................................... 12 

1.8 - Motore a getto .......................................................... ............................................................. ............................... 14 1.9 - Motore alternativo – motoelica.......................................................................................................................... ... 16 1.10 - Turboelica, turbofan ............................................................. ................................................................. ............. 17 1.10 - Carrelli.......................................... ................................................................ ...................................................... 17 

2 - FORZE AGENTI SUL VELIVOLO................................................. .............................................................. ............ 20 2.1 - Forze agenti in volo......................................................... ................................................................ ..................... 20 

2.1.1 - Le forze principali in volo simmetrico .............................................................. ............................................ 20 2.1.2 - Il peso ( la massa e il fattore di carico)................................... ........................................................... ............ 20 2.1.3 Cenni sui profili.. ........................................................ ............................................................... ...................... 22 2.1.4 - La portanza....................................................... .............................................................. ............................... 27 2.1.5 - La resistenza........................................................... .................................................................. ..................... 28 2.1.6 - La spinta o trazione .......................................................... ................................................................ ............. 28 2.1.7 - Il momento di beccheggio ................................................. ................................................................ ............ 29 

2.1.8 - La forza laterale.............................................................. .................................................................. ............. 30 2.1.9 - Il momento di imbardata........................................................................................ ........................................ 30 2.1.10 - Il momento di rollio........................................................................ .......................................................... ... 30 

PREMESSA

L’insegnamento di ISTITUZIONI DI INGEGNERIA AEROSPAZIALE è stato introdotto

 principalmente con lo scopo di far familiarizzare sin dalla partenza lo studente, che segue il corso

triennale, con la terminologia elementare dei veicoli aerospaziali.

L’insegnamento di Istituzioni serve quindi a far prendere conoscenza delle definizioni basilari.

Delinea inoltre una traccia di riferimento per l’intero corso triennale.L’insegnamento si compone di due sezioni

La prima ha impronta essenzialmente aeronautica, anche se alcuni argomenti trattati, come la scelta

della struttura, la scelta dei materiali metallici, i compositi ed il progetto strutturale hanno un sicuro

riferimento anche a problemi spaziali. Non mancano informazioni introduttive e riferimenti

concernenti anche gli argomenti che si incontreranno negli insegnamenti del terzo e quarto

raggruppamento disciplinare.

La seconda sezione descriverà principalmente gli elementi di base dei veicoli spaziali. Darà inoltre

anche gli elementi di base della parte impiantistica di velivoli e veicoli spaziali

Questi appunti si riferiscono alla prima sezione e sono basati essenzialmente sui seguenti riferimenti

 bibliografici:

1)  Corso NASA/GLENN RESEARCH CENTER , che può essere trovato su INTERNETvisitando il sito http://www.lerc.nasa.gov/WWW/K-12/airplane/short.html 

Page 2: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 2/30

2

2)  Appunti del corso di ISTITUZIONI di INGEGNERIA AEROSPAZIALE 2002/3 del prof.

ACCARDO

3)  Testo del Prof. Valentino Losito:   Fondamenti di Aeronautica Generale, edito

dall’Accademia Aeronautica

Molte figure e tabelle sono riportate in originale dai testi di riferimento. Alcune di esse sarannoquindi descritte in inglese. E’ opportuno che lo studente pratichi tale lingua, familiarizzando

innanzitutto con i relativi termini tecnici.

Page 3: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 3/30

3

 

1 - IL VELIVOLO E LE SUE PARTI

La denominazione velivolo di per sé è limitativa, se ci si riferisce ai veicoli che si muovono

nell’aria. La definizione più generale usata nell’ambito di tale significato è aerodina, checomprende veicoli motorizzati e non ( alianti ) e, se motorizzati, ad ala fissa o ad ala rotante(elicotteri e rotodine). Inoltre il mezzo aereo può essere pilotato da uomo a bordo o a distanza. Per 

descrivere questo ultimo caso la dizione più vecchia di velivolo teleguidato risulta ormai sostituita

dalla sigla UAV (unmanned air vehicle) più generale e più consona alla attuale diffusione di tale

mezzo sia nel campo civile che militare.

Anche gli aeroplani possono essere a loro volta suddivisi in varie categorie; civili e militari; per 

trasporto persone, per trasporto merci e per trasporto misto. Vi sono inoltre i velivoli dell’Aviazione

Generale, che sono i velivoli degli aeroclub ed altri velivoli di minor peso. Possono questi ultimi a

loro volta essere suddivisi in acrobatici, semiacrobatici e normali.

I velivoli possono essere a loro volta catalogati anche in base alla motorizzazione: a getto,

motoelica, turbofan e turboelica. Possono anche essere classificati in base al tipo di carrello (conruotino di prua o di coda), alla posizione dei motori (in fusoliera o in ala), alla posizione del carrello

 principale (in ala o in fusoliera) e così via.

Molti di tali tipi di velivoli sono costituiti dalle stesse parti principali. Lo schema riportato nella

FIGURA 1.1 si riferisce ad un velivolo di linea a getto.

 Nella figura si individuano:

•  Cabina (cockpit ).

•  Fusoliera ( fuselage),

•  Ipersostentatori del bordo d’entrata ( slats),

•  Diruttore ( spoiler ),

• Alettoni (ailerons),•  Ipersostentatori del bordo d’uscita ( flaps),

•  Timone di profondità o equilibratore (elevator ),

•  Timone di direzione (rudder ),

•  Piano fisso verticale o deriva (vertical stabilizer ),

•  Piano fis. orizz. o stabilizzatore (horizontal   stabilizer ),

•  Ala (wing ),

•  Motore a getto ( jet engine).

FIGURA 1.1 Schema generale del velivolo – definizioni

Page 4: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 4/30

4

 Non sono visibili i carrelli ed altre parti minori.

La principale funzione dell’aeroplano è costituita dal trasporto veloce di cose e di persone.

L’aeroplano deve essere quindi in grado di trasportare il suo  peso (in inglese weigth), quello del

carburante, dei passeggeri e/o della merce e dell’eventuale equipaggio. In volo deve essere quindi

generata una forza che bilancia il   peso totale. Essa è detta  portanza (lift  in inglese), è di tipoaerodinamico ed è in genere prodotta principalmente dall’ala. Il gruppo motopropulsore, che in

figura è costituito da una coppia di motori a getto, deve generare una forza, detta  spinta (o trazione,

in inglese thrust , nel caso di motore ad elica) che in volo serve ad equilibrare la resistenza (in

inglese drag ) aerodinamica, che sarà descritta più avanti. A terra durante il rullaggio vi è anche la

resistenza di attrito ( friction in inglese) fra pneumatici e suolo.

La fusoliera è una delle sorgenti di maggior resistenza aerodinamica insieme ai carrelli se o quando

esposti alla corrente. Nei velivoli più veloci i carrelli vengono retratti in volo o nell’ala o nella

fusoliera. La descrizione più dettagliata dell’ala della fusoliera e di tutte le altre parti sarà in

dettaglio riportata nei successivi paragrafi.

