51
L(1405) のののののの 中中 中中中中 () 中中中中中 中中 中中 ( 中中中Prog. Theor. Exp. Phys. (2014) 023D01

L(1405) の光発生反応

  • Upload
    clint

  • View
    126

  • Download
    0

Embed Size (px)

DESCRIPTION

L(1405) の光発生反応. Prog . Theor . Exp. Phys. (2014) 023D01. 中村 聡 (阪大理). 共同研究者: 慈道 大介 ( 首都大). Introduction. L(1405) : 1st excited state of L. 1330. Alston et al., PRL 6 (1961). 1430. K - p  pppS. E. (MeV). _. pS. K N. (1405, -25). L(1405). - PowerPoint PPT Presentation

Citation preview

Page 1: L(1405) の光発生反応

(1405)L の光発生反応

中村 聡 (阪大理)

共同研究者: 慈道 大介 ( 首都大)

Prog. Theor. Exp. Phys. (2014) 023D01

Page 2: L(1405) の光発生反応

Introduction(1405) : L 1st excited state of L

EpS K N

_

1330 1430

(MeV)

(1405, -25)(1405) L

* Existence “predicted” by Dalitz and Tuan (1960)

in analysis of KN scattering length with - KN pS model

* First experimental evidence in K -p pppS (1961)

_ _

Alston et al., PRL 6 (1961)

K -p pppS

Page 3: L(1405) の光発生反応

Controversial (1405) L structure

• 3-quark + mass splitting term Collins & Georgi, PRD 59 (1999) Schat et al., PRL 88 (2002)

• 5-quark Strottman, PRD 20 (1979) Zou, NPA 835 (2010) too many states

• Meson-baryon molecule Dalitz & Tuan, PRL 2 (1959) Oset & Ramos, NPA 635 (1998)

Too light to interpret as naïve 3-quark state

Page 4: L(1405) の光発生反応

(i,j,k : meson-baryon channel)

(1405) L as pole of Scattering amplitude

Coupled-channel scattering equation for T-matrix (scattering amplitude)

Near pole position :

T-matrix for real energy W is used to calculate observables (cross sections, etc.)

Analytic continuation to complex energy W

Resonance is identified by : mass width

Resonance pole can be extracted from analyzing data

Page 5: L(1405) の光発生反応

Why want to know (1405) L pole(s) ?

• Internal structure of (1405)L

constraint on hadron structure models

• Nuclear structure of deeply bound kaonic nuclei (e.g., K-pp )

K-p - pS amplitude is essential input

current status for K-pp : rather large model dependence

B.E. = 10 – 100 MeV, Width = 35 – 110 MeV

Page 6: L(1405) の光発生反応

Pole structure of (1405)L

• Two-pole

cloudy bag model Veit et al. PRD 31, 1033 (1985)

chiral unitary model Jido et al. NPA 725, 181 (2002)

• Single-pole

potential models Fink et al., PRC 41, 2720 (1990)

Akaishi-Yamazaki model PRC 65, 044005 (2002)

Still, pole structure has not been established

Page 7: L(1405) の光発生反応

Attempt to determine (1405) L pole from data

EpS K N

_

1330 1430(MeV)

(1405, -25)(1405) L

Ideal experiment p S p S Impossible !

N

K+

S

p

, g p

} Energy at (1405) L

Two-meson production experiment

difficulty in determining (1405) L pole structure

Page 8: L(1405) の光発生反応

How to extract (1405)L pole from two-meson production data

• Construct a model that consists of production mechanism + final state interaction (FSI)

• FSI contains MB p S amplitude

• Fit data with adjustable parameters in production mechanism and MB p S amplitude

• Extract poles from MB p S amplitude

But, good data had not been available until recently

Page 9: L(1405) の光発生反応

Photo-production of (1405)L

• LEPS/Spring-8 Ahn et al., NPA 721, 715 (2003)

• LEPS/Spring-8 Niiyama et al., PRC 78, 035202 (2008)

• CLAS/JLab Moriya et al., PRC 87, 035206 (2013) ( p S invariant mass distribution) PRC 88, 045201 (2013) (K+ angular distribution)

g p K+ L(1405) K+ p S

Experiments

Page 10: L(1405) の光発生反応

p S line-shape data from CLAS/JLab g p K+ L(1405) K+ p S

Moriya et al., PRC 87, 035206 (2013)

Cleanest data for L(1405) progress toward pole extraction

Page 11: L(1405) の光発生反応

What to do here ?

