85
LE INIZIATIVE DEL PORTALE AGENDA TECNICA CICLO: " Edifici esistenti: salvaguardia e recupero" RILIEVO, LETTURA, DIAGNOSI DELLO STATO DEI MATERIALI E DEI QUADRI FESSURATIVI Con il patrocinio di Caserta 26 febbraio 2013 Prof. Dott. ing. Giovanni Menditto 1

LE INIZIATIVE DEL PORTALE AGENDA TECNICA en 932-3 metodi di prova per determinare le proprietÀ generali degli aggregati – procedura e terminologia per la descrizione petrografica

  • Upload
    lethuy

  • View
    220

  • Download
    3

Embed Size (px)

Citation preview

LE INIZIATIVE DEL PORTALE AGENDA TECNICA

CICLO: " Edifici esistenti: salvaguardia e recupero"

RILIEVO, LETTURA, DIAGNOSI DELLO STATO DEI MATERIALI E DEI QUADRI FESSURATIVI

Con il patrocinio di

Caserta 26 febbraio 2013

Prof. Dott. ing. Giovanni Menditto

1

INTRODUZIONE

Effetti più ricorrenti sui manufatti esistenti che richiedono l’attivazione

di procedure per la riabilitazione (salvaguardia e recupero):

o degrado per vetustà (cause naturali)

o scuotimento sismico

o azioni dirompenti esterne (urti, esplosioni etc)

o deficienze progettuali

o inadeguatezza costruttiva

Premettere ispezione autoptica con l’ausilio (se disponibili) degli originari

grafici costruttivi, certificazione sui materiali impiegati, rilievo storico-

critico, storico artistico, strutturale, geometrico del manufatto (interventi

riabilitativi pregressi, variazioni di uso, sopraelevazioni, etc) in modo da

predisporre un programma mirato di prove

Problema centrale: conoscenza delle caratteristiche dei materiali in opera

(conglomerato cementizio con armatura lenta o pretesa, acciaio, muratura,

legno)

I valori dedotti dai materiali in opera sono definiti valori attuali dai quali è

possibile risalire, con approssimazione, ai valori inizialmente utilizzati

cosiddetti valori potenziali

Questa indagine si presenta assolutamente indispensabile:

o per predisporre il piano di intervento riabilitativo

o nelle controversie giudiziarie (crolli e dissesti)

o per conoscere se i valori potenziali siano conformi alla normativa d’epoca

o per accertare se il materiale fornito in cantiere sia conforme alle

prescrizioni contrattuali (delitto di falso in fornitura)

VALUTAZIONE TEORICA DELLA DURABILITA’ SECONDO

IL COLLEGIO DEI TECNICI DELLA INDUSTRIALIZZAZIONE

EDILIZIA

INDICATO CON:

Ts, la vita di servizio di una struttura in anni;

Tc, l’indice convenzionale della durabilità;

To, il limite convenzionale di vita assunto, ad esempio, pari a 100 anni;

αi, fattori parziali che tengono conto dei vari aspetti in gioco;

CON:

c o iT T formula standard

Ts ≤ Tc

I FATTORI PARZIALI (ai) VENGONO STABILITI IN FUNZIONE:

DEL RAPPORTO ACQUA/CEMENTO DELLA MISCELA DI CALCESTRUZZO;

DELLA CONSISTENZA;

DELLA CLASSE “C” DI RESITENZA;

DELLA MATURAZIONE DEL CALCESTRUZZO IN FUNZIONE DEL SUO AMBIENTE;

DELLA CLASSE DI ESPOSIZIONE E DELLA FINITURA SUPERFICIALE

Al termine della prevista vita di servizio di una struttura questa non è da demolire ma richiede, per essere conservata pienamente funzionale, costi di riadeguamento certamente maggiori di quelli considerati necessari durante la vita di servizio della struttura stessa. Di volta in volta si giudicherà, sulla base di un confronto economico, sull’opportunità di riadeguare o demolire. La seguente relazione può tornare allora utile:

1 1

.(1 ') (1 ')

n nj jj

j jj j

P F DVE cap S

r r

con:

E{cap.}, valore dei costi capitalizzati Cap;

S, costi di investimento;

Vj, costi di manutenzione e gestione per j anni;

P{Fj}, probabilità di collasso in j anni;

r’, interesse reale (interesse nominale adeguato all’inflazione);

n, numero degli anni in cui si ritiene che la struttura funzioni senza difetti.