1.2 – L’ala - definizioni e geometrie

L’ala- definizioni e geometrieFIGURA 1.2

 Nella FIGURA 1.2 è riportata schematicamente la geometria alare e le principali definizioni. L’ala

 può avere diverse forme in pianta. Molte definizioni sono comuni alle varie forme. Si inizierà in

questo paragrafo a indicarle per un’ala a forma in pianta rettangolare. In figura viene indicatal’apertura alare, in inglese  span, la corda, (chord ), la mezzeria dell’ala, posta all’altezza della

mezzeria del velivolo(centerline), i bordi d’attacco (leading   edge) e di uscita (trailing   edge). e

l’area della superficie alare (wing   area). Sono indicate anche le estremità alari (tips) e l’angolo

diedro (dihedral  angle). E’ anche data le espressione. dell’allungamento alare AR. Sono mostrate

inoltre due tipiche sezioni alari, la simmetrica e la curva. La sezione alare è fatta a forma di profilo

(airfoil  in inglese). Sono indicate la corda (chord   line), la linea media (mean camber line) e lo

spessore (thickness). Relativamente ai profili sarà dedicato il paragrafo 2.1.3 per una più ampia

descrizione.

 Nella Figura 1.3 sono riportate le forme in pianta di diverse altre ali oltre a quella impiegata dai

fratelli Wright, ed ancor oggi utilizzate, di forma rettangolare. Sono riportate due ali trapezoidali,

l’ala dello Space Shuttle indicata come composta e l’ala del Concorde indicata come triangolare. In  particolare la forma in pianta dell’ala del Concorde è detta più comunemente a delta, in ricordo

Page 5: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 5/30

5

della lettera greca maiuscola ∆. Le altre ali sono riconoscibili in base a due parametri, caratteristici

delle forme in pianta dell’ala: l’angolo di freccia ed il rapporto di rastremazione.

FIGURA 1.3 FORME IN PIANTA DI ALI DI VELIVOLI

Per illustrare tali parametri si riproducono qui di seguito alcune pagine dell’USAF STABILITY

AND CONTROL DATCOM, che descrivono rigorosamente le entità connesse ad ali del tipo

descritto in FIGURA 1.3. Si avverte il lettore che alcuni simboli sono diversi da quelli riportati nella

FUGURA 1.2, tratta dal primo riferimento bibliografico indicato nella PREMESSA.

Page 6: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 6/30

6

Page 7: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 7/30

7

Page 8: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 8/30

8

 

Page 9: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 9/30

9

1.3 - La fusoliera- definizioni e geometrie

 Nella FIGURA 1.4 si vede che la fusoliera è la parte centrale del velivolo. La maggior parte del

carico del velivolo è concentrato nella fusoliera. Vi è spesso collocato tutto il carico detto  pagante.

La forma della fusoliera è in genere fusiforme: è cioè un corpo di buona penetrazione o streamlined  

in inglese. Un fuso che si muove rispetto ad una corrente fluida è soggetto principalmente a due tipidi resistenza: la resistenza di forma e la resistenza di attrito. La prima, dette anche resistenza di

 scia, è conseguente alla separazione dei flussi ed alla formazione delle scie e cresce con il crescere

della sezione frontale del fuso. La seconda, dovuta all’attrito conseguente alla viscosità del fluido,

cresce con il crescere della superficie lambita dalla corrente fluida, cosiddetta   superficie bagnata.Le dimensioni della fusoliera sono influenzate in modo determinante dalla missione che deve

compiere il velivolo. Spesso la sezione frontale viene ad essere fissata in base a tali esigenze. Anche

la lunghezza della fusoliera può essere condizionata dalle esigenze del carico e da quelle di una

armonica progettazione (vedi collocazione dei piani di coda). Comunque per sezione frontale fissata

al crescere della lunghezza della fusoliera cresce la resistenza d’attrito e diminuisce quella di forma

(si evita il distacco della corrente nella parte prodiera). Per una determinata lunghezza la resistenza

complessiva può presentare un valore minimo.

FIGURA 1.4 - FUSOLIERA

Caratteristico di questo problema è il rapporto L/D della lunghezza della fusoliera al cosiddettodiametro idraulico, D. Il diametro idraulico è il diametro del cerchio che possiede la stessa area

della sezione frontale della fusoliera.

 Nella Tabella N. 1.1 sono riportati i rapporti L/D, detti di  finezza, la superficie di riferimento SRIF ,

che come sarà indicato per la definizione delle forze aerodinamiche è stata presa pari alla superficie

alare, la superficie bagnata della fusoliera SWET , e il rapporto delle ultime due superfici per velivoli

statunitensi dell’aviazione generale. Questa tabella è stata riportata nel testo di Chuan-Tau Edward

Lan & Jan Roskam   AIRPLANE AERODYNAMICS AND PERFORMANCE The University of 

 Kansas-Lawrence Kansas.

Page 10: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 10/30

10

 TABELLA N 1. 1 - Rapporti di finezza ed aree bagnate di velivoli statunitensi dell’aviazione generale.

TIPO L/D SRIF (ft2) SWET (ft2) SWET/SRIF 

Beech Baron 5.69 199.2 362 1.82

BeechBonanza

4.98 181 323 1.78

Beech Duke 5.59 212.9 586 2.28

Beech King

Air 

6.06 294 652 2.22

Beech Sierra 5.22 146 332 2.27

Cessna 185 5.15 176 292 1.68

Cessna 207 5.69 174 425 2.44

Cessna 210 5.02 175 319 1.82

Cessna 310 5.40 179 306 1.71

Cessna 414 5.52 195.7 488 2.49

Gates Learjet 8.80 232 502 2.16Piper Navajo 5.97 229 502 2.19

Piper Seneca 5.68 206.5 356 1.72

1.4 - Piano di coda orizzontale – definizioni e geometrie – stabilizzatore, equilibratore o

timone di profondità, stabilatore

 Nella parte posteriore della maggior parte degli aeroplani si trovano i piani di coda verticale ed

orizzontale. In questo paragrafo si illustreranno le funzioni di quello orizzontale. In FIGURA 1.5

vengono indicate le posizioni dell’equilibratore, elevator in inglese e dello stabilizzatore, stabilizer  

in inglese. Quest’ultimo è una superficie fissa, simile all’ala, ed assicura la stabilità longitudinaledel velivolo. Se il velivolo si inclina verso l’alto o verso il basso per una qualsiasi ragione non

desiderata, sulla coda sorge una forza aerodinamica del tipo della portanza dell’ala, che provoca un

momento rispetto al baricentro (center of gravity in figura) del velivolo che provoca il ritorno del

velivolo nella posizione iniziale.

FIGURA 1.5 PIANO DI CODA ORIZZONTALE - EQUILIBRATORE

Page 11: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 11/30

11

 

La funzione dell’equilibratore, che è costituito da una parte mobile del piano orizzontale, è invece

connessa alla possibilità di far assumere posizioni di equilibrio alle varie incidenze di volo. Si vedrà

che il velivolo sarà tanto meno inclinato rispetto alla corrente quanto più velocemente vola.

Ruotando la parte mobile ora detta sulla coda si provoca una forza che darà un momento intorno al

 baricentro tale da equilibrare il momento provocato da tutte le forze che gravano sul velivolo.

