of 44/44
JAEA-Technology JAEA-Technology 2008-087 Development of Surface Temperature Measurement for Simulated Fuel Rod Heater - Noise Reduction Temperature Signal of Thin-Thermocouple - 模擬燃料棒ヒーターにおける表面温度計測の技術開発 佐川 淳 柴本 泰照 東海研究開発センター 原子力科学研究所 工務技術部 Engineering Services Department Nuclear Science Research Institute Tokai Research and Development Center March 2009 Japan Atomic Energy Agency 日本原子力研究開発機構 Jun SAGAWA and Yasuteru SIBAMOTO ―  細径熱電対温度信号のノイズ対策  ─

JAEA-Technology...JAEA-Technology JAEA-Technology 2008-087 Development of Surface Temperature Measurement for Simulated Fuel Rod Heater - Noise Reduction Temperature Signal of Thin-Thermocouple

  • View
    0

  • Download
    0

Embed Size (px)

Text of JAEA-Technology...JAEA-Technology JAEA-Technology 2008-087 Development of Surface Temperature...

  • JAEA

    -TechnologyJAEA-Technology

    2008-087

    Development of Surface Temperature Measurement for Simulated Fuel Rod Heater

    - Noise Reduction Temperature Signal of Thin-Thermocouple -

    模擬燃料棒ヒーターにおける表面温度計測の技術開発

    佐川 淳 柴本 泰照

    東海研究開発センター 原子力科学研究所

    工務技術部

    Engineering Services DepartmentNuclear Science Research Institute

    Tokai Research and Development Center

    March 2009

    Japan Atomic Energy Agency 日本原子力研究開発機構

    JAEA

    -Technology 2008-087 模擬燃料棒ヒーターにおける表面温度計測の技術開発 

    細径熱電対温度信号のノイズ対策 ―

    日本原子力研究開発機構

    Jun SAGAWA and Yasuteru SIBAMOTO

    ― 細径熱電対温度信号のノイズ対策 ─

  • i

    JAEA-Technology 2008-087

    +

    2008 12 17

    1010ms

    319-1195 2-4

    ��

    JAEA-Technology 2008-087

  • ii

    JAEA-Technology 2008-087

    Development of Surface Temperature Measurement for Simulated Fuel Rod Heater

    - Noise Reduction Temperature Signal of Thin-Thermocouple -

    Jun SAGAWA and Yasuteru SIBAMOTO+

    Engineering Services Department, Nuclear Science Research Institute, Tokai Research and Development Center, Japan Atomic Energy Agency

    Tokai-mura, Naka-gun, Ibaraki-ken

    (Received December 17, 2008)

    In experimental facilities to investigate a system integral-response and/or to verify fuel rod integrity of nuclear reactors, the electrical heater specially manufactured to simulate the real nuclear fuel rod with the same scale have been used in the core of the experimental facility. This type of the electrical heater, so-called “simulated fuel rod”, is a kind of a sheath heater which involves Nichrome coiled wire as a heat generation element in the metal cladding tube. An alternating current power is supplied for heat generation source in this heater and thin thermocouples were embedded on the cladding surface to measure the fuel surface temperature. It means that a switching regulator by silicon-controlled rectifier is used to control the AC electrical power and undesirable electrical noises are superimposed on the thermocouples' signals by the time variation of the heater current. Although a low-pass-filter with a low cut-off frequency was commonly applied to remove the noises in the previous steady-state experiment, the problem have arisen that a fast temperature transient could not be followed due to a time-delay accompanied by the filter in the transient experiment.

    In the present study, we reveal the noise characteristics and designed / manufactured the new noise reduction filter with to reduce the time delay one-tenth less than that in the previous simple filter. The time constant of this filter is less than 10 ms which is smaller than that of thin thermocouples determined by its heat capacity. It can be regarded as the response speed enough to the practical application.

    Keywords: Simulated Fuel Rod Heater, Thermocouples, Electrical Noise, Capacitive Coupling, Electromagnetic Induction, Alternative Current, Low-Pass-Filter, Band-Elimination-Filter

    Collaborating Engineer Reactor Safety Research Unit, Nuclear Safety Research Center

    ����

    JAEA-Technology 2008-087

    JAEA-Technology  2008-087

    ���

  • iii

    1 .............................................................................................................................1

    1.1 ...................................................................................................................11.2 .......................................................................................................4

    1.2.1 .............................................................................................41.2.2 .............................................................................................8

    1.3 ...................................................................................11

    2 .................................................................................................15

    2.1 ...............................................................................................................152.2 ...................................................................................................................20

    2.2.1 ............................................................................................................202.2.2 ............................................................................................................222.2.3 .............................................................................................242.2.4 ...............................................................................................25

    3 ...........................................................................................................28