• Production mechanism + s-wave rescattering

• Gauge invariance at tree level

• Fit data

Develop cUM-based model for g p K+ p S

Page 12: L(1405) の光発生反応

MODEL

• Chiral unitary model

• Photo-production mechanism

Page 13: L(1405) の光発生反応

Chiral Unitary Model (cUM)

: Weinberg-Tomozawa interaction

Coupled-channel scattering equationOset & Ramos, NPA (1998)Oset et al., PLB (2002)

Page 14: L(1405) の光発生反応

Chiral Unitary Model (cUM)

On-shell factorization

(m : renormalization scale )

(W : total energy)

Dimensional regularization

_

Subtraction constant, fitted to data

Page 15: L(1405) の光発生反応

Chiral Unitary Model (cUM)

Good description of K-p K N, pS, pL data above and near K-p threshold_

Page 16: L(1405) の光発生反応

Chiral Unitary Model (cUM)

pole position 1390 - 66i 1426 - 16i

pS 2.9 1.5

KN 2.1 2.7-Coupling strength

Jido et al. NPA 725, 181 (2002)Two-pole structure

Page 17: L(1405) の光発生反応

Photo-production Model

Minimal substitution

Page 18: L(1405) の光発生反応

Photo-production Model

Minimal substitution

Page 19: L(1405) の光発生反応

Photo-production Model

Minimal substitution

Page 20: L(1405) の光発生反応

Photo-production Model

Page 21: L(1405) の光発生反応

Photo-production Model

Rescattering

cUM s-wave amplitude ( (1405) )L

Page 22: L(1405) の光発生反応

Fit data• Subtraction constants (10 parameters)

• contact production mechanism (30 parameters) (total energy (W) dependent complex couplings, gauge invariant)

• Form factors (1 parameters)

Page 23: L(1405) の光発生反応

* Good description of line-shape data

* Different peak position for different charge states

Two-pole structure plays a role ??

Results

Page 24: L(1405) の光発生反応

Resonant and non-resonant contributions

Non-resonant Resonant

Page 25: L(1405) の光発生反応

Resonant and non-resonant contributions

* Significant non-resonant contribution

Shifting peak positions

• Same resonance peak position

2nd pole (1426 – 16i) seems dominant

Single-pole model works as well ??

Page 26: L(1405) の光発生反応

Isospin decomposition

• I=0 ( (1405)) L dominance

• Small but nonnegligible effect of I=2 contribution

Page 27: L(1405) の光発生反応

Single Breit-Wigner model

Single Breit-Wigner model works !1 pole solution is still not excluded

Page 28: L(1405) の光発生反応

K+ angular distribution

Moriya et al, PRC 88, 045201 (2013)

New data from CLAS/JLab

for g p K+ p S

Fitting only lineshape very different angular distributions is still possible

K+ angle data are important to constrain production mechanism

Page 29: L(1405) の光発生反応

K+ angular distribution (not fitted)

Overall trend is captured in our model More fit will be done L(1405) pole structure will be extracted

Page 30: L(1405) の光発生反応

Summary

• Pole structure of L(1405) has not been well confirmed by data

• New CLAS data for g p K+ p S ; cleanest data in L(1405)

region

hope to extract L(1405) pole structure

• g p K+ p S model is developed with cUM amplitude

-- meson-exchange + contact production mechanism

(gauge invariant @ tree level)

-- Line-shape data are well fitted

-- Single Breit-Wigner model also can fit line-shape data

Page 31: L(1405) の光発生反応

Future work• Fit K+ angle data from CLAS

cUM amplitude (subtraction constant) is also varied

extraction of L(1405) pole structure

• Use different contact interactions, form factors

study model dependence of extracted poles

Page 32: L(1405) の光発生反応

Future work

One- or two-pole structure ?

Very new data from CLAS (yesterday) for electroproduction of L(1405) PRC 88, 045202 (2013)

1.6 (GeV/c)2 < Q2 < 3.0 (GeV/c)2

Fairly clear two peaks ! two-pole solution ?

Higher statistics data hoped !