FIGURA 1.6 5 PIANO DI CODA ORIZZONTALE - STABILIZZATORE

Alla funzione di stabilità collabora con la parte fissa del piano orizzontale anche l’equilibratore. E’

in tale accezione che alcuni velivoli possiedono un piano di coda orizzontale del tipo tutto mobile,così come si vede nella FIGURA 1.6. Lo stabilatore. in inglese stabilator , così si chiama il piano di

coda tutto mobile, assume le funzioni sia dell’equilibratore che dello stabilizzatore. E’ stato

impiegato molto su velivoli non particolarmente veloci, perché a velocità più elevate potrebbe avere

 problemi di stabilità dinamica. E’ stato impiegato nel P68 della Partenavia, ma non nella versione

  più veloce munito di sistema motopropulsore turboelica. Il velivolo originariamente era una

motoelica.

1.5 - Piano di coda verticale – definizioni e geometrie- deriva e timone di direzione

In genere alla stessa altezza del piano orizzontale è disposto un piano verticale, che possiede

anch’esso una parte fissa, detta deriva in italiano e vertical stabilizer in inglese, ed una parte mobiledetta timone di direzione in italiano e rudder in inglese. In FIGURA 1.7 vengono mostrate tali parti

nella posizione classica.

Le fuzioni della parte fissa e della parte mobile del piano verticale sono simili a quella del piano

orizzontale. Entrambe assicurano la stabilità laterale del velivolo. Se il velivolo assume un assetto

derapato non desiderato sorge una forza sulla coda di tipo laterale (  side force in inglese) che

 provoca un momento intorno al baricentro tale da riportare il velivolo nella posizione iniziale, In

alcuni casi, in presenza di vento laterale ad esempio il velivolo deve volare in assetto derapato. In

tal caso la rotazione della parte mobile permette, mediante l’intervento di una forza laterale sul

 piano, di ottenere il momento rispetto al baricentro che tiene in equilibrio il velivolo.

Page 12: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 12/30

12

 FIGURA 1.7 PIANO DI CODA VERICALE - TIMONE

1.6 - Piano di coda a farfalla (butterlfy)-definizioni e geometrie

Alcuni velivoli, il teleguidato Mirach 100 della Meteor ad esempio, posseggono invece che un

 piano orizzontale ed uno verticale un piano di coda con un diedro molto spinto. Tali piani sono in

genere del tipo tutto mobile. Essi assicurano sia la stabilità latero direzionale che quella direzionale

  provocando forze inclinate in modo da avere sia componente laterale che in direzione della

 portanza. Tali piani per assicurare l’equilibrio possono ruotare sia in modo simmetrico, funzionando

come equilibratori, che antisimmetrico, funzionando come timoni di direzione.

1.7 - Alettoni ed ipersostentatori (flaps,slats), diruttori – definizioni e geometrie

 Nella parte seconda di questo corso saranno dati maggiori indicazioni relativamente al sorgere delle

forze aerodinamiche. Per chiarire però sin d’ora alcune funzioni occorre conoscere cosa avviene

quando un oggetto è immerso in una corrente aerodinamica. Si abbia una lastra piana, ad esempio

un cartone molto rigido, immersa in una corrente. Se la direzione del vento lambisce

simmetricamente le due facce della piastra, sorgerà solo una modesta forza diretta come il vento

detta resistenza dovuta principalmente all’attrito che si verifica sulle superfici della piastra. Se la

 piastra viene inclinata di poco rispetto alla corrente (qualche grado) allora su di essa sorgerà unaforza aerodinamica anche con componente normale alla velocità del vento. E’ quella forza che

sull’ala abbiamo prima chiamato portanza. Essa è sorta per azione della dissimmetria creata nella

corrente che si trova intorno alla piastra. Questa forza cresce all’aumentare della incidenza della

  piastra ed è dovuta alla curvatura che deve possedere il fluido ruotando intorno alla piastra e

mantenendosi attaccata ad esso. Se si esagera con l’inclinazione la corrente non riesce più a ruotare

con la piastra e la portanza diminuisce. Corpi a piccolo spessore , ma con forme opportune della

sezione nella direzione del vento riescono a far mantenere attaccata alla piastra per maggiori

inclinazioni la corrente permettendo il raggiungimento di maggiori portanze. Tali sezioni sono

sagomate secondo opportuni profili, di cui si parlerà nella seconda parte. Un altro modo di

 provocare una dissimmetria della corrente consiste nel provocare una piega normale alla direzione

della corrente in modo da provocare anche in questo caso una rotazione della corrente ed una  portanza. Questo secondo effetto provoca maggiori portanze, ma connesse anche a maggiori

resistenze. Nelle descrizioni dei paragrafi precedenti si sono già incontrate alcune di queste forze.

Page 13: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 13/30

13

Un esempio del primo tipo di forze aerodinamiche provocate dalla variazione dell’incidenza è

costituita dalla portanza sull’ala. Esempi del secondo tipo di forze normali alla corrente sono quelle

  provocate dall’azionamento dei timoni. Altri esempi sono quelli che si discuteranno in questo

 paragrafo e che sorgono in conseguenza dell’azionamento dei flaps e degli alettoni. Nella FIGURA

1.8 è mostrata la posizione dei  flaps. termine inglese usato anche in italiano per indicare gli

ipersostentatori del bordo di uscita. Essi sono due parti mobili poste all’inteno sul bordo di uscitadell’ala.

Figura 1.8 SISTEMI DI IPERSOSTENTAZIONE

La rotazione dei flaps genera più alte portanze alle basse velocità, quando non è possibile ottenere

le stesse portanza solo con maggiori incidenze dell’ala per l’insorgere del fenomeno dello stallo.

L’inclinazioe dei flaps permette maggiori curvature della corrente e quindi l’ottenimento della portanza necessaria anche a velocità più basse. In questi casi si hanno anche maggiori resistenze,

che possono essere utili in fase di avvicinamento del velivolo per ridurre la sua velocità

Gli alettoni hanno un funzionamento analogo. Essi però ruotano antisimmetricamente provocando

una riduzione di portanza su di un’ala ed aumento sull’altra. Si ottiene quindi un momento che

 provoca un moto di rollio del velivolo. Per aumentare il valore del momento gli alettoni sono posti

 più all’esterno lungo l’apertura alare come si vede nella FIGURA 1.9.

FIGURA 1.9 ALETTONI

Page 14: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 14/30

14

 

Gli alettoni servono principalmente in virata per ruotare il velivolo in modo che una componente

della portanza bilanci la forza centrifuga che farebbe derapare il velivolo.

Gli slats sono un altro tipo di ipersostentatori, che si trovano sul bordo d’attacco, come si vede nella

FIGURA 1.8. Essi sono costituiti da una parte del bordo d’attacco che si stacca generando un

canale. La corrente che passa attraverso il bordo d’attacco energizza la corrente sul dorso dell’alarallentando il fenomeno del suo distacco.

FIGURA 1.10 SPOILER 

I diruttori ( spoilers in inglese) sono dei dispositivi che aumentano la resistenza . La loro posizione

classica è indicata in FIGURA 1.10, dove se ne vede uno azionato ed uno non.

I diruttori possono anche essere impiegati per provocare un momento di rollio. In tal caso viene

utilizzato solo il diruttore posto su una semiala. Non ci si addentra qui in una discussione

approfondita per vedere quale risulta il miglior impiego(alettone o diruttore) per provocare un

momento di rollio ed in quali casi può usarsi l’uno o l’altro dispositivo data la preliminare impronta

che si vuol dare a questo corso ed anche per evitare che una informazione limitata possa risultare

imprecisa.