    3.1 .................................................................................................................283.2 ...................................................................................................................28

    4 ................................................................................................................................33

    ............................................................................................................................................. 33

    ...................................................................................................................................... 34

    ����

    JAEA-Technology  2008-087

    ���

  • iv

    Contents

    1 Introduction......................................................................................................................... 1

    1.1 Background and Purpose............................................................................................. 1 1.2 Major cause and Characteristics of Noise................................................................... 4

    1.2.1 Noise due to Capacitive Coupling .......................................................................... 4 1.2.2 Noise due to Electromagnetic Induction................................................................ 8

    1.3 Identification of Noise Source and its Countermeasures......................................... 11

    2 Design and Fabrication of Filter Circuit.......................................................................... 15

    2.1 Filter Parameter ........................................................................................................ 15 2.2 Circuit Design ............................................................................................................ 20

    2.2.1 Overall Configuration........................................................................................... 20 2.2.2 Device Parameter ................................................................................................. 22 2.2.3 Adjustment of Filter Circuit................................................................................. 24 2.2.4 Selection of Elemental Devices .......................................................................... 25

    3 Test of the Circuit Performance........................................................................................ 28

    3.1 Gain Characteristics .................................................................................................. 28 3.2 Transient Characteristics .......................................................................................... 28

    4 Conclusions........................................................................................................................ 33

    Acknowledgements..................................................................................................................... 33

    References .................................................................................................................................. 34

    JAEA-Technology  2008-087

    �v

    JAEA-Technology  2008-087

    v

  • v

    Table 2.1 ..........................................................................................................17 Table 2.2 ................................................................................................21

    Fig. 1.1 .........................................................................................3 Fig. 1.2 ...........................................................................7 Fig. 1.3 .....................................................................................7 Fig. 1.4 ..................................................................................................10 Fig. 1.5 ................................................................................13 Fig. 1.6 ...........................................................................................14 Fig. 2.1 .........................................................................17 Fig. 2.2 ......................................................................................................18 Fig. 2.3 ..........................................................................................................18 Fig. 2.4 LPF BEF ........................................................19 Fig. 2.5 LPF BEF ..............................................................................21 Fig. 2.6 LPF BEF ..........................................................................26 Fig. 2.7 .........................................................................................................26 Fig. 2.8 ..............................................................................................27 Fig. 3.1 .........................................................................................................30 Fig. 3.2 LPF ..........................................................................................31 Fig. 3.3 ................................................................................32

    JAEA-Technology  2008-087

    �v

    JAEA-Technology  2008-087

    v

  • vi

    List of Tables

    Table 2.1 Filter characteristics ............................................................................................... 17 Table 2.2 Required specification of filter design .................................................................... 21

    List of Figures

    Fig. 1.1 Cross sectional view of simulated fuel rod.................................................................. 3 Fig. 1.2 Schematic view temperature measurement by thermocouple ................................... 7 Fig. 1.3 Details of electrical equivalent circuit for noise ......................................................... 7 Fig. 1.4 Generation of electromagnetic induction noise......................................................... 10 Fig. 1.5 Variation of noise by heater power supply ................................................................ 13 Fig. 1.6 Frequency characteristics of noise data .................................................................... 14 Fig. 2.1 Signal processing form thermocouple to data acquisition system ........................... 17 Fig. 2.2 Macrograph of noise data........................................................................................... 18 Fig. 2.3 Characteristics of thermocouple response ................................................................ 18 Fig. 2.4 Frequency characteristics of 2nd order LPF and BEF filter (Bode diagram) ......... 19 Fig. 2.5 Electrical circuit diagram of 2nd order LPF and BEF ............................................. 21Fig. 2.6 On-board device implementation .............................................................................. 26 Fig. 2.7 Practical wiring ........................................................................................................ 26 Fig. 2.8 Trimmer to adjust the filter circuit ........................................................................... 27 Fig. 3.1 Comparison of gain characteristics ........................................................................... 30 Fig. 3.2 Comparison of the present filter with LPF in frequency characteristics ................ 31 Fig. 3.3 Transient characteristics of the present filter .......................................................... 32

    JAEA-Technology  2008-087

    v�

    JAEA-Technology  2008-087

    ─ � ─

  • 1

    Equation Chapter 1 Section 1

    1

    1.1

    Large Scale Test Facility

    Loss-Of-Coolant Accident Reflood phase

    Fig. 1.1 (1)

    ( 0.5mm )

    1

    K 1 40 V10~100mV S/N

    1(2-3)

    1

    IGBT Insulated Gate Bipolar Transistor

    JAEA-Technology  2008-087

    v�

    JAEA-Technology  2008-087

    ─ � ─

  • 2

    (4)

    10 100 Fig.1.5

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 3

    Fig. 1.1

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 4

    1.2

    1000

    2

    (1)(2)