VITA DI SERVIZIO

TRATTAMENTO DEI DATI

I dati ottenuti dalle indagini vanno trattati, oltre che nel rispetto delle indicazioni specifiche di settore, di seguito fornite, tenendo presente quanto segue:

media aritmetica come valore più probabile Sia o xi la generica lettura o M la media aritmetica delle n letture (valore più attendibile della grandezza, baricentro del campione):

errore quadratico medio (deviazione standard della serie di misure) è un indicatore dell’incertezza della stima, cioè del grado di dispersione dei campioni intorno alla media ed al crescere di cresce l’incertezza di stima ed un campione che ha piccola si dice preciso

Intervallo fiduciale Per conoscere in quale misura M approssima il valore G della grandezza si introduce il concetto di intervallo fiduciale (o di fiducia). L’intervallo fiduciale di un parametro è l’intervallo entro il quale con una prefissata probabilità è contenuto il valore G del parametro stesso Limiti fiduciali Qualsiasi misura ha la probabilità:

o del 68,26% di essere compresa tra M - e M + o del95,44% di essere compresa tra M – 2 e M + 2 o del 99,74% di essere compresa tra M – 3 e M + 3 o per questi motivi si assume come errore massimo

Coefficiente di variabilità o di dispersione Il coefficiente di variabilità è definito da E consente di esprimere il grado di dispersione dei risultati delle prove su base percentuale

L’ordine di grandezza di è per o gli acciai 1,5 ÷ 6% o per il calcestruzzo 9 ÷ 22%

COSTRUZIONI IN MURATURA

FENOMENI DI DEGRADO

• Alveolizzazione (presenza di cavità, alveoli anche profondi, sulla superficie lapidea); • Crosta; • Distacchi; • Efflorescenza; • Fratture; • Fessurazioni; • Pitting (corrosione localizzata per vaiolatura); • Rigonfiamento; • Scagliatura; • Spotting (polverizzazione); • Insufficienza o disarticolazione delle ammorsature (paramento, angoli); • Cause chimiche

PROVE DI CARATTERIZZAZIONE DEL MATERIALE

• Esame visivo: rimozione di una zona di intonaco (almeno 1 m x 1 m) preferibilmente in corrispondenza degli angoli, per individuare forma e dimensione dei blocchi della tessitura e verificare le ammorsature; • Endoscopia; • Martinetti piatti (semplici, doppi, tripli) e loro impiego nelle strutture voltate; • Tensionamento delle strutture arcuate; • Tecniche radar e termografia; • Prove soniche; • Prove sclerometriche; • Malte: prove penetrometriche a dispersione di energia, prove meccaniche; • Prove di schiacciamento; • Esame chimico delle malte e compatibilità con quelle di intervento; • Esame petrografico (UNI 11/76)

ENDOSCOPIA

PRINCIPALI PROVE NON DISTRUTTIVE SULLE MURATURE

ENDOSCOPI:

rigidi a fibre ottiche;

fibroscopi flessibili;

video-endoscopi;

diametro foro 20 ÷ 25 mm.

MARTINETTO PIATTO SINGOLO

PRINCIPALI PROVE NON DISTRUTTIVE SULLE MURATURE

fornisce la tensione verticale attuale;

misura la convergenza: con deformometro rimovibile;

inserimento martinetto piatto;

riempimento con olio in pressione;

Pf , pressione del martinetto per il recupero della deformazione (1bar=12,19 kN);

Ka , rapporto area martinetto/taglio (<1);

Km , coefficiente di bordo pari a 0,85 ÷ 0,95;

σ, tensione applicata alla muratura.

quindi:

a m fK K P

MARTINETTO DOPPIO

PRINCIPALI PROVE NON DISTRUTTIVE SULLE MURATURE

misura della tensione verticale attuale

consente di valutare anche la deformabilità della muratura (E, ν);

E, modulo di elasticità normale (statico);

ν, coefficiente di Poisson.

Modulo di elasticità tengente

f = tensione di rottura compressione della muratura (sperimentale)

= deformazione ultima della muratura (sperimentale)

MARTINETTI PIATTI

valutazione della resistenza a taglio;

effettuare tagli verticali e due tagli orizzontali;

inserimento di un martinetto piatto in uno dei due tagli verticali di area per la misura della spinta laterale.

i martinetti piatti sono stati omologati da STMC 1096/09; 1197/09. RILEM LUM D3 1994

MARTINETTI PIATTI

IMPIEGO NELLE STRUTTURE VOLTATE

COLLOCAZIONE:

in chiave;

alle reni.