1.8 - Motore a getto

Tra la grande varietà di sistemi motopropulsivi creati o comunque ideati per l’utilizzazione sui

velivoli, si è deciso di presentare qui solo quelli più attuali e cioè:

1.  motore a getto

2.  motoelica

3.  turboelica

4.  turbofan

In genere nei corsi tradizionali si presenta per prima la motoelica, perché più diffusa nel passato e

forse perché più nota al grande pubblico in quanto il motore interessato è un motore a due tempi oun motore a quattro tempi diffusamente utilizzato nel campo automobilistico. Il motore a getto,

Page 15: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 15/30

15

ormai quasi universalmente impiegato sui velovoli da trasporto a grande raggio solo alle volte

secondo in molte classiche elencazioni.

In questa sede non si è voluto seguire l’esempio del testo NASA/GLENN RESEARCH CENTER,

citato nella premessa, che nella elencazione delle parti del velivolo considera solo il motore a getto,

ma comunque si è ritenuto opportuno dare a tele tipo di sistema motopropulsivo dare il dovuto

risalto in una attuale classificazione, proponendolo al primo posto. Nella FIGURA 1.11 sono riportate alcune foto di velivoli che impiegano motori a reazione, così

come presentate nel suddetto testo.

FIGURA 1.11

FIGURA 1.12

  Nella FIGURA 1.12 è riportato schematicamente tale tipo di motore. Gli organi principale del

motore sono: presa d’aria, compressore camera di combustione, turbina e cono di scarico. L’aria

Page 16: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 16/30

16

durante l’attraversamento della presa d’aria divergente trasforma in pressione parte dell’energia

cinetica acquistata grazie alla velocità dell’aeroplano.. Nel compressore l’aria viene ulteriormente

compressa e mandata nella camera di combustione dove insieme al carburante iniettato interviene

appunto nella combustione. I gas prodotti dalla combustione attraversano la turbina, fornendole

l’energia necessaria per azionare il compressore. I gas infine si espandono nel cono di

scaricotrasformando la restante energia di pressione in energia cinetica. L’aria che era entrata conuna velocità V esce ad una velocità maggiore. Per il teorema della quantità di moto la differenza di

velocità moltiplicata per la massa di fluido interessata risulta proprio egale alla spinta che il motore

 produce.

 Non ci si addentra in una descrizione di motori più sofisticati di tale tipo. Si pensa comunque di

aver offerto con uno schema estremamente semplice ed elementare una sufficiente informazione sul

motore, che ormai viene utilizzato su molti velivoli, tra cui la quasi totalità del velivoli di linea,

almeno su quelli a medio e lungo raggio.

1.9 - Motore alternativo – motoelica

Come è noto il motore alternativo provoca il moto di rotazione di un asse. Per impiegarlo in un

sitema propulsivo di un mezzo che deve traslare occorre trasformare il moto rotatorio in un moto di

traslazione.

  Nelle automobili la trasformazione avviene facendo ruotare delle ruote con pneumatici connessi

all’albero motore sul suolo. Nel caso di un velivolo la trasfomazione avviene attraverso l’impiego di

un elica connessa all’albero motore. Si arriva così al concetto della motoelica. Anche la motoelica

come il motore descritto nel precedente paragrafo funziona energizzando una massa d’aria. La

differenza notevole consiste nel fatto che la motoelica interessa una massa d’aria di maggiori

dimensioni a pari velocità e a bassa velocità presenta un rendimento migliore. Non è adatta però per 

il funzionamento alle velocità più elevate.

 Nel passato si sono sviluppate interessanti teorie sul funzionamento dell’elica anche se i costruttori

di eliche nel mondo sono in numero molto elevato. Le eliche possono essere a passo fisso ed a

 passo variabile. Il passo dell’elica è funzione dell’inclinazione con cui la sezione dell’elica incontra

la corrente fluida. Tale inclinazione può essere resa ottimale alle varie combinazioni di velocità e di

numero do giri in modo da ridurre i consumi. Per questa ragione vengono impiegate eliche a passo

variabile.

FIGURA 1.13

 Nella Figura 1.13 è riportato uno schema di motoelica. In effetti la motoelica dello schema è dotata

anche di turbocompressore. I gas di scarico del motore alternativo cedono la loro energia ad unaturbina che fa ruotare un compressore. Si riesce così ad aumentare la pressione di alimentazione del

motore. L’effetto dei gas di scarico risulta quindi avere un effetto propulsivo.

Page 17: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 17/30

17

 FIGURA 1.14

  Nella FIGURA 1.14 è riportato lo schema di un turboreattore con iniezione supplementare.Riscaldando i gas di scarico si aumenta le velocità di efflusso e quindi la reazione.

1.10 - Turboelica, turbofan

Anche la turboelica come la motoelica trasforma il moto rotatorio dell’asse di una turbina in moto

di traslazione, impiegando un’elica montata appunto sull’asse.. Il turbofan può essere considerato

una versione con elica intubata della turboelica. Se si intuba un motopropulsore la velocità dell’aria

che giunge all’elica viene rallentata. Viene così ad essere aumentato il rendimento dell’elica.

FIGURA 1.15

 Nella FIGURA 1. 15 è riportato uno schema di turboelica. E’ un motopropulsore da utilizzare a

velocità intermedie tra la motoelica ed il turboreattore

1.10 - Carrelli

I carrelli hanno le seguenti funzioni:

1.  assorbire l’energia cinetica posseduta dal velivolo all’atto dell’impatto con il suolo senza che

sorgano accelerazioni eccessive,2.  dissipare   buona parte di tale energia, riservando la parte residua per distendere nuovamente

l’ammortizzatore in maniera da predisporlo ad un urto successivo,

3.  permettere il rullaggio al suolo.

Page 18: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 18/30

18

 

In questa sede si fa riferimento ai velivoli con carrello per decollo ed atterraggio su pista solida e

fissa. Non affrontano problemi specifici come quello, ad esempio, degli organi di decollo e di

atterraggio di velivoli imbarcati o di decollo ed ammarraggio degli idrovolanti.

Le parti principali del carrello sono oltre le strutture di supporto ed i martinetti per l’apertura, sesono retrattili, l’ammortizzatore ed il pneumatico. L’ammortizzatore in genere è costituito a sua

volta dal  freno, che deve possedere la funzione dissipativa, e dal recuperatore, che costituisce

l’elemento elastico in grado di distendere dopo l’urto nuovamente l’ammortizzatore stesso.

Il pneumatico ha invece la funzione di permettere il rullaggio al suolo oltre a possedere anche una

ridotta proprietà dissipativa.

I tipi di carrello maggiormente impiegati sono quelli detti triciclo con ruotino di prua o più

semplicemente triciclo (vedo figura 1.17) o quello detto triciclo con ruotino di coda o con dizione

un po' sorpassata, carrello classico o normale (vedo figura 1.16).

Entrambi i tipi si suddividono in carrello principale e carrello secondario. Il carrello principale

nello schema più semplice è costituito da una coppia di ruote fisse disposte in vicinanza del

 baricentro del velivolo, dietro ad esso nella configurazione con ruotino o carrello secondario a prua

ed avanti nella configurazione con ruotino o carrello secondario in coda.

