JApplPhys_109_083937.pdf

Embed Size (px)

Citation preview

  • 8/22/2019 JApplPhys_109_083937.pdf

    1/7

    Analytical ferromagnetic hysterons with various anisotropiesIulian Petrila andAlexandru StancuCitation: J. Appl. Phys. 109, 083937 (2011); doi: 10.1063/1.3579448View online: http://dx.doi.org/10.1063/1.3579448View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v109/i8Published by theAIP Publishing LLC.Additional information on J. Appl. Phys.Journal Homepage: http://jap.aip.org/Journal Information: http://jap.aip.org/about/about_the_journalTop downloads: http://jap.aip.org/features/most_downloadedInformation for Authors: http://jap.aip.org/authors

    Downloaded 05 Jul 2013 to 134.226.112.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

    http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Iulian%20Petrila&possible1zone=author&alias=&displayid=AIP&ver=pdfcovhttp://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Alexandru%20Stancu&possible1zone=author&alias=&displayid=AIP&ver=pdfcovhttp://jap.aip.org/?ver=pdfcovhttp://link.aip.org/link/doi/10.1063/1.3579448?ver=pdfcovhttp://jap.aip.org/resource/1/JAPIAU/v109/i8?ver=pdfcovhttp://www.aip.org/?ver=pdfcovhttp://jap.aip.org/?ver=pdfcovhttp://jap.aip.org/about/about_the_journal?ver=pdfcovhttp://jap.aip.org/features/most_downloaded?ver=pdfcovhttp://jap.aip.org/authors?ver=pdfcovhttp://jap.aip.org/authors?ver=pdfcovhttp://jap.aip.org/features/most_downloaded?ver=pdfcovhttp://jap.aip.org/about/about_the_journal?ver=pdfcovhttp://jap.aip.org/?ver=pdfcovhttp://www.aip.org/?ver=pdfcovhttp://jap.aip.org/resource/1/JAPIAU/v109/i8?ver=pdfcovhttp://link.aip.org/link/doi/10.1063/1.3579448?ver=pdfcovhttp://jap.aip.org/?ver=pdfcovhttp://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Alexandru%20Stancu&possible1zone=author&alias=&displayid=AIP&ver=pdfcovhttp://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Iulian%20Petrila&possible1zone=author&alias=&displayid=AIP&ver=pdfcovhttp://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/932441298/x01/AIP-PT/JAP_CoverPg_0513/AAIDBI_ad.jpg/6c527a6a7131454a5049734141754f37?xhttp://jap.aip.org/?ver=pdfcov
  • 8/22/2019 JApplPhys_109_083937.pdf

    2/7

    Analytical ferromagnetic hysterons with various anisotropies

    Iulian Petrilaa) and Alexandru StancuAlexandru Ioan Cuza University of Iasi, Department of Physics & CARPATH, Bd. Carol I, nr. 11, Iasi,700506, Romania

    (Received 2 March 2011; accepted 16 March 2011; published online 28 April 2011)

    A new critical reflection on the anisotropic constraints of the ferromagnetic particles allow us to

    analytically describe the behavior of complex ferromagnetic systems. The anisotropic constraints

    of each individual ferromagnetic particle such as magneto-crystalline, shape, interface, defects,

    domain wall, or other induced influences are described in a simplified manner. The first

    approximation of anisotropy free energy density provides an analytical description of various

    magnetization processes even in the case of very complex anisotropic influences. The hysteretic

    behavior described by this model, including both reversible and irreversible processes, is presented

    and discussed for the typical anisotropy cases observed in ferromagnetic materials: uniaxial,

    biaxial, cubic, and orthorhombic. This practical method to model hysteresis for various types of

    anisotropy could be fundamentally important for many studies that demand very efficient

    algorithms at the level of single-domain magnetic elements. VC 2011 American Institute of Physics.