TAGLI:

orizzontali;

verticali.

TENSIONAMNETO DELLE STRUTTURE ARCUATE

o Richiesta: valutazione della forza assiale attuale o tiro T (tensionamento); o Causa: movimenti dell’intera struttura o di sue parti o Valutazione del tiro: metodi vibrazionali che si applicano con efficienza e precisione quando il tirante abbia caratteristiche uniformi per tutta la sua lunghezza (massa lineare, modulo elastico, caratteristiche inerziali). L’applicazione si estende alle catene con tenditori intermedi quando questi non comportino discontinuità notevoli nella distribuzione delle caratteristiche fisiche. Si valuta sperimentalmente determinando la frequenza fondamentale in vibrazione fondamentale della catena nell’ipotesi che essa si comporti come una fune flessibile (rigidezza flessionale trascurabile). Per tiranti con snellezza superiore a 1.000 la teoria delle vibrazioni delle funi flessibili conduce a risultati praticamente coincidenti con quelli che si ottengono considerando il tirante q rigidezza nulla.

VALUTAZIONE DEL TIRO NELLE CATENE

VERIFICA TENSIONAMENTO

2

4 nl f

Tn

DOVE:

ρ = (γ/g)A è la densità;

γ è il peso specifico dell’acciaio pari a 78,50 [kN/m3];

g è l’accellerazione di gravità pari a 9,81 [m/sec2];

A è l’area della sezione della catena in [m2];

T è il tiro nella catena in [daN];

fn è l’ennesima frequenza di vibrazione in [Hz]: f1, f2, f3, f4, …;

l è la lunghezza della catena in [m];

n 1, 2, 3, … .

esempio

DIMENSIONI CATENA FREQUENZE

[Hz]

TIRO

[daN]

LUNGHEZZA

[m]

DIAMETRO

[mm] f1 f2 f3 T1 T2 T3

14,53

17,90

2,92 5,64 8,04 1492 1393 1452

14,65 3,92 7,72 11,56 2713 2631 2622

14,63 3,36 6,40 9,60 1995 1812 1812

14,53 3,88 7,76 11,60 2515 2615 2597

14,53 3,00 4,76 8,64 1574 998 1452

G P R

TECNICHE RADAR

indagine geofisica applicabile a mezzi a bassa conducibilità (sottosuoli, strutture murarie, ecc). → RADARGRAMMA;

determina la morfologia interna interna e caratteristiche geometriche ;

ricerca in modo non invasivo della disomogeneità, difettosità, cavità interne, presenza interna di corpi estranei (rinforzi nelle strutture murarie);

presenza di armature in una struttura in c.a.

TERMOGRAFIA A RAGGI ULTRAROSSI

misura la distribuzione superficiale di temperatura di un materiale a seguito di una sollecitazione di origine termica (TERMOGRAMMA);

consente di visualizzare:

i. presenza di tamponature;

ii. cavità occulte;

iii. centinature di coperture voltate;

iv. vuoti e distacchi nelle solette;

v. elementi strutturali (archi dis carico, pilastri, biattabande) inglobati nel tessuto murario.

PROVE SONICHE

Sono diverse da quelle utilizzate per le strutture in c.c.a. e metalliche poiché l’onda sonica nelle murature si attenua rapidamente a causa dell’intrinseca disomogeneità del tessuto murario (forte anisotropia interna). E’ opportuno costruire una curva di correlazione tra la resistenza della muratura e la velocità degli ultrasuoni. I dati degli ultrasuoni possono essere accoppiati alla classica prova di rottura del campione murario.