Il carrello secondario può essere costituito anche da un unico ruotino orientabile posto a prua od in

coda a seconda delle configurazioni.

Sono state sperimentate altre configurazioni di carrelli in genere raramente impiegate. Si ricordano:

il carrello monoruota, ruota orientabile avanti al baricentro ed i pattini laterali ed in coda; il

carrello biciclo, ruota avanti al baricentro con coppia di pattini e ruota in coda.

Soluzioni con più ruote per ridurre la pressione specifica sul terreno risultano opportune per velivoli

  particolarmente pesanti e per velivoli atti ad atterraggi e decolli fuori pista o su piste molto

irregolari. Queste configurazioni sono comunque in genere assimilabili agli schemi già descritti.

Vengono solo poste più ruote al posto di una sola nelle varie posizioni prima dette.

All’atterraggio risulta vantaggiosa la configurazione con ruotino di prua: trovandosi il carrello

 principale dietro il baricentro, all’impatto con il suolo si genera una coppia picchiante; diminuisce

l’incidenza e si riduce la portanza. Nella configurazione tricicla con ruotino di coda il carrello

 principale si trova avanti al baricentro: all’impatto con il suolo si genera una coppia cabrante; senzal’intervento del pilota l’aereo decollerebbe nuovamente.

Il decollo è l’unica fase, per la quale risulta chiaramente più vantaggiosa la configurazione con

ruotino di coda. Qualsiasi sia la configurazione si stacca prima il ruotino e poi il carrello principale.

Il velivolo si trova quindi in equilibrio intorno alla congiungente i punti di contatto delle ruote del

carrello principale. L’equilibrio risulta essere stabile per la configurazione con ruotino di coda,

instabile per quella con ruotino di prua. Nel primo caso, staccandosi il ruotino, diminuisce

l’incidenza e sorge un momento a cabrare, che tende a riportare il ruotino sulla pista. Nel secondo

caso aumenta l’incidenza e sorge anche in questo caso un momento a cabrare, che tende a portare la

coda sulla pista.

Del discorso del precedente periodo è utile chiarire la relazione tra variazione di portanza e

variazione di momento di beccheggio. In entrambi i casi la variazione di momento di beccheggio

Page 19: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 19/30

19

risulta a cabrare, come si è detto. Nel caso della configurazione con ruotino di coda infatti la

variazione negativa di incidenza comporta una variazione negativa di portanza, cioè verso il basso,

nel fuoco del velivolo, e quindi un momento a cabrare rispetto alla retta di contatto con il suolo del

velivolo, coincidente con la congiungente i punti di contatto delle ruote del carrello principale, in

quanto il fuoco del velivolo si trova dietro tale retta. Nel caso della configurazione con ruotino di

 prua l’incidenza aumenta, aumenta la portanza e la conseguente variazione di momento è a cabrarein quanto il fuoco del velivolo si trova davanti alla congiungente i punti di contatto delle ruote del

carrello principale.

E’ proprio in conseguenza di questa situazione che sulla coda di velivoli dotati di carrelli con

ruotino di prua è disposto un pattino.

 Nella frenata gli aerei dotati di carrelli con ruotino di coda tendono a capottare, mentre quelli dotati

di carrello con ruotino di prua si comportano ottimamente.

Il problema in generale della frenata non presenta una determinata supremazia della configurazione

con ruotino di prua. In conseguenza dell’assetto, con cui si presentano tali velivoli una volta che

sono poggiate al suolo tutte le ruote, risulta necessaria una frenata molto più energica di quella del

velivoli con ruotino di coda con assetto sulla pista molto più resistente.

Si dice che un aeroplano è stabile nella virata al suolo, se, posto in regime di traiettoria curva  permanente sotto l’azione delle forze esterne, tende a raddrizzare appunto la traiettoria appenaabbandonato a se stesso. E’ chiaro che invece è instabile, se in questo caso la traiettoria si stringe.

La configurazione con ruotino di prua è costituzionalmente stabile.

FIGURA 1.16- Architettura del carrello con ruotino di coda.

?  ? 

FIGURA 1.17- Architettura del carrello con ruotino di prua.

Page 20: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 20/30

20

2 - FORZE AGENTI SUL VELIVOLO

2.1 - Forze agenti in volo

2.1.1 - Le forze principali in volo simmetrico

Le forze principali in volo livellato simmetrico uniforme non accelerato gravanti sul velivolo sono

riportate in FIGURA 2.1.

FIGURA 2.1

Sono la portanza(lift ), la resistenza (drag ), la trazione o spinta (thrust ) ed il peso (weight ).

Le prime due forze sono dette di tipo aerodinamico. Di esse si parlerà più approfonditamente nei

 paragrafi successivi. Il peso è proporzionale alla massa del velivolo ed è diretto verso il centro della

terra. Si ottiene moltiplicando la massa del velivolo per l’accelerazione di gravità locale. Alla massa

sono proporzionali anche le   forze d’inerzia, che sorgono quando il velivolo è soggetto ad

accelerazioni.

2.1.2 - Il peso ( la massa e il fattore di carico)

Tutta la massa del velivolo, essendo soggetta all’accelerazione di gravità “pesa” .Il peso, come già

si è detto, è una forza diretta verso il centro della terra. Qualsiasi evoluzione compie il velivolo il

suo peso è sempre diretto verso il centro della terra. Una definizione di baricentro di massa di un

sistema materiale rigido è che esso si muove come se tutta la massa fosse concentrata in tale punto.Evidentemente tale definizione non può tener conto del fatto che il sistema materiale ruoti. Quando

c’è anche rotazione entra in gioco la distribuzione effettiva della massa. Essa può essere tenuta in

conto stabilendo una terna di assi con origine nel baricentro e calcolando i momenti d’inerzia.

L’inerzia può essere definita come l’attitudine che ha il sistema a perseverare nel proprio stato di

quiete o di moto e quindi ad opporre resistenza alle forze che tendano a variare quello stato. Ilmomento d’inerzia intorno ad un asse del corpo pertanto è quella entità che moltiplicata per la

variazione di velocità angolare intorno allo stesso asse equilibra una eventuale coppia applicata

sempre intorno a tale asse. Sia ben chiaro che per una corretta analisi dei problemi di meccanica e

Page 21: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 21/30

21

dinamica del volo, la terna d’assi prima menzionata va presa principale d’inerzia. In questa sede

non si può approfondire tale argomento che coinvolge conoscenze di statica grafica e di dinamica.

Si vuol solo accennare alla evenienza che un’analisi che tenga solo presente il moto di traslazione e

non quello di rotazione è parziale. Nel caso di moto solo di traslazione del velivolo è sufficiente

conoscere la posizione del baricentro del velivolo per conoscere la posizione di tutti gli altri suoi

 punti. Nel caso di moto in cui sia coinvolta rotazione occorre conoscere anche i momenti d’inerziaintorno a tre assi baricentrici che siano anche centrali di inerzia. Come si vedrà in altre discipline tra

le infinite terne di assi ortogonali possibili con origine nel baricentro una sola è detta principale

d’inerzia. In un velivolo due degli assi di tale terna giacciono nel piano di simmetria del velivolo.