    [doi:10.1063/1.3579447]

    I. INTRODUCTION

    The concept of a single-domain ferromagnetic particle

    has been known in magnetism for many years.13 The critical

    volume under which the magnetization processes of a ferro-

    magnet are essentially linked to the rotation of the total mag-

    netic moment vector of the particle can be calculated with

    Browns micromagnetic theory.4 This theory, published

    more than 50 years ago, gives an estimation of the nucleation

    field when the coherent rotation is the first magnetization

    mode which is activated at the highest value of the applied

    field starting from positive saturation. It is remarkable to

    note that the coherent rotation magnetization model for the

    single-domain particle was given before Browns result was

    published in the famous paper of Stoner and Wohlfarth.5

    They have used a stronger condition for the single-domain

    particle behavior that constrains the moments dynamics

    only by coherent rotations in any applied field. The Stoner

    Wohlfarth model (SW) was intensively used in many theo-

    retical approaches as the most simple and efficient hysteresis

    model. For uniaxial ferromagnetic single-domain particles

    the critical curve approach introduced by Slonczewski6 is

    widely used today, even if it gives the values of the magnet-

    ization in certain applied fields only as a solution of a mathe-

    matical equation that can only be numerically solved.

    The development of nanotechnologies in recent years

    has improved the experimental capacity to measure magnet-

    ization processes even at the level of one single-domain fer-

    romagnetic particle and a number of discrepancies with the

    SW approach have been observed.79

    Even if these discrepancies were expected, if one takes

    into account the strong simplifications made in the SW

    model, new fundamental discussions concerning the physical

    basis of the model are rarely published and no fundamental

    evolution can be noticed in this area.

    Ideally, what we need in many areas of ferromagnetism

    and in the modeling of devices using single-domain particles

    is a more accurate model that can be solved mathematically

    in a simpler way, if possible, with an analytical solution.10,11

    These conditions are contradictory and thus, it is very diffi-

    cult to simultaneously fulfill them.

    In this paper we offer a possible solution to the

    previously mentioned problem which is atthe same time

    numerically efficient and relevant from the physical point of

    view as an improvement of the uniaxial case12,13 and that

    offers a straightforward generalization for other anisotropy-types.1416

    To present the basis of this approach, we had to revisit

    the fundamental discussion on the symmetry in the expres-

    sion of the free energy density for the single-domain ferro-

    magnetic particle. The anisotropic terms in this expression

    can be developed in a series expansion in at least two ways;

    one that gives the SW solution and one that can provide the

    simpler solution we present in this paper.

    In the following sections, we present the founding prin-

    ciples of the method. Then we exemplify the model used for

    different anisotropic influences: uniaxial, biaxial, cubic, and

    orthorhombic. Finally we present the conclusions of our

    study.

    II. ANISOTROPY

    The anisotropic influences on the equilibrium states of

    the magnetic moment of a single-domain ferromagnetic par-

    ticle are usually included, in a general way, by the phenome-

    nological expressions of the anisotropy free energy.5,17,18

    The orientation versor m M=M of the ferromagnetic par-ticles magnetization vector M, relative to the coordinate

    axes, is given by the direction cosines ai as

    a)Author to whom correspondences should be addressed. Electronic mail:

    [email protected].

    0021-8979/2011/109(8)/083937/6/$30.00 VC 2011 American Institute of Physics109, 083937-1

    JOURNAL OF APPLIED PHYSICS 109, 083937 (2011)

    Downloaded 05 Jul 2013 to 134.226.112.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

    http://dx.doi.org/10.1063/1.3579447http://dx.doi.org/10.1063/1.3579447http://dx.doi.org/10.1063/1.3579447http://dx.doi.org/10.1063/1.3579447
  • 8/22/2019 JApplPhys_109_083937.pdf

    3/7

    m a1; a2; a3 sin h cos/; sin h sin/; cos h (1)

    with h; / the spherical angles.Usually,5,19,20 the magneto-crystalline free energy den-

    sity Wa is described by a power series expansion of the com-

    ponents of magnetization

    Wa Xi;j13A

    0

    ij aiaj ; (2)

    where A0 represents the anisotropy coefficients for differentorders of approximations. As the anisotropy free energy den-

    sity is invariant to the reversal ofM

    WaM WaM; (3)then each term in the series expansion as in Eq. (2), must

    include only even powers of any direction cosine. The free

    term is independent of particle orientation and is usually

    ignored, because normally we are only interested in the

    change in the free energy when the M vector changes its ori-

    entation. The classical series expansion of the anisotropy

    energy (2), even in the simplest case of the uniaxial systems,

    does not provide an analytical description of the magnetiza-

    tion processes. We analyze the anisotropy energy series

    expansion with the aim offinding a simpler description for

    the characteristic unit of hysteresis called an hysteron.12,13

    A ferromagnetic particle as a macro-spin can have mul-

    tiple anisotropic constraints. The anisotropic constraints act

    symmetrically on different directions which are named ani-

    sotropic directions.

    First we observe that, in the series expansion we also

    have to consider the terms in the modulus of the direction

    cosines of the magnetic moment, gij j

    , relative to each anisot-

    ropy direction. Consequently, the series expansion for the

    anisotropy free energy density is given by

    Wa X

    i1NaAi gij j ; (4)

    with Ai the anisotropy coefficients and Na the number of ani-

    sotropy axes. The anisotropy directions can be related to any

    kind of anisotropic influences such asmagneto-crystalline,

    shape, interface, irregularities (defects), etc. With these con-

    siderations, even a very complex case of a particle under the

    influence of different types of anisotropic factors can be ana-

    lytically described and the hysteretic behavior of the system

    can be, in this way, handled properly. This method offers a

    simple but still sufficiently realistic way to describe the mag-

    netization processes of ferromagnetic particles with various

    magneto-crystalline anisotropy types with a wide range of

    external physical anisotropic constrictions. In the next sec-

    tion, the general framework of the model is presented in

    detail.

    III. MAGNETIZATIONS PROCESSES

    Any magnetization process of a single-domain ferro-

    magnetic particle is the result of the interaction between the

    applied magnetic field and the magnetic moment of that par-

    ticle. In the quasistatic approximation, one looks for the

    equilibrium states at a given applied field. Besides the anisot-

    ropy free energy density term presented in the previous sec-

    tion one also has to consider the interaction between the total

    dipolar magnetic moment of the particle and the external

    field which is given by the Zeeman energy density

    WZ l0M H l0MSHa1b1 a2b2 a3b3 (5)with bi coswi and i 1 3 the direction cosines of theapplied field, H, and MS is the saturation magnetization.

    The versor of the applied field can be written as

    h H=H b1; b2; b3: (6)The magnetization processes are provided by the equilib-

    rium,21 dWh; / 0, or@Wh; /

    @h 0; @Wh; /

    @/ 0; (7)

    and the stability (the states where all the near variations oftotal energy density are positives)

    dWh; / Wh dh; / d/ Wh; / > 0; (8)are conditions of the total energy density, W Wa WZ.

    The normalized projection of magnetization on the

    applied field direction is defined by m M=MS. With the an-isotropy term given by (4) the orientation of the particles

    total magnetic moment, m, can be described analytically for

    most anisotropy types.

    Once the magnetic moment orientation at equilibrium it

    is known, the hysteresis loops which represent the projection

    of magnetization along the applied magnetic field have ananalytical description and are given in normalized form by

    m m h a1b1 a2b2 a3b3: (9)

    Generally, a system with multiple equilibrium states may

    suffer transitions from one state to another with less energy.

    These critical (transition) states correspond to the states

    where the sign of near variation of total energy density

    dWh; / is undefined. By considering the first term in (4),the switching conditions can easily be identified as the condi-

    tions when the modulus terms in anisotropy free energy den-

    sity (4) are zero (the nonderivability points)

    gi 0; (10)

    with i 1 Na.Because the particles moment on each hysteresis

    branch is switched, the number of irreversible transitions on

    each hysteresis branch can be up to the number of anisotropy

    axes, Na (or the number of the switching conditions).

    These general results allow us to calculate various mag-

    netization processes like the major hysteresis loop (the most

    typical measurement used in ferromagnetism) in a number of

    particular cases. Because of the existence of the multiple

    equilibrium states of the system, when a magnetization pro-

    cess is analyzed, it is important to start from a well-defined

    083937-2 I. Petrila and A. Stancu J. Appl. Phys. 109, 083937 (2011)

    Downloaded 05 Jul 2013 to 134.226.112.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

  • 8/22/2019 JApplPhys_109_083937.pdf

    4/7

    state such as the saturation state in the case of the hysteresis

    loop.

    IV. UNIAXIAL HYSTERON

    The uniaxial anisotropy represents the simplest case of

    the ferromagnetic systems.

    5,12,13,22

    In the case of the present approximation (4), if one con-

    siders Oz the symmetry axis one has Na 1 andbz is the ani-sotropy axis (g1 a3). The first approximation of theanisotropy energy (4) becomes

    Wua Ku a3j j; (11)

    with Ku A3 the anisotropy constant. The main charac-teristics of the uniaxial hysteron based on the anisotropy

    energy (11) are listed in Table I.

    Some hysteresis characteristics of the uniaxial hysteron

    are described in Ref. 12 and a comparative analysis between

    the classical SW hysteron and the uniaxial vector hysteroncan be found in Ref. 13.

    In the case of uniaxial systems,13 the magnetization

    processes can be reduced to a 2D form in the plane of zOH

    and the reduced anisotropy energy becomes wua cos hj j.Considering w w3 the angle between the external field, H,and the symmetry axis (Oz), the hysteresis loops can be

    described by m h6 cosw=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    h26 2h cosw 1p

    ,12 and

    the hysteresis curves can be shown in Fig. 1.

    By adding the second uniaxial anisotropy term in (4),

    the anisotropy energy

    Wu2a Ku cos hj j Ku2 cos2 h; (12)

    can be used to describe a variety of the uniaxial struc-

    tures8,10,23 and represents, in fact, a mixture of the present

    analytical description (first approximation of the anisotropy

    free energy) and the Stoner-Wohlfarth model.5

    V. BIAXIAL HYSTERON

    In the case of a biaxial hysteron we have Na 2, fbx; bzgthe anisotropy axes (g1 a1, g2 a3), and the first approxi-mation of the anisotropy energy becomes

    Wba Kb ja1j ja3j (13)

    TABLE I. Uniaxial hysteron proprieties: a) free anisotropy energy density,

    b) free energy density, c) anisotropy field, d) magnetic moment orientation,

    e) switching conditions, f) hysteresis loop, and g) switching fields.

    a) wua Wua =Ku a3j jb) wu a3j j ha1b1 a2b2 a3b3c) Hua Ku=l0MS

    d)^

    m hb1; hb2; hb361

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffih262hb3 1pe) hb361 0f) m h6b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffi

    h262hb3 1p

    g) hs 61=b3

    FIG. 1. (Color online) Hysteresis loops for different external field

    orientations.

    TABLE II. Biaxial hysteron proprieties: a) free anisotropy energy density,

    b) free energy density, c) anisotropy field, d) magnetic moment orientation,

    e) switching conditions, f) hysteresis loop, g) switching fields, and h)

    notations.

    a) wba Wba =Kb a1j j a3j jb) wb a1j j a3j j ha1b1 a2b2 a3b3c) Hba

    Kb=

    l0MS

    d) m hb1 s1; hb2; hb3 s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffih2 2hs1b1 s3b3 2

    pe) fhb1 s1 0; hb3 s3 0gf) m h s1b1 s3b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    h2 2hs1b1 s3b3 2p

    g) hs f61=b1;61=b3gh) si sgnai 61

    FIG. 2. (Color online) Hysteresis loops of biaxial systems for relevant

    crystallographic directions are described by: m100 h61=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffi

    h262h 2p ,m010 h=

    ffiffiffiffiffiffiffiffiffiffiffiffiffih2 2p , m110 h61=

    ffiffiffi2

    p =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    h26ffiffiffi

    2p

    h 2p

    , m101 h6ffiffiffi

    2p =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffi

    h262ffiffiffi

    2p

    h 2p

    , a nd m111 h62=ffiffiffi

    3p =

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffih262=

    ffiffiffi3

    ph 2

    q. For e ach

    direction, the switching fields are: hs100 61, hs010 0, hs110 6ffiffiffi

    2p

    ,

    hs101 6 ffiffiffi2p , and hs111 6 ffiffiffi3p .

    083937-3 I. Petrila and A. Stancu J. Appl. Phys. 109, 083937 (2011)

    Downloaded 05 Jul 2013 to 134.226.112.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

  • 8/22/2019 JApplPhys_109_083937.pdf

    5/7

    with Kb the anisotropy constant. The main characteristics

    of the biaxial hysteron are presented in Table II.

    For different crystallographic directions of the applied

    field the hysteresis loops are shown in Fig. 2.

    In the biaxial plane xoz b2 0, b1 sinw, andb3 cosw, the hysteresis loops are described by

    m h s1 sinw s3 coswffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffih2 2hs1 sinw s3 cosw 2

    p ; (14)with hs f61=cosw;61=sinwg, the switching fields.

    As shown in Fig. 3, for an applied field in the biaxial

    plane, there are up to two switches on each hysteresis branch

    and the system has no pure reversible behavior.

    VI. CUBIC HYSTERON

    The first approximation of the anisotropy free energy

    density (2) for the cubic systems is given by5,17,22

    Wc0a Kc0 a21a22 a21a23 a22a23

    : (15)

    Usually, the expression (15), developed for the simple cubic

    systems or simple cubic with Kc0 > 0,20 is used for body-centered cubic systems with Kc0 KBCC0 > 0 and forface-centered cubic systems with Kc0 KFCC0 < 0, andalso with easy axis and hard axis interchanged. In the presentapproximation, for the cubic symmetry one has Na 3 withfbx; by; bzg the anisotropy axes (g1 a1, g2 a2, g3 a3)and the first approximation of the anisotropy energy (4)

    becomes

    Wca Kc ja1j ja2j ja3j ; (16)

    with Kc A1 A2 A3 the anisotropy constant.The differences between the two approaches of the nor-

    malized anisotropy energy can be visualized in Fig. 4. The

    main characteristics of the cubic hysteron are presented in

    Table III.

    From the switching conditions one can always extract aswitching field, because cubic systems have no pure reversi-

    ble directions.

    FIG. 3. (Color online) Hysteresis loops of the biaxial hysteron for different

    directions of applied field in the xOz plane.

    FIG. 4. (Color online) Comparative normalized cubic anisotropy energy.

    TABLE III. Cubic hysteron proprieties: a) free anisotropy energy density,

    b) free energy density, c) anisotropy field, d) magnetic moment orientation,

    e) switching conditions, f) hysteresis loop, g) switching fields, and h)

    notations.

    a) wca Wca =Kc a1j j a2j j a3j jb) wc a1j j a2j j a3j j ha1b1 a2b2 a3b3c) Hca

    Kc=

    l0MS

    d) m hb1 s1; hb2 s2; hb3 s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih2 2hs1b1 s2b2 s3b3 3

    pe) fhb1 s1 0; hb2 s2 0; hb3 s3 0gf) m h s1b1 s2b2 s3b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

    h2 2hs1b1 s2b2 s3b3 3p

    g) hs f61=b1;61=b2;61=b3gh) si sgnai 61

    FIG. 5. (Color online) Hysteresis loops of cubic systems for relevant crystallo-

    graphic directions are described by: m100 h61=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffi

    h262h 3p ,m110 h6

    ffiffiffi2

    p=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffi

    h262ffiffiffi

    2p

    h 3p

    , and m111 h6ffiffiffi

    3p =

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffih262

    ffiffiffi3

    ph 3

    p.

    For each crystallographic direction, the switching fields are: hs001 61,hs110 6 ffiffiffi2p , and hs111 6 ffiffiffi3p .

    083937-4 I. Petrila and A. Stancu J. Appl. Phys. 109, 083937 (2011)

    Downloaded 05 Jul 2013 to 134.226.112.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

  • 8/22/2019 JApplPhys_109_083937.pdf

    6/7

    In the case of the crystallographic directions the hys-teresis loops can be described analytically by adapting

    Table III(f) to determine the direction of applied field.

    For the crystallographic directions represented in Fig. 5

    on each hysteresis branch, the hysteresis loops of the cubic

    ferromagnetic particle presents one irreversible transition.

    In the xOz plane (b2 0, b1 sinw, b3 cosw) thehysteresis loops are given by

    m h s1 sinw s3coswffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffih2 2hs1 sinw s3cosw 3

    p ; (17)with hs fs1= sinw;s3=coswg, the switching fields.

    As shown in Fig. 6, the hysteresis loops are always irre-versible and on each hysteresis branch, for a given direction

    of applied field, the particle can have one of two irreversible

    transitions. This 2D representation of the 3D cubic system

    can be used in some situations (as in a traditional way) as a

    2D representation of biaxial anisotropy (see also, Fig. 3).

    For an arbitrary orientation of the applied field, h

    1=72; 3; 6, the switching fields are given by hs

    f67=2;67=3;67=6

    gand the hysteresis loop is described

    by Table III(f).As shown in Fig. 7 the cubic ferromagnetic particle can

    have up to 3 irreversible transitions on each hysteresis

    branch.

    From practical considerations, Hc Hcaffiffiffi

    3p Kc ffiffiffi3p =Ps

    can be used as a more realistic definition for the anisotropy

    field of the cubic ferromagnetic particle.

    VII. ORTHORHOMBIC HYSTERON

    For the orthorhombic (triaxial) anisotropy,24 the usual

    anisotropy free energy is given by W0a K01 a21 K

    0

    2 a2

    2 K0

    3 a2

    3. From the present symmetry consideration(4) the orthorhombic system has: Na 3, and fx; y; zg theanisotropy axes (g1 a1, g2 a2, g3 a3). The expressionof the anisotropy energy of the orthorhombic system

    becomes Woa A1ja1j A2ja2j A3ja3j. One may definethe effective anisotropy constant by Ko

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiA21 A22 A23

    pand the reduced components of the anisotropy constants by

    ai Ai=Ko; i 1 3. The main characteristics of theorthorhombic hysteron are presented in Table IV.

    As in the cubic systems, the orthorhombic systems can

    have up to 3 irreversible transitions on each hysteresis

    branch.

    These results can be extrapolated to other sources of ani-

    sotropy, such as exchange bias systems which show asym-metries2527 or the magneto-elastic anisotropy5,2830 which

    represent an example of a system with mixed anisotropy and

    also with two nonorthogonal anisotropy axes.

    VIII. CONCLUSIONS

    From the symmetry considerations, the magnetization

    processes of very complex ferromagnetic particles can be

    analytically described in a first approximation.

    For a given direction of the applied field, the numbers of

    irreversible transitions on the hysteresis branch can be up to

    the numbers of the anisotropy axis.

    FIG. 6. (Color online) Hysteresis loops of a cubic system for different direc-

    tions of applied field in the xOz plane.

    FIG. 7. (Color online) Hysteresis loop of the cubic ferromagnetic particle

    for an arbitrary orientation of applied field.

    TABLE IV. Orthorhombic hysteron proprieties: a) free anisotropy energy

    density, b) free energy density, c) anisotropy field, d) magnetic moment ori-

    entation, e) switching conditions, f) hysteresis loop, g) switching fields, and

    h) notations.

    a) woa Woa =Ko a1ja1j a2ja2j a3ja3jb) wo 3i1 aijaij haibi c) Hoa

    Ko=

    l0MS

    d) m hb1 s1a1; hb2 s2a2; hb3 s3a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffih2 2hs1a1b1 s2a2b2 s3a3b3 1

    pe) fhb1 s1a1 0; hb2 s2a2 0; hb3 s3a3 0gf) m h s1a1b1 s2a2b2 s3a3b3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffi

    h2 hs1a1b1 s2a2b2 s3a3b3 1p

    g) hs fs1a1=b1;s2a2=b2 s3a3=b3gh) si sgnai 61

    083937-5 I. Petrila and A. Stancu J. Appl. Phys. 109, 083937 (2011)

    Downloaded 05 Jul 2013 to 134.226.112.13. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions

  • 8/22/2019 JApplPhys_109_083937.pdf

    7/7

    For a more accurate description one must use higher

    terms for the approximation of anisotropy energy, but with

    the price of a nonanalytical description.

    ACKNOWLEDGMENTS

    The work was supported by HiFi 12-093 Grants of

    Romanian ANCS and was facilitated by the rAMONa com-

    puter cluster of the AMON Interdisciplinary Platform ofAlexandru Ioan Cuza University of Iasi.

    1I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applica-

    tions (Elsevier, Boston, 2003).2E. Della Torre, Magnetic Hysteresis (IEEE, New York, 1999).3G. Bertotti, Hysteresis in Magnetism (Academic, New York, 1998).4W. F. Brown, Phys. Rev. 130, 1677 (1963).5E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. A240, 599 (1948).6

    J. C. Slonczewski, Research Memo No. 003.111.224, IBM Research Cen-

    ter, Poughkeepsie, New York (1956).7

    W. Wernsdorfer, K. Hasselbach, A. Benoit, B. Barbara, B. Doudin, J.

    Meier, J. P. Ansermet, and D. Mailly, Phys. Rev. B 55, 11552 (1997).8M. T. Rahman, N. N. Shams, C. H. Lai, J. Fidler, and D. Suess, Phys. Rev.

    B 81, 014418 (2010).9

    E. Carpene, E. Mancini, C. Dallera, E. Puppin, and S. De Silvestri,J. Appl. Phys. 108, 063919 (2010).

    10A. A. Smirnov and A. L. Pankratov, Phys. Rev. B 82, 132405 (2010).

    11S. Lee, H. Lee, T. Yoo, S. Lee, X. Liu, and J. K. Furdyna, J. Appl. Phys.

    108, 063910 (2010).12

    I. Petrila and A. Stancu, Physica B 406, 906 (2011).13

    I. Petrila and A. Stancu, J. Phys.: Condens. Matter23, 076002 (2011).14C. Zhang, T. Ma, R. Qi, and M. Yan, J. Appl. Phys. 108, 043908

    (2010).15

    K. G. West, D. N. H. Nam, J. W. Lu, N. D. Bassim, Y. N. Picard, R. M.

    Stroud, and S. A. Wolf, J. Appl. Phys. 107, 113915 (2010).16

    K. T. Huang, P. C. Kuo, G. P. Lin, C. L. Shen, and Y. D. Yao, J. Appl.

    Phys. 108, 084318 (2010).17N. S. Akulov, Z. Phys. 100, 197 (1936).

    18E. Kondorski, Z. Phys. 11, 597 (1937).19

    S. A. Manuilov and A. M. Grishin, J. Appl. Phys. 108, 013902 (2010).20R. M. Bozorth, Ferromagnetism (IEEE, New York, 1993).21

    A. Thiaville, Phys. Rev. B 61, 12221 (2000).22

    M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Melinon, A. Perez,

    and D. Mailly, Phys. Rev. B 69, 024401 (2004).23

    A. Paul and S. Mattauch, J. Appl. Phys. 108, 053918 (2010).24H. Grabert, Phys. Rev. Lett. 61, 1683 (1988).25

    W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).26L. Lin, N. Thiyagarajah, H. W. Joo, J. Heo, K. A. Lee, and S. Bae, J. Appl.

    Phys. 108, 063924 (2010).27Y. Hu, Y. Liu, and A. Du, J. Appl. Phys. 108, 033904 (2010).28

    M. Komelj, Phys. Rev. B 82, 012410 (2010).29Z. Wang, J. Liu, C. Jiang, and H. Xu, J. Appl. Phys. 108, 063908 (2010).30

    L. I. Vergara, J. Cao, L.-C. Tung, N. Rogado, F. Yen, Y. Q. Wang, R. J.Cava, B. Lorenz, Y.-J. Wang, and J. L. Musfeldt, Phys. Rev. B 81, 012403

    (2010).

    083937-6 I. Petrila and A. Stancu J. Appl. Phys. 109, 083937 (2011)

    http://dx.doi.org/10.1103/PhysRev.130.1677http://dx.doi.org/10.1098/rsta.1948.0007http://dx.doi.org/10.1103/PhysRevB.55.11552http://dx.doi.org/10.1103/PhysRevB.81.014418http://dx.doi.org/10.1103/PhysRevB.81.014418http://dx.doi.org/10.1063/1.3488639http://dx.doi.org/10.1103/PhysRevB.82.132405http://dx.doi.org/10.1063/1.3486210http://dx.doi.org/10.1016/j.physb.2010.12.025http://dx.doi.org/10.1088/0953-8984/23/7/076002http://dx.doi.org/10.1063/1.3467785http://dx.doi.org/10.1063/1.3374639http://dx.doi.org/10.1063/1.3486478http://dx.doi.org/10.1063/1.3486478http://dx.doi.org/10.1007/BF01418601http://dx.doi.org/10.1063/1.3446840http://dx.doi.org/10.1103/PhysRevB.61.12221http://dx.doi.org/10.1103/PhysRevB.69.024401http://dx.doi.org/10.1063/1.3475699http://dx.doi.org/10.1103/PhysRevLett.61.1683http://dx.doi.org/10.1103/PhysRev.102.1413http://dx.doi.org/10.1063/1.3471803http://dx.doi.org/10.1063/1.3471803http://dx.doi.org/10.1063/1.3452332http://dx.doi.org/10.1103/PhysRevB.82.012410http://dx.doi.org/10.1063/1.3480814http://dx.doi.org/10.1103/PhysRevB.81.012403http://dx.doi.org/10.1103/PhysRevB.81.012403http://dx.doi.org/10.1063/1.3480814http://dx.doi.org/10.1103/PhysRevB.82.012410http://dx.doi.org/10.1063/1.3452332http://dx.doi.org/10.1063/1.3471803http://dx.doi.org/10.1063/1.3471803http://dx.doi.org/10.1103/PhysRev.102.1413http://dx.doi.org/10.1103/PhysRevLett.61.1683http://dx.doi.org/10.1063/1.3475699http://dx.doi.org/10.1103/PhysRevB.69.024401http://dx.doi.org/10.1103/PhysRevB.61.12221http://dx.doi.org/10.1063/1.3446840http://dx.doi.org/10.1007/BF01418601http://dx.doi.org/10.1063/1.3486478http://dx.doi.org/10.1063/1.3486478http://dx.doi.org/10.1063/1.3374639http://dx.doi.org/10.1063/1.3467785http://dx.doi.org/10.1088/0953-8984/23/7/076002http://dx.doi.org/10.1016/j.physb.2010.12.025http://dx.doi.org/10.1063/1.3486210http://dx.doi.org/10.1103/PhysRevB.82.132405http://dx.doi.org/10.1063/1.3488639http://dx.doi.org/10.1103/PhysRevB.81.014418http://dx.doi.org/10.1103/PhysRevB.81.014418http://dx.doi.org/10.1103/PhysRevB.55.11552http://dx.doi.org/10.1098/rsta.1948.0007http://dx.doi.org/10.1103/PhysRev.130.1677