21
KATALYSE – Et lite blikk inn i et (industrielt) viktig område MEF1000 – 04.11.2003 v/ Unni Olsbye

KATALYSE – Et lite blikk inn i et (industrielt) viktig område

  • Upload
    yitta

  • View
    36

  • Download
    1

Embed Size (px)

DESCRIPTION

KATALYSE – Et lite blikk inn i et (industrielt) viktig område. MEF1000 – 04.11.2003 v/ Unni Olsbye. Hva er en katalysator? - PowerPoint PPT Presentation

Citation preview

Page 1: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

KATALYSE –Et lite blikk inn i et (industrielt)

viktig område

MEF1000 – 04.11.2003 v/ Unni Olsbye

Page 2: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Hva er en katalysator?

En katalysator er et stoff som ved sitt nærvær får en gitt kjemisk reaksjon til å få fortere uten at katalysatoren inngår i den støkiometriske ligningen for reaksjonen (Berzelius 1837).

•Ordet katalyse betyr å dele opp i enkeltkomponenter. Ordet katalyse ble i gamle Hellas brukt om nedbrytingen av samfunnet. Berzelius mente at katalysatoren brøt ned motstanden mot en kjemisk reaksjon slik at den dermed gikk fortere.

•Katalysatoren skal altså ikke forbrukes ved reaksjonen. Mengden reaktant som kan omsettes til produkt p.g.a. katalysatoren er vesentlig større enn mengden katalysator.

Page 3: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Hvordan virker en katalysator?

De fleste kjemiske reaksjoner går sakte hvis de ikke først blir tilført en del energi (varmes opp). Mengden energi som må til for å starte reaksjonen blir mindre når den riktige katalysatoren er tilstede. En katalysator gjør det mulig for molekylene å finne en snarvei . De behøver ikke klatre over toppen . ”I stedet for å klatre over fjellet, kjører de gjennom en tunnel.”

OVER FJELLET ELLER GJENNOM TUNNELEN?

Page 4: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Et katalyse-eksempel

H2O2 (l) H2O (l) + O2 (g) dE = 1,06 V

Forbindelsen kan disproporsjonere til H2O og O2 (energetisk fordelaktig) men reaksjonen går sakte.

: Aktiveringsenergien er for høy!

Page 5: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Et katalyse-eksempel

H2O2 (l) H2O (l) + O2 (g) dE = 1,06 V

Hva var det egentlig som skjedde?

H2O2 + 2 H+ + 2 e- 2 H2O dE = 1,34 V

2 I- I2 + 2 e- dE = -0,53 V

dE(tot) = 0,81 VdE(tot) = 0,81 V

H2O2 + O2 + 2 H+ + 2 e- dE = -0,29 V

I2 + 2 e- 2 I- dE = 0,53 V

dE(tot) = 0,24 VdE(tot) = 0,24 V

I- er katalysator for reaksjonen!

Page 6: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Kollisjonsteori:

Reaksjonshastigheten, r k = P*Z’*exp(-E/RT)

• Ifølge kollisjonsteorien vil en katalysator kunne øke hastigheten ved at:

a) Sannsynligheten P for en gunstig orientering av reaktantmolekylene øker

b) Antall ”støt” Z mellom reaktantmolekylene øker

c) Energien E som er nødvendig for at et ”støt” skal føre til reaksjon,

aktiveringsenergien, blir mindre

Alle faktorer synes å gjøre seg gjeldende, men det vanligste er at punkt c), nedsatt

aktiveringsenergi, har den avgjørende innflytelsen.

Den senkede aktiveringsenergien for en katalysert prosess kan bety at reaksjonen

følger en helt ny reaksjonsvei, eller at den foregår i de samme trinn, men med en

fordelaktig binding til katalysatoren.

Hvorfor øker hastigheten av en katalysert reaksjon?

Page 7: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

KATALYSATORER GJØR AT:

•Reaksjoner går fortere

•Vi bruker mindre energi

•Vi får renere produkter og mindre forurensning

CH2 = CH2 + O2

CH3CHO

+ CO2

Pt2CO2 + H2O

AgCH2

CH2

O

PdCl 2, CuCl 2, HCl( homogen)

Page 8: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

• Aktivitet; er definert som forholdet mellom reaksjonshastigheten med og uten katalysator.

• Selektivitet; er definert som katalysatorens evne til å styre reaksjonen mot et produkt.

• Spesifisitet; er definert som katalysatorens evne til å bruke enkelte reaktanter selektivt

• Heterogen katalyse Katalysatoren og reaksjonssystemet danner to adskilte faser. Katalysatoren er normalt et fast stoff og reaktanter - produkter er i gass eller væskefase. Industrielt og økonomisk er heterogene katalysatorer viktigst. Dette gir enkel design.

• Homogen katalyse Katalysatoren og reaksjonssystemet er en fase. Det vanligste er at katalysatoren er løst i reaksjonsblandingen.

• (Enzymatisk katalyse Denne faller ikke klart inn under en av de to kategoriene over fordi ikke utgjør noen ekte løsning, men heller ikke klart adskilt fast fase.)

Katalyse – viktige begreper

Page 9: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Hvor finnes katalysatorer?I en bil:I en bil:Når bensin i brenner i motoren dannes det nitrogenoksider (N2 + O2 2 NO), giftig karbonmonoksid (CO), og det slippper ut en del bensin som ikke har brent opp. Eksosen går over en katalysator som bryter ned NO til luft (nitrogen og oksygen), oksiderer CO og uforbrent bensin til CO2 og vann (damp).

Uten katalysator:Uten katalysator:Blandingen av NOx, CO og bensinrester danner smog (= smoke + fog). Smog gir uklar luft som det er skadelig å puste inn. Forurensingen øker også mengden sur nedbør.Figuren til venstre viser en bilkatalysator.

Page 10: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Hvor finnes katalysatorer?

I kroppen vår:I kroppen vår:Vi har mange, mange katalysatorer i kroppen vår. I levende vesener kalles de enzymer.

Uten katalysator:Uten katalysator:Vi ville ikke eksistere.

Figuren til venstre viser enzymet lysozym. Dette finnes mange steder i kroppen vår og ødelegger blant annet bakterier ved å bryte ned celleveggene deres.

Page 11: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Hvor finnes katalysatorer?

I oljeraffinerierI oljeraffinerierHvert eneste minutt, dag og natt, året rundt går 10 000 tonn (1000 store tankbiler) over en katalysator som omformer råoljen (som ikke kan brukes direkte) til f. eks. bilbensin, diesel og fyringsoljer til boligoppvarming.

Annen industriAnnen industriLegemidler fremstilles i mange kompliserte kjemiske reaksjoner. Mange trinn er avhengig av en katalysator.

Figuren over viser et oljeraffineri, der katalysatorer brukes i stor skala.

Page 12: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Industrielt viktige prosesser (1997)Kjemisk produkt Rekkefølge* Katalytisk prosess Eten 1 Hydrokarbon cracking, heterogen Svovelsyre 2 SO2 oksidasjon, heterogen Propen 3 Hydrokarbon cracking, heterogen 1,2-Dikloretan 4 C2H4 + Cl2; heterogen Kalsiumhydroksid Ca(OH)2

5 Uten katalysator

Ammoniakk 6 N2 + H2; heterogen H2 og energi fra CH4 Urea 7 Fra NH3 katalysert Fosforsyre 8 Uten katalysator Klor 9 Elektrolyse Etylbenzen 10 Alkylering av benzen, homogen katalyse NaCO3 11 Uten katalysator NaOH 12 Elekrolyse Styren 13 Dehydrogenering av ethylbenzen,

heterogen HNO3 14 NH3 + O2, heterogen NH4NO3 15 Forløper katalytisk HCl 16 Forløper katalytisk Akrylonitril 17 HCN + C2H2, homogen katalyse (NH4)2SO4 18 Forløper katalytisk K2O 19 Uten katalysator TiO2 20 Uten katalysator *) Fra Chemical and Engineering news, June 29 (1998)

Page 13: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Katalysatorens plass i prosessen

Katalysatoren er bare en liten bit i den store prosessen, men hvis den er for dårlig (lav aktivitet, liten selektivitet), må alle deler av prosessen gjøres større (produkt-rensing, energitilførsel), og produksjonen blir mye dyrere.

God kjemikunnskap er nødvendig for å finne rett katalysator til rett prosess.

Litt praktisk innsikt er heller ingen ulempe.

Page 14: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

To hovedtyper katalyse:

•”Red-oks”-katalysatorer (gi/ta elektroner)

•Metall

•Metall-på-bærer

•”Syre-base”-katalysatorer (gi/ta protoner)

•Fosforsyre/bærer

•Zeolitter

Page 15: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Katalyse-eksempel: 1-buten oligomerisering

Molekylet øverst på figuren, n-oktan har oktantall null og er dårlig bensin. Det nederste molekylet, iso-oktan, har oktantall hundre og er glimrende bensin.

Page 16: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Trinnene i en heterogent katalysert reaksjon

Trinn 1

Diffusjon til katalysatoren

Diffusjon fra katalysatoren

Adsorbsjon på katalysatoren

Desorbsjon fra katalysatoren

Reaksjonen på katalysatoren

Reaktanter ProdukterTrinn 3Trinn2 Trinn 5Trinn 4

Page 17: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Fysisorpsjon - Kjemisorpsjon

Figur 6.1. Skjematisk representasjon av a) fysisorbsjon og b) kjemisorpsjon av H2. (Shriver and Atkins 17.7)

Figur 6.2. Fysisorbsjon og kjemisorbsjon (Atkins VI Figure 28.29)

Page 18: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Fysisorbsjon - Kjemisorpsjon

En sterk binding (kjemisorbsjon) mellom reaktantene og katalysatoren er en viktig del av katalysatorens virkningsmekanisme.

Det er viktig at bindingen er tilstrekkelig sterk til at bindingsforholdene i reaktantene forandres tilstrekkelig til at disse kan reagere, men bindingen må ikke være så sterk at produktene hindres i å unnslippe. Dette illustreres ofte med såkalte vulkan-plott.

Figur 6-3. Oppsummering av katalytisk aktivitet til d-metallene.

Page 19: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Heterogene red-oks.-katalysatorerMetaller

I en krystall er det en likevekt mellom bindinger i alle retninger rundt et atom.

Denne likevekten blir brutt i overflaten, og systemet blir reaktivt overfor innkommende molekyler.

De enkleste systemene er rene metaller.

Virkeligheten er likevel som oftest mer komplisert.

Page 20: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Heterogene red-oks.-katalysatorerMetaller

Ideell modell av platina 6-enhetsceller. Alle ytre plan blir [001]-plan.

Beregnet form på en sølv nano-partikkel

Den aktive fasen er normalt findispergert på en bærer.

Page 21: KATALYSE – Et lite blikk inn i et (industrielt)  viktig område

Heterogene red-oks.-katalysatorerEt eksempel

Etan, C2H6, finnes i naturgassen i Nordsjøen.

Ved å bruke en platinakatalysator kan vi dehydrogenere etanmolekylet til eten.

Eten kan vi bruke til å produsere plast.

Da har vi brukt en forbindelse med lav verdi (etan) og skapt et verdifullt produkt (plast).

Den motsatte reaksjonen (en katalysator virker alltid begge veier):