Uno è longitudinale, poco inclinato in genere rispetto alla retta che congiunge la punta prodiera con

la punta poppiera. Il secondo è normale al precedente con giacitura nel piano di simmetria. Il terzo

va lungo l’apertura alare. Questa terna è fissa con il velivolo. In volo livellato uno di tali assi è poco

inclinato rispetto alla verticale : una importante componente del peso perciò passa per esso.

Va qui ancora detto che se le masse del velivolo sono soggette ad accelerazioni sorgono delle forze

d’inerzia dirette in senso contrario alle accelerazioni e pari al prodotto delle masse per le

accelerazioni ad esse applicate. Un velivolo che compie nel suo volo una traiettoria curva è soggetto

ad accelerazioni centripete e quindi le sue masse sono soggette a forze centrifughe. In tale caso leforze centrifughe aggiungono la loro azione sulle masse a quella del peso. Vi sono componenti di

forze centrifughe dirette come il peso che valgono anche 5 volte il peso e che quindi insieme al peso

stesso vanno equilibrate con forze che valgono anche 6 volte il peso del velivolo

A tal uopo si definisce un fattore di carico. La definizione di fattore di carico varia da testo a testo e

spesso è data in funzione dell’uso specifico. Il fattore di carico normale è definito come il rapporto

della portanza, o meglio della forza normale sul velivolo al suo peso. Come si vedrà anche nel

seguito la portanza in volo simmetrico è la componente della forza aerodinamica posta nel piano di

simmetria del velivolo in direzione normale alla velocità quindi secondo assi cosiddetti vento. La

forza normale invece è la componente della forza normale secondo un asse fisso con il velivolo,

detto appunto asse velivolo o corpo, anch’esso posto per volo simmetrico nel piano di simmetria

del velivolo e normale all’asse longitudinale del velivolo, definito per esigenze connesse con la

verifica strutturale. In effetti la JAR, il regolamento di certificazione dei velivoli valido in Europa,

al paragrafo 223.321 punto (a) del regolamento tecnico Parte 223 scrive che “ i fattori di carico di

volo sono il rapporto tra la componente della forza aerodinamica ( che agisce normalmente all’asse

longitudinale assunto del velivolo) ed il peso del velivolo”. Definisce poi positivo tale fattore di

carico quando la forza aerodinamica è diretta verso l’alto rispetto al velivolo. Tale definizione viene

confermata al paragrafo corrispondente della Parte 225.

Un’altra definizione del fattore di carico ( normale, anche se questo aggettivo non viene usato) è

quella riportata dal Bruhn a pag. A4.5 del suo “Analysis & Design of Flight Vehicle Structures”

edito da Tri-State Offset Company, che qui viene così tradotta : il fattore per cui vanno moltiplicate

le forze sull’aeroplano in volo stazionario per ottenere un sistema statico di forze equivalenti alsistema di forze dinamiche agenti durante l’accelerazione dell’aeroplano. In effetti gli esempi che

riporta il Bruhn si riferiscono solo al fattore di carico normale. L’espressione del fattore di carico

normale in volo può essere assunta pari a

 g 

 Z n

&&

+=1 (2.1)

dove il secondo termine a secondo membro indica il rapporto tra l’accelerazione secondo l’asse

normale Z e g, l’accelerazione di gravità.

Page 22: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 22/30

22

 

2.1.3 Cenni sui profili..

Sotto l’aspetto strutturale l’ala è una delle parti del velivolo che risulta essere più sollecitata. Come

già si è detto, essa deve  portare l’aereo. Il carico, che secondo i regolamenti deve sopportare

staticamente l’ala, può essere anche di quasi nove volte superiore al peso dell’intero aereo, come si

vedrà, per esempio, per i velivoli acrobatici. Infatti i regolamenti impongono un coefficiente di

sicurezza che è in genere pari a 3/2. Pertanto l’ala è una trave, dotata anche in genere di un notevole

sbalzo. Risulta quindi elevata la sollecitazione, che comporta la flessione. Anche la torsione può

diventare un problema per l’ala, atteso che lo spessore delle sezioni deve essere il più piccolo

 possibile per ragioni di resistenza aerodinamica.

E’ opportuno qui ricordare alcune nozioni relativamente alla sezione di un’ala. Essa viene disegnata

in modo che il suo perimetro costituisca un profilo aerodinamico. Il  profilo, come semplicemente

viene chiamato, “airfoil” in inglese, è stato studiato sia dal punto di vista teorico che analitico,

numerico e sperimentale, sin dai primi tempi dell’aeronautica. Si ricordano qui, e non solo per 

ragioni storiche, i profili studiati in Germania a Gottinga ed anche in Italia a Guidonia. Un ampio e

sistematico studio è stato poi condotto dalla statunitense NACA (poi diventata NASA). Per moltianni sono stati appunto i profili detti NACA a dominare nei progetti degli aerei di tutto il mondo.

Ben pochi erano i profili disegnati in modo originale o comunque in modo indipendente da

considerazioni dei profili NACA. Si può qui ricordare il profilo NACA 23015, utilizzato per 

numerosissime sezioni alari in velivoli costruiti in vari paesi, e i profili simmetrici NACA da 0006 a

0009, impiegati in maniera quasi generale per il disegno delle sezioni dei piani di coda,

specialmente verticali. Attualmente il calcolatore introdotto in maniera intensiva e praticamente

esclusiva in tutti i problemi numerici, permette di eseguire quelle complesse analisi in maniera

rapidissima per verificare disegni innovativi dei profili. Come attrezzo finale di verifica

sperimentale si ricorre comunque sempre alla galleria aerodinamica.

FIGURA 2.2

FIGURA 2.3

 Nella FIGURA 2.2 e nella FIGURA 2.3 vengono riportati due profili, uno simmetrico ed uno curvo. 

In genere i profili vengono individuati in base a parametri geometrici adimensionali. Alla base

dell’adimensionalizzazione vi è la corda del profilo, che è il segmento di retta, che unisce il bordo

d’attacco al bordo d’uscita del profilo stesso (vedere appunto le Figg.). La linea media si distingue

dalla corda solo nei profili curvi ed è il luogo dei punti ad egual distanza, computata

normalmente alla tangente nel punto alla linea media, dal dorso e dal ventre del profilo. La linea

media può essere descritta da una funzione o per punti numericamente. Essa è caratterizza anche dalvalore della freccia,valore della massima distanza dalla corda, e dalla sua posizione lungo la corda.

Il profilo è definito inoltre dalla distribuzione degli spessori e quindi dal valore dello  spessoremassimo relativo, rapporto tra spessore massimo e corda, e dalla sua posizione lungo la corda

Page 23: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 23/30

23

Per quanto riguarda le altre superfici portanti, anch’esse dotate di profili delle sezioni del tipo di

quelli dell’ala, sarà bene qui dare alcune indicazioni, anche se si ritiene che il dettaglio vada appreso

da altri corsi.

La letteratura offre la possibilità, noti alcuni coefficienti aerodinamici dei profili impiegati per 

disegnare le sezioni dell’ala, di determinare le forze aerodinamiche che gravano sull’ala stessa. I

coefficienti aerodinamici dei profili sono riferiti ad un’ala ad apertura infinita e sezionecostantemente eguale a quella appunto del profilo interessato. Come si vedrà anche in questi

appunti, l’ala finita, cioè di apertura finita, non possiede i coefficienti suddetti nelle sezioni lungo

l’apertura eguali a quelli dell’ala infinita con lo stesso profilo.