MALTE: PROVE MECCANICHE

CAUSE CHIMICHE DI DEGRADO

Dovute all’interazione fra i materiali originari in presenza di umidità e di solfati; Etanrincite; Thaumasite; Rigonfiamento del materiale originario che, specie per la thaumasite, può arrivare allo sfaldamento o allo spappolamento del tessuto murario;

NORME UNI SULLA MURATURA

STANDARD TITOLO CONTENUTO

UNI EN 932-3

METODI DI PROVA PER DETERMINARE LE

PROPRIETÀ GENERALI DEGLI AGGREGATI

– PROCEDURA E TERMINOLOGIA PER LA

DESCRIZIONE PETROGRAFICA

SEMPLIFICATA

SPECIFICA UNA PROCEDURA DI BASE PER

L’ESAME PETROGRAFICO A SCOPI DI

CLASSIFICAZIONE GENERALE, NON è ADATTA

PER LO STUDIO PETROGRAFICO

DETTAGLIATO DI AGGREGATI DESTINATI AD

UTILIZZI SPECIFICI

UNI EN 933-3

PROVE PER DETERMINARE LE

CARATTERISTICHE GEOMETRICHE DEGLI

AGGREGATI – DETERMINAZIONE DELLA

FORMA DEI GRANULI – INDICI DI

APPIATTIMENTO

DESCRIVE IL PROCEDIMENTO PER LA

DETERMINAZIONE DELL’INDICE DI

APPIATTIMENTO DEGLI AGGREGATI E SI

APPLICA AD AGGREGATI DI ORIGINE

NATURALE O ARTIFICIALE, INCLUSI GLI

AGGREGATI LEGGERI. IL PROCEDIMENTO

DESCRITTO NON è APPLICABILE A

GRANULOMETRIE MINORI DI 4 mm O

MAGGIORI DI 80 mm

NORME UNI SULLA MURATURA

STANDARD ANNO TITOLO

UNI EN 771-1 2004 SPECIFICA PER ELEMENTI PER MURATURA. ELEMENTI PER

MURATURA IN LATERIZIO

UNI EN 771-2 2004 SPECIFICA PER ELEMENTI PER MURATURA. ELEMENTI PER

MURATURA IN SILICATO DI CALCIO

UNI EN 771-4 2002 SPECIFICA PER ELEMENTI PER MURATURA. ELEMENTI PER

MURATURA DI CALCESTRUZZO AEREATO AUTOCLAVATO

UNI EN 771-5 2004 SPECIFICA PER ELEMENTI PER MURATURA. ELEMENTI PER

MURATURA DI PIETRA AGGLOMERATA

UNI EN 771-6 2002 SPECIFICA PER ELEMENTI DI MURATURA. ELEMENTI DI MURATURA

DI PIETRE NATURALE

FONTE: UNI

STRUTTURE IN CONGLOMERATO CEMENTIZIO

CON ARMATURA LENTA

(NERA, ZINCATA, INOSSIDABILE)

DETERIORAMENTO

o abrasione; o alveolatura o armatura scoperta con elevata ossidazione senza riduzione dell’armatura o con sezione trasversale del 15%; o corrosione; o deformazione; o delaminazione o cavità; o disgregazione; o efflorescenze; o erosione; o essudazione; o espulsione; o falsa area (nidi di ape); o incrostazione; o perdita di aggregato grosso; o pitting; o pop – out; o polverizzzazione;

o rigonfiamento; o scagliatura con messa a nudo dell’armatura; o scheggiatura; o scoloritura da ruggine;

FATTORI DI DETERIORAMENTO

o attacco chimico (sali solfatici, solfuri, cloruri, anidride carbonica); o composti solfatici presenti nel suolo e nell’acqua; o decalcificazione (effetto caratteristico delle acque molli o leggermente acide. Il cemento a contatto con esse perde calce per idrolisi); o deformazioni termiche differenziali; o effetto della ruggine (ossidazione dei ferri di armatura); o fessurazioni; o effetto del gelo e disgelo; o movimenti fondali; o reazione alcali – cemento; o ritiro;

DIFETTI

o scarso controllo sulla qualità dei materiali; o errori progettuali; o mancata corrisondenza fra gli elaborati di progetto e stato di fatto; o mancanza di manutenzione; o prescrizioni normative valide all’epoca di costruzione, meno restrittive delle attuali; o mancato rispetto delle normative vigenti all’epoca della costruzione; o bassa resistenza a taglio degli elementi strutturali; o problemi di duttilità; o espulsione del copriferro conseguente all’incremento di volume dellle armature colpite da carbonatazione; Questi difetti sono particolarmente presenti nelle strutture realizzate negli anni dal 1964 al 1974.

CARBONATAZIONE: FATTORI DETERMINANTI

(UNI 9944)

ANNI DI SERVIZIO n = (ANNO ATTUALE – