10
Ján LUMNITZER 1 , Martin MANTIČ 2 , Michal FABIAN 3 Opiekun naukowy: Martin MANTIČ EKSPERYMENTALNE WYZNACZENIE POLOŻENIA ŚRODKA CIĘŻKOŚCI WÓZKA SUWNICY POMOSTOWEJ Streszczenie: Artykul koncentruje się na eksperymentalnym wyznaczeniu wspólrzędnych środka ciężkości dźwigu pomostowym i wyjaśnia niektóre z możliwości obliczania tych wartości. Pomiary prowadzono na suwnicy wciągarki tego dźwigu. Opisano podstawowe zasady zastosowanych metod i urządzeń pomiarowych, a także proponowane procedury. Wynikiem eksperymentu są wartości wymiarowe środka ciężkości w osiach x, y i z. Slowa kluczowe: suwnica wciągarka, środek ciężkości, nacisk kola EXPERIMENTAL MEASUREMENT ON THE CRANE TROLLEY OF A BRIDGE CRANE IN THE ORDER TO DETERMINE THE POSITION OF ITS CENTER OF GRAVITY Summary: The article focuses on the experimental determination of the coordinates of the center of gravity on the bridge crane and explains some of the possibilities of calculating these values. It describes the basic principles of used methods and measuring devices as well as the proposed preparations. The results of the experiment are dimensional values of the center of gravity in the x, y and z axes. Keywords: crane trolley, center of gravity, wheel load 1 Ing., Technical University of Košice, Faculty of Mechanical Engineering, Department of Construction, Automotive and Transport Engineering, e-mail: [email protected] 2 doc. Ing., PhD., Technical University of Košice, Faculty of Mechanical Engineering, Department of Construction, Automotive and Transport Engineering, e-mail: [email protected] 3 doc. Ing., PhD., Technical University of Košice, Faculty of Mechanical Engineering, Department of Automotive Production, e-mail: [email protected]

Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

Ján LUMNITZER1, Martin MANTIČ2, Michal FABIAN3

Opiekun naukowy: Martin MANTIČ

EKSPERYMENTALNE WYZNACZENIE POŁOŻENIA ŚRODKA

CIĘŻKOŚCI WÓZKA SUWNICY POMOSTOWEJ

Streszczenie: Artykuł koncentruje się na eksperymentalnym wyznaczeniu współrzędnych środka ciężkości dźwigu pomostowym i wyjaśnia niektóre z możliwości obliczania tych wartości. Pomiary prowadzono na suwnicy wciągarki tego dźwigu. Opisano podstawowe zasady zastosowanych metod i urządzeń pomiarowych, a także proponowane procedury. Wynikiem eksperymentu są wartości wymiarowe środka ciężkości w osiach x, y i z. Słowa kluczowe: suwnica wciągarka, środek ciężkości, nacisk koła

EXPERIMENTAL MEASUREMENT ON THE CRANE TROLLEY

OF A BRIDGE CRANE IN THE ORDER TO DETERMINE THE

POSITION OF ITS CENTER OF GRAVITY

Summary: The article focuses on the experimental determination of the coordinates of the center of gravity on the bridge crane and explains some of the possibilities of calculating these values. It describes the basic principles of used methods and measuring devices as well as the proposed preparations. The results of the experiment are dimensional values of the center of gravity in the x, y and z axes. Keywords: crane trolley, center of gravity, wheel load

1 Ing., Technical University of Košice, Faculty of Mechanical Engineering, Department of Construction, Automotive and Transport Engineering, e-mail: [email protected] 2 doc. Ing., PhD., Technical University of Košice, Faculty of Mechanical Engineering, Department of Construction, Automotive and Transport Engineering, e-mail: [email protected] 3 doc. Ing., PhD., Technical University of Košice, Faculty of Mechanical Engineering, Department of Automotive Production, e-mail: [email protected]

Page 2: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

238 Ján LUMNITZER, Martin MANTIČ, Michal FABIAN

1. Introduction

It is very often dealt with the term „stability” in machinery. These are those machines which has the tipping force a significant impact on which could interfere with the overall stability of the device. If the stabilizing torque, with respect to the most unfavorable tipping edge, is greater or equal to the tipping torque, which includes all the action of the tipping forces, the device is considered to be safe from tilting. The ratio of these two torques can be expressed by the coefficient of stability that should be greater or equal to one. In calculating of this coefficient, it is essential to include all existing gravity masses acting as a tipping or stabilizing torque in their most unfavorable conditions, actions and locations. The effects of potential forces of inertia are also taken into account when solving the dynamic stability in mobile devices. [1].

Figure 1. Illustration of the action of tipping (F1.r1) and stabilizing torque (F2.r2) on

the tower crane [2]

2. The importance of the calculation of the center of gravity on the device

The center of gravity is the decisive parameter for solving the stability of the device. It is the point through which passes the gravity resultant force. The line of action of this force passes through the center of gravity even if the position of the device changes. Only mass distribution has a decisive influence on the position of the center of gravity [3]. Determining the position of the center of gravity on the crane trolley in the Laboratory of transportation systems and logistic is required to achieve the baseline parameters for the analysis model od the crane for static and dynamic simulation solutions.

Page 3: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

Experimental measurement on the crane trolley of a bridge crane in order … 239

3. Methodology of calculation of the center of gravity on the crane trolley of the bridge crane

A weighing method is generally used in the experimental practice to determine the position of the center of gravity. In this way we can achieve the complete position of the center of gravity - in the space, or only partially - in a certain plane. It is therefore the determination of the coordinates x, y and z. The principle of determining the position of the center of gravity is to detect the forces and their reactions from torque terms, either in the horizontal position or in the tilting of the examined device. It is predominantly an experimental-computational procedure, but there is also graphical method for determining the position of the center of gravity. This method, however, is more demanding on the accuracy of the measuring system. While deciding about a suitable method, it is necessary to consider especially the possibilities and equipment of the measuring workplace. In case of the determination of the horizontal coordinates of the center of gravity on the crane trolley, the method was based on the measurement of the wheel loads and for the determination of the vertical coordinate of the center of gravity, the method of measuring forces in the hanging using the HBM S9M force sensor.

4. Measuring preparation for wheel load determination

Tensometric sensors of type YZC-161B, which are often used for weight measurement in personal or kitchen scales, have been used to measure wheel loads. It is a half-bridge connection of strain gauges with the following technical parameters: Rated load: 50kg

Rated output: 1.0 ±0.1mV/V

Nonlinearity: 0.08 %F.S

Hysteresis: 0.1 %F.S

Repeatability: 0.05 %F.S

Creep(5min): 0.05 %F.S

Temperature Effect: 0.02 %F.S/°C

Zero balance: ±0.1000 mV/V

Input impedance: 1000±20% Ω

Output impedance: 1000±10% Ω

Insulation resistance: 2000 MΩ

Safe Overload: 120 %F.S

Ultimate Overload: 150 %F.S

Operating temperature range: -20~65°C

Recommended Excitation Voltage: 5 VDC

Page 4: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

240 Ján LUMNITZER, Martin MANTIČ, Michal FABIAN

Maximum working voltage: 8 VDC

Level of protection: IP65 [4]

Figure 2. Sensors used to measure wheel loads [5]

A measuring preparation with four sensors was designed together with specially modified sleeves for the recording of wheel loads from all for wheels at the same time (Fig. 3). Before the measurement itself all the sensors had to be calibrated and therefore determine their calibration curves. Calibration was performed through a weight calibration set.

Figure 3. Measuring preparation for measuring wheel loads of the crane trolley

Page 5: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

Experimental measurement on the crane trolley of a bridge crane in order … 241

Several wheel loads measurements were performed, of which the average values are shown in Fig. 4. The sum of the individual wheel loads gives the total weight of the crane trolley, which is Q = 351.66N.

Figure 4. Average values of measured wheel loads of the crane trolley

5. Determining the position of the center of gravity of crane trolley

5.1. Determination of horizontal coordinates of the center of gravity

The principe of this calculation consisted in measuring the wheel loads on the crane trolley. The crane trolley must be placed exactly horizontally, while when determining the coordinate of the crane trolley in the x-z plane (lenghtwise direction), the pressure of one of the axles of the crane trolley is recorded on the strain gauges (Fig. 5) and when determining the center of gravity in the y-z plane (crosswise direction), the pressure created by the wheels on the left or the right side of the crane trolley is recorded (Fig. 6). On the basis of the torque term to the point B - when determining the center of gravity in the lenghtwise direction and to the point C when determining the center of gravity in the crosswise direction, it was possible to calculate the distance of the center of gravity from the respective point in the horizontal plane.