FIGURA 2.4

 Nella FIGURA 2.4 vengono riportate le curve di portanza, di resistenza e di momento focale di un

  profilo curvo. Se l’ala infinita, la cui sezione è rappresentata in figura viene posta ad incidenza, rispetto alla corrente, che fluisce con velocità V e che possiede densità ρ, su di essa si manifesta

una forza aerodinamica, che ha le componenti mostrate in figura. In figura si prende in

considerazione un tratto elementare dell’ala. Il punto di applicazione delle forze è il  fuoco. Esso

viene definito come quel punto, rispetto al quale la variazione del momento è nulla al variare

dell’incidenza. Evidentemente quindi il momento focale è costante al variare della sola incidenza. Il

momento focale di un profilo simmetrico deve essere perciò nullo in quanto esso deve essere nullo

 per incidenza nulla per ragioni di simmetria. Essendo nulla la variazione di tale momento al variare

dell’incidenza, il momento focale di un profilo simmetrico è sempre nullo. Questo discorso vale

solo per incidenze alquanto basse, contenute in genere in qualche decina di gradi, sia nel campo

delle incidenze positive che delle incidenze negative.

  Nella stessa figura vengono rappresentate quindi le tre curve suddette in termini di coefficienti

adimensionali. Questi coefficienti sono : il coefficiente di portanza Cl , il coefficiente di resistenza

Page 24: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 24/30

24

Cd ed il coefficiente di momento focale Cmo. Essi sono definiti dalle formule poste in calce alla

figura stessa. La quantità ½ ρ V ² è detta pressione dinamica e in futuro sarà indicata anche con

l’unica lettera q.

La prima delle tre curve rappresenta l’andamento del coefficiente di portanza del profilo in funzione

dell’angolo di incidenza. Questo diagramma è anche detto retta di portanza. Il tratto effettivamente

rettilineo è relativo solo ai bassi angoli di attacco, sia dalla parte delle incidenze positive che diquelle negative; per angoli di attacco più alti l’andamento diventa a mano a mano sempre meno

crescente. Si ha quindi lo stallo, il coefficiente di portanza diminuisce e spesso in modo molto

rapido. L’andamento descritto in figura vale per profili curvi. Per i profili simmetrici la retta di

  portanza passa per l’origine degli assi ; la parte negativa, cambiata di segno è sovrapponibile a

quella positiva.

La seconda delle tre curve rappresenta l’andamento del coefficiente di resistenza del profilo in

funzione del coefficiente di portanza. Per un profilo simmetrico anche questa curva deve essere

simmetrica. In contrapposizione è proprio questa la particolarità di un profilo curvo: la curva ora

detta non è simmetrica ed il valore minimo del Cd non si ha in corrispondenza di un coefficiente di

 portanza nullo, ma in prossimità dei coefficienti di portanza relativi al volo di crociera ed alla salita.Questa situazione in effetti costringe lo strutturista a complicare il disegno della sua struttura: essa

deve perdere la simmetria della sezione. La curva ora descritta viene chiamata polare .

Proprio sulla polare si sono appuntate le attenzioni dei ricercatori. Si è tentato di abbassare al

massimo il coefficiente di resistenza minimo; si è anche tentato di agire sia con conseguenze su

questa curva come sulla precedente per aumentare il coefficiente di portanza massimo.

La terza curva rappresentata in FIGURA 2.4 riporta l’andamento del coefficiente di momento focale

in funzione del coefficiente di portanza. Tale curva in corrispondenza dell’andamento lineare della

retta di portanza risulta essere un segmento di retta praticamente parallelo all’asse dei Cl. Il

coefficiente di momento focale, come deve essere per definizione, non varia con l’incidenza. A

  parità delle altre condizioni già menzionate la ricerca tende ad avere profili con coefficiente di

momento focale il più basso possibile. Il momento focale è infatti il maggior responsabile della

torsione dell’ala.

 Nella FIGURA 2.4 si sono evidenziate le forze aerodinamiche complessive che insistono su di un

tratto elementare di ala infinita. Su di una sezione di tale ala si genera un campo di pressioni così

come descritto nella FIGURA 2.5. In genere per incidenza positiva e sufficientemente grande

dell’ala rispetto alla corrente il campo di pressioni sul dorso dell’ala è costituito da valori della

  pressione inferiore a quella atmosferica, mentre il campo di pressioni sul ventre è costituito da

  pressioni al di sopra di quella atmosferica e si genera complessivamente una forza normale alla

velocità della corrente, che è appunto la portanza. Contemporaneamente tale complesso provoca

anche una componente della forza aerodinamica diretta come la velocità della corrente che è la

resistenza.Per meglio comprendere l’origine della portanza, è possibile richiamare il principio di Bernoulli.

Tale principio può essere messo in evidenza attraverso una semplice esperienza, considerando un

tubo a sezione variabile (FIGURA 2.4.B) provvisto di misuratori di pressione e velocità nelle tre

sezioni indicate in figura. Laddove la sezione si restringe (nel tratto centrale) la velocità aumenta e

la pressione statica (quella misurata dai manometri in figura) si riduce. La relazione che sussiste tra

velocità e pressione statica è la seguente:

teV  p P   sT  tancos

2

1 2=+= ρ   

Page 25: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 25/30

25

 FIGURA 2.4 B

Tale principio deriva dal principio di conservazione dell’energia. Definendo la pressione totale  P T  

come somma della pressione statica  p s e della pressione dinamica ½  ρ v2è possibile asserire che la pressione totale risulta essere costante.

 Nei profili alari investiti da una corrente del tipo indicato in Figura 2.4.B, la velocità del fluido sul

dorso risulta maggiore di quella sul ventre, dovendo il fluido che si separa al bordo d’attacco (si

separa nel fluido che lambisce il dorso e quello che lambisce il ventre) ricongiungersi al bordo di

uscita. Il percorso del fluido che lambisce il dorso è infatti maggiore di quello che lambisce il

ventre. Da ciò deriva una minore pressione sul dorso (suzione) rispetto alla pressione che si

stabilisce sul ventre.

Tornando alla figura 2.5 si vede come la forza complessiva aerodinamica indicata come  force si

scompone in portanza e resistenza.

 Nella FIGURA 2.6 viene indicata la posizione del fuoco (aerodynamic center ) dove si colloca la

risultante della forza aerodinamica lungo la corda: All’aumentare dell’incidenza aumenta la forza

aerodinamica, ma entro un campo di incidenze sufficientemente basso, non si sposta la posizione

del fuoco come è indicato in FIGURA 2.6..

Page 26: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 26/30

26

 

FIGURA 2.5 FORZE AERODINAMICHE

FIGURA 2.6 CENTRO AERODINAMICO

Page 27: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 27/30

27

 

FIGURA 2.7 EFFETTO DEL MOMENTO SULLE FORZE AERODINAMICHE

  Nella FIGURA 2.7 viene offerta una spiegazione del fenomeno che crea la forza aerodinamica

sull’ala con una componente portante. La corrente viene deviata dall’ala verso il basso per 

incidenza positiva sufficientemente alta. Vi è quindi nella direzione normale alla corrente una

variazione della quantità di moto (momentum) mV, dove m è la massa d’aria deviata, che viene bilanciata dalla forza aerodinamica.