Page 33: L(1405) の光発生反応

Possible ideas for (1405)L   photoproduction experiments at ELPH, LEPS, LEPS2

Data wanted for less model-dependent determination of (1405) L properties

• Double-differential cross sections

• Polarization observable

• Multi-channel data

• K*, S*(1385) unsubtracted data (cf. CLAS data)

gp K+ p S K+ K N K+ p L …

-

Page 34: L(1405) の光発生反応

Backups

Page 35: L(1405) の光発生反応

• p- p K0 (1405) L K0 p S Thomas et al., NPB 56, 15 (1973)

• K- p p0 (1405) L p0 p0 S0 Crystall Ball, PRC 70, 034605 (2004)

• K- d n (1405) L n p S J-PARC proposal

Attempt to determine pole structure of (1405)L

Hadron beam experiments

Confront theory with data below KN threshold

Page 36: L(1405) の光発生反応

cUM-based calculation for p- p K0 p SHyodo et al., PRC 68, 065203 (2003)

p-

p

K0

Data: Thomas et al., NPB (1973)

Page 37: L(1405) の光発生反応

cUM-based calculation for K- p p0 p0 S0 Magas et al., PRL 95, 052301 (2005)

+

Data: Crystall Ball, PRC (2004) the peak is due to second pole

d /sd

MI (

arbi

trar

y sc

ale)

Page 38: L(1405) の光発生反応

K+ angular distribution

Moriya et al, arXiv:1305.6776

Very new data from CLAS/JLab

for g p K+ p S

Page 39: L(1405) の光発生反応

LEPS/SPring8 dataForward K+ kinematics of g p K+ Y*

• LEPS and CLAS data are consistent at low energies• No LEPS data for normalized line shape for g p K+ p S

We analyze only CLAS data

Comparison with CLAS data for g p K+ Y*

Niiyama et al., PRC (2008)

• CLAS• LEPS

(Moriya et al, arXiv:1305.6776)

Page 40: L(1405) の光発生反応

Lagrangians

Page 41: L(1405) の光発生反応
Page 42: L(1405) の光発生反応

Hidden local symmetry model

fixed by V gM decay width; relative phase by SU(3)

Page 43: L(1405) の光発生反応

Tensor coupling

SU(3) relation for magnetic coupling

Page 44: L(1405) の光発生反応

Nacher et al., PLB 455, 55 (1999)

Niiyama et al., PRC (2008)Nacher et al., PLB (1999)

Calculated line shape is :

• Wrong in ordering p-S+ and p+S-

• Too small cross section ?

Page 45: L(1405) の光発生反応

P-wave scattering model (cUM)

+ (relativistic correction to WT term)

Jido et al., PRC 66, 055203 (2002)

Page 46: L(1405) の光発生反応

Is (1405) L exotic ?

Naïve 3-quark picture is not likely

Nucleon (1/2+)

940 MeVN(1535) (1/2- )

1535 MeV

L (1/2+)

1116 MeVL(1405) (1/2- )1405 MeV

Radial excitation to L=1 costs ~ 600 MeV

~ 300 MeV

Page 47: L(1405) の光発生反応

cUM-based calculation for g p K+ p S

Nacher et al., PLB 455, 55 (1999)

W=2.02 GeV

Page 48: L(1405) の光発生反応

(1405) L in Lattice QCD

Quench 3-quark ~ 1.7 GeV Nemoto et al., PRD (2003)

Quench 5-quark ~ 1.89 GeV Ishii et al., PTP (2007)

Full 3-quark ~ 1.6 GeV Takahashi et al., PRD (2010)

Full 3-quark ~ 1.45 GeV Menadue et al., PRL (2012) (variational analysis)

operator M (1405)L

Page 49: L(1405) の光発生反応

cUM-based calculation for g p K+ p S

Nacher et al., PLB 455, 55 (1999)

Contact photo-production (WT term) + s-wave cUM rescattering

Page 50: L(1405) の光発生反応

Nacher et al., PLB (1999)W=2.02 GeV

Comparison with CLAS data

K. Moriya et al. PRC (2013)

Calculated line-shape is :• wrong in ordering

p-S+ and p+S-

• Overestimate in magnitude

Page 51: L(1405) の光発生反応

Contributions from mechanisms

• Small contribution from WT

interference changed by subtraction const.• Large contribution from contact terms

short-range dynamics play important role