    1.2.1

    Fig. 1.2 GND

    NV NVGND NV

    GND 1Z GND

    2Z GND

    XR XC

    2 2

    11 X X

    ZR C

    (1.1)

    10 XR

    XR0 NV

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 5

    capacitive coupling

    NV XC

    Fig. 1.2

    GND

    XC

    GND

    Fig. 1.3(a)

    1Z 2Z ZFig. 1.3(b) NV

    NV IV AR BR

    SR IR

    SR NV IV

    ( ) ( )B I

    I NB A I A B I

    R RV VR R R Z R R R

    (1.2)

    2A BR R R

    IRR

    I NRV V

    Z R (1.3)

    (1.3) NI A SR

    NI B IV A

    2

    NV

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 6

    B N NI A I B SR Z R

    SI N

    RRV VZ R Z R

    (1.4)

    )( RZRS NV IV

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 7

    Fig. 1.2

    (a) (b)

    Fig. 1.3

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 8

    1.2.2

    Fig. 1.4 (5)

    2

    HI HI

    HB1 2

    1e

    )1(1da

    dtde H nB (1.5)

    A

    )1( 1)1(sAnB ddaH (1.6)

    1ds HI

    )2( 12

    224

    1r

    dIc

    H sA (1.7)

    (1.5) (1.7)

    1)1( )2( 12

    221 4

    1 ss dr

    dIdtd

    ce H (1.8)

    HI

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 9

    dtdIMe H1 (1.9)

    M

    )1( )2( 12

    1224

    1r

    ddc

    M ss (1.10)

    M

    (1.6)

    JAEA-Technology  2008-087

    ─ � ─

    JAEA-Technology  2008-087

    ─ � ─

  • 10

    Fig. 1.4

    JAEA-Technology  2008-087

    ─ �0 ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 11

    1.3

    Fig.1.51

    870 200kWFig.1.5 150

    600kW 160

    100 1 -40dB

    (1)

    (2)

    (1)(2)

    (2)0.5mm

    0.01

    JAEA-Technology  2008-087

    ─ �0 ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 12

    1Hz

    1Hz0.5mm Fig. 2.3 44ms

    1Hz10 100ms

    Fig.1.5Fig.1.6 Fig.1.5 600kW FFT

    50HzMTT MS3901

    20Hz 1

    1 50Hz50Hz

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 13

    Fig. 1.5

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 14

    Fig. 1.6

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 15

    Equation Chapter (Next) Section 1

    2

    2.1

    Fig. 2.1 LPFBEF LPF 2

    )(sT LPF ( )LPFT s BEF( )BEFT s

    20

    2 20 01

    LPFLPF

    LPF LPF LPF

    T ss Q s

    (2.1)

    2 20

    2 20 01

    BEFBEF

    BEF BEF BEF

    sT ss Q s

    (2.2)

    )(sT

    2 2 20 0

    2 2 2 20 0 0 01 1

    BEF LPF

    LPF LPF LPF BEF BEF BEF

    sT s

    s Q s s Q s (2.3)

    (6-7)0LPF LPF (rad/s) 0BEF BEF (rad/s) Q

    2 QFig. 2.2 Fig.1.5

    600kW 10mV/50Hz

    120Hz

    250Hz -40dB 100Hz -20dB

    BEF 50HzLPF 100Hz -20dB

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 16

    30Hz0.5mm Fig. 2.3

    100

    0T 1T

    0

    0 /

    1 0

    1 tT t T

    eT T

    (2.4)

    0 44msFig. 2.3

    3 Table 2.1

    cf LPF of BEF

    0

    0

    22

    LPF c

    BEF o

    ff

    (2.5)

    (2.3) s j Fig. 2.4100Hz -20dB

    210

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 17

    Table 2.1

    cf , of (Hz) LPFQ , BEFQ

    LPF 2 cf =30 1 2LPFQ

    BEF 2 of =50 2BEFQ

    Fig. 2.1

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 18

    Fig. 2.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -100 -50 0 50 100 150 200 250 300

    (T -

    T 0) /

    (T1 -

    T0)

    time after contact to water (ms)

    Fig. 2.3

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 19

    Fig. 2.4 LPF BEF

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 20

    2.2

    2.2.1

    2.1 Fig. 2.4

    10mV/ 12V

    QTable 2.2

    Fig. 2.5 LPF 1 aA 2 LPF(6)

    2 13R 15RBEF 1 bA 2 aA 2 bA 3 OP

    BPF 3A BPF 3 OP

    2 Q(8)

    LPF BEF

    2 LPF 1

    JAEA-Technology  2008-087

    ─ �0 ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 21

    Table 2.2

    1mV 1mV

    12V 10kHz

    Q 10

    Fig. 2.5 LPF BEF

    JAEA-Technology  2008-087

    ─ �0 ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 22

    2.2.2

    2 LPF

    5 6 13 14

    2

    5 13 14 15 5 6 13 14

    1

    ( )1 1 1 1 1LPF

    C C R RT ss s

    C R R R C C R R

    (2.6)