R1=73,89N

R2=110,8N R3=44,39N

R4=122,58N

Page 6: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

242 Ján LUMNITZER, Martin MANTIČ, Michal FABIAN

a) coordinate in the lenghtwise direction

Figure 5. Schema for calculating the center of gravity in the lenghtwise direction

( ) 12 2: 0i B xM R L Q L⋅ − ⋅ = (1)

12 1 22

( ) (73,9 110,8) 464234,7

351,66x x

R L R R LL mm

Q Q

⋅ + ⋅ + ⋅= = = = (2)

b) coordinate in the crosswise direction

Figure 6. Schema for calculating the center of gravity in the crosswise direction

( ) 14 4: 0i C yM R L Q L⋅ − ⋅ = (1)

14 1 42

( ) (73,9 122,58) 400223,5

351,66y yR L R R L

L mmQ Q

⋅ + ⋅ + ⋅= = = = (2)

R12 R34 Q

T

Lx

L1 L2

A B

z

x

R14 R23 Q

T

Ly

L3 L4

B C

z

y

Page 7: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

Experimental measurement on the crane trolley of a bridge crane in order … 243

5.2. Determining the vertical coordinate of the center of gravity

The vertical coordinate of the center of gravity was determined by using of the hanging rope. The tilting edge on one side of the crane trolley is left on a solid floor, the other side is hinged at a certain angle and attached to the force sensor (Fig. 7).

Figure 7. Schema for calculating the vertical coordinate of the center of gravity

The torque term is considered relative to the crane trolley tilting edge (point D). Input parameters for calculating the vertical coordinate of the center of gravity: α = 16,2°

QX = 286,7mm

L = 460mm M = 60mm R = 201,8N Q = 351,66N

tan 460 60 tan16,2 442,57R

X L M mmα= − ⋅ = − ⋅ = (5)

( ) : cos sin cos 0i D RM Q Q z R Xα α α⋅ − ⋅ − ⋅ ⋅ = (6)

cos cos

sin

201,8 cos16,2 442,57 351,66 cos16, 2 286,7122,66

351,66 sin16, 2

R QR X Q X

zQ

z mm

α αα

− ⋅ ⋅ + ⋅ ⋅=

⋅− ⋅ ⋅ + ⋅ ⋅= =

(7)

Q

D

R

Page 8: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

244 Ján LUMNITZER, Martin MANTIČ, Michal FABIAN

A real view of the measurement using the HBM S9M force sensor is shown in Fig. 8.

Figure 8. A demonstration of the implementation of the reaction force measurement

for the detection of the vertical coordinate of the center of gravity; the HBM sensor

S9M [6]

6. Conclusion

From the measurement results, the basic coordinates of the center of gravity were determined in the horizontal and vertical directions. These data will be used to determine input parameters of the computational simulation model as well as a parameter for the placement of other possible crane trolley drive components. The detected coordinates of the center of gravity are shown in Fig. 9.

Page 9: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

Experimental measurement on the crane trolley of a bridge crane in order … 245

Figure 9. Diagram of found center position coordinates

The article was created with the support of projects: VEGA 1/0110/18 „Research and

development in the area of reverse engineering and rapid prototyping focused on

innovations of constructional parts designed for the experimental vehicles and

transport equipment.”

REFERENCES

1. von BERG D.: Krane und Kranbahnen: Berechnung, Konstruktion, Ausführung. Stuttgart : Teubner, 1989. 270 s. ISBN 978-3-322-96767-1.

2. Marosz S. blog https://blog.sme.sk/blog/5547/128401/Slide1.JPG

(online 20.12.2017) 3. SINAY J; BIGOŠ P; BUGÁR T: Experimentálne metódy a skúšanie strojov.

Bratislava: ALFA, 1989. 232s 4. Aliexpress, CNBTR Store,

https://www.aliexpress.com/item/4pcs-YZC-161B-Human-Body-Scale-Sensor-

50kg-Load-Cell-Weighing-Sensor-Indenters/32588862252.html

(online 20.12.2017) 5. Walmart store,

x=243,7mm

y=223,5mm

z=112,7mm

z z

x y

Page 10: Ján LUMNITZER , Martin MANTI Č , Michal FABIAN Opiekun … · 2018. 12. 5. · Ján LUMNITZER 1, Martin MANTI Č2, Michal FABIAN 3 Opiekun naukowy: Martin MANTI Č EKSPERYMENTALNE

246 Ján LUMNITZER, Martin MANTIČ, Michal FABIAN

https://i5.walmartimages.com/asr/f3887bdd-97a3-4a9c-984e-

257dcf90800b_1.7ae53292e17ad60ca244d7ceff6677a4.jpeg?odnHeight=450&o

dnWidth=450&odnBg=FFFFFF

(online 15.10.2018) 6. HBM, měříci technika, http://www.hbm.cz/wp-content/uploads/s9m_500n.jpg

(online 20.12.2017)