La descrizione di questo paragrafo sono in sostanza riferite ad ali e profili di velivoli subsonici. Per 

quanto attiene a velivoli che volano nell’alto subsonico, nel transonico e nel supersonico si rimanda

a corsi più avanzati.

2.1.4 - La portanza

 Nel paragrafo precedente è stato descritto il fenomeno che sorge quando un’ala infinita con profilo

curvo o simmetrico si pone ad una incidenza rispetto ad una corrente. Quando l’ala è finita ilfenomeno è molto più complesso. Il coefficiente di portanza raggiunge valori prossimi all’ala finita

solo per ali a forti allungamenti ed in prossimità della mezzeria dell’ala. A mano a mano che ci si

sposta verso l’estremità alare il coefficiente di portanza diminuisce fino a diventare nullo

all’estremità.

Va detto inoltre che per permettere il raggiungimento di più alti coefficienti di portanza vengono

utilizzati gli ipersostentatori che permettono in genere di mantenere attaccata la corrente al dorso

dell’ala ad incidenze più elevate.

La portanza in un velivolo interessa principalmente l’ala e le altre superfici (vedi piano di coda

orizzontale). Comunque anche le altre parti del velivolo possono creare forze aerodinamiche con

componente portante, positiva o negativa. In genere tali contributi, anche se non sempretrascurabili, non sono significativi come sostitutivi della portanza alare.

Page 28: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 28/30

28

2.1.5 - La resistenza

La resistenza è una forza che interessa in maniera fortemente significativa anche altre parti del

velivolo. Si è gia visto che nel progetto della fusoliera si tende ad una ottimizzazione, tenendo

 presente la finezza aerodinamica. Si tende a ridurre al minimo la resistenza complessiva che risulta

dalla somma della resistenza di forma e di quella di attrito. Il contributo della resistenza dell’ala èanch’essa somma di varie componenti. La deviazione della corrente effettuata principalmente per 

ottenere una forza portante comporta una riduzione della quantità di moto in direzione della velocità

con cui la corrente stessa incontra l’ala e pertanto sorge una resistenza, che viene denominata

indotta. Ad essa si aggiungono la resistenza di attrito e di forma dell’ala. Le altre superfici danno un

contributo alla resistenza simile all’ala. Mentre altri corpi , come le gondole-motore danno un

contributo simile alla fusoliera. Forti resistenze possono essere attribuite ad altre parti, quale il

carrello esposto, antenne, pods…

  Nella FIGURA 2.8 viene definita l’efficienza, che è il rapporto tra la portanza e la resistenza e

vengono delineati anche i vantaggi che possono comportare alte efficenze: maggiori autonomie,

maggiore carico pagante, minor consumo di carburante

FIGURA 2.8 RAPPORTO PORTANZA-RESISTENZA

2.1.6 - La spinta o trazione

Per un velivolo esiste quindi una portanza ed una resistenza, che possono essere rappresentate da

espressioni del tipo di quelle indicate per il tratto di ala infinita di FIGURA 2.4. Tenendo presente

inoltre che in volo livellato la portanza deve bilanciare il peso sono stabiliti il coefficiente di

 portanza e l’incidenza che deve avere il velivolo per volare ad una determinata velocità. Anche per il velivolo esiste una retta di portanza che relazione l’angolo di incidenza al coefficiente di portanza.

Esiste inoltre una una polare che lega il coefficiente di portanza al coefficiente di resistenza. Essa è

Page 29: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 29/30

29

detta polare equilibrata e sarà discussa nel prossimo paragrafo. Noto il coefficiente di portanza è

  possibile ricavare il coefficiente di resistenza e determinare la resistenza. Si osservi che la

resistenza deve essere bilanciata dalla trazione.

FIGURA 2.9 ECCESSO DI SPINTA (SULLA RESISTENZA)

Quindi una volta determinata la resistenza risulta determinata anche la trazione. Evidentemente latrazione necessaria al volo deve permettere anche che quando è necessario il velivolo possa anche

accelerare. In FIGURA 2.9 viene mostrato uno schema che illustra tale evenienza. Se la trazione (T)

super la resistenza (D) la differenza è una forza che provoca una accelerazione (a) come è illustrato

in Figura.

2.1.7 - Il momento di beccheggio

Il momento di beccheggio è il momento intorno ad un asse normale al piano di simmetria del

velivolo passante per il baricentro. In un velivolo, la cui ala ha profilo curvo è presente un momento

rispetto al fuoco dell’ala, che non varia al variare dell’incidenza e che è detto momento focale. La

 presenza del momento focale, che è picchiane equivale ad un arretramento della portanza rispetto al

fuoco ed ancor più rispetto al baricentro. Viene quindi a crearsi un momento picchiante della

  portanza che va bilanciata per evitare che il velivolo picchi. Va quindi fatta sorgere in coda una

  portanza che provoca un momento di beccheggio di segno contrario a quello provocato dalla

 portanza dell’ala e del resto del velivolo e di valore assoluto eguale.

Page 30: ISTITUZIONI-Di Ing. Aerospaziale

5/11/2018 ISTITUZIONI-Di Ing. Aerospaziale - slidepdf.com

http://slidepdf.com/reader/full/istituzioni-di-ing-aerospaziale 30/30

30

 FIGURA 2.10 TRIMMAGGIO DEL VELIVOLO

 Nella FIGURA 2.10 è riportata una illustrazione che descrive il problema appena presentato. Se il

velivolo viena bilanciato a vari assetti, può essere descritta la cosiddetta polare equilibrata.

2.1.8 - La forza laterale

Se il velivolo vola derapato o incontra una raffica laterale sorge una componente della forza

aerodinamica normale al piano di simmetria. Tale componente è detta forza laterale.

Va detto per inciso che la raffica è un moto d’aria in genere più limitato del vento che incontrando il

velivolo provoca diverse azioni. La componente più importante della raffica quella diretta in

senso testa piedi del pilota o in senso contrario.

La raffica diretta nel senso longitudinale ha effetto solo sulla velocità vera del velivolo. L’azione

della raffica laterale va bilanciata con il timone di direzione.

2.1.9 - Il momento di imbardata

Questo momento è intorno all’asse giacente nel piano di simmetria del velivolo e normale all’asse

longitudinale. L’imbardata va provocata in virata.

2.1.10 - Il momento di rollio

Questo momento interviene anch’esso in virata. Se il velivolo si mette in virata senza inclinarsiverso l’interno della virata stessa, derapa. Avviene cioè che la forza centrifuga dovuta alla traiettoria

curva in virata sposta il velivolo verso l’esterno della curva stessa. Per evitare che avvenga questa

situazione indesiderata si effettua la virata cosiddetta corretta. Si inclina verso l’interno della virata

il velivolo in modo che una componente della portanza equilibri la forza centrifuga. Si è già parlato

di questo problema a proposito del diedro alare. Per inclinare il velivolo si deve provocare un

momento intorno all’asse longitudinale del velivolo, detto appunto momento di rollio. Esso può

essere provocato dall’effetto diedro ovvero manovrando gli alettoni od ancora con l’intervento di

entrambi i contributi.