    151465

    20

    1RRCCLPF

    (2.7)

    5

    6

    13 1413 14

    14 13 15

    LPF

    CC

    QR RR R

    R R R

    (2.8)

    0s ( )LPF LPFA T s (2.6)

    (2.8)

    fLPFLPF

    f

    LPF

    CAQC

    CCRRA

    )1(4 25

    6

    1315

    (2.9)

    0

    13

    14

    1

    2

    2 ( 1)

    fLPF f

    f

    LPF LPF

    f

    LPF LPF

    RC

    RR

    Q ARR

    Q A

    (2.10)

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 23

    1LPFA 1 2LPFQ

    13 15 14

    5 6

    06 13

    24

    12LPF

    R R RC C

    C R

    (2.11)

    LPF 0LPF LPFQA 1 (2.9) 13R 15R

    BEF Fig. 2.5 BPF BPF 3ABEF ( )BEFT s BPF

    ( )BPFT s

    ( ) 1 ( )BEF BPFT s T s (2.12)

    BEF (2.2) (2.12) 2

    02 2

    0 0

    (1/ )( )(1/ )

    BEF BEFBPF

    BEF BEF BEF

    Q sT ss Q s

    (2.13)

    BPF BPF

    1 2

    2 6

    1 2 1 2 3 4 5

    1

    ( ) 1BEF

    sC RT s K Rs s

    C R C C R R R

    (2.14)

    2 60

    1 2 3 4 5BEF

    RC C R R R

    (2.15)

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 24

    1 62

    2 3 4 5BEF

    C RQ RC R R R

    (2.16)

    (2.14) BPF BEF 0BEFBEF K Fig. 2.5 1R 2R 2 1K R R

    1 (2.15)(2.16)Q 2R

    Fig. 2.6 132 Fig. 2.7

    15V 1.3A

    2.2.3

    Fig. 2.8 13 3

    1VR ··············· BPF BEF

    2VR ··············

    3VR ··············

    50Hz 1VR(2.15) 4R

    2VR Fig. 2.5BPF 3A (2.14)

    K 1VR 2VR

    -60dB 1000 1 3VR

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 25

    0V 0V

    2.2.4

    3

    OP Fig. 2.5(9) (15)

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 26

    Fig. 2.6 LPF BEF

    Fig. 2.7

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 27

    Fig. 2.8

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 28

    Equation Chapter (Next) Section 1

    3

    PSpice(16-17)

    PSpice

    3.1

    Fig. 3.1500Hz

    3.2

    PSpiceLPF

    350Hz 1 2 Hz

    21 2Q 3 50Hz -40dB

    100 1 5HzFig. 3.2 LPF

    50Hz

    1 (2.4) 0ms 20ms 50ms100ms Fig. 3.3 LPF BEF

    5Hz LPF t 0.1sLPF BEF 60 1-e 0.6 10ms

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 29

    LPF 5Hz 60ms 90100ms =0ms LPF+BEF

    20msLPF Fig. 2.3 0.5

    44ms

    LPF

    10ms

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 30

    Fig. 3.1

    JAEA-Technology  2008-087

    ─ �0 ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 31

    Fig. 3.2 LPF

    JAEA-Technology  2008-087

    ─ �0 ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 32

    Fig. 3.3

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 33

    4

    50Hz

    JAEA-Technology  2008-087

    ─ �� ─

    JAEA-Technology  2008-087

    ─ �� ─

  • 34

    (1) ”BWR CHF CHF ”,JAERI-Research 2001-060 (2000).

    (2) ”BWR ”, JAERI-Research 2000-050 (2000).

    (3) Maruyama, Y., Asaka, H., Satou, A., Nakamura, H..: “Single rod experiments on transient void behavior during low-pressure reactivity-initiated accidents in light water reactors”, Nucl. Eng. Des., 236, 1693-1700 (2006).

    (4) ” ”2 pp.510-516 (2003)

    (5) Richard P. Feynman Robert B. Leighton Matthew L. Sands

    (6) SPECIAL No.44 CQ(7)(8) OP 100 CQ(9) TL071_072_074 Data Sheet Texas Instruments, Incorporated (10) EROS Panasonic(11) RJ-5(12) MMT

    (13) RPE(14) TSL Series TSL0709 TDK(15) TXL Series TRACO POWER (16) PSpice CQ(17) SPICE CQ

    JAEA-Technology  2008-087

    ─ �� ─

  • この印刷物は再生紙を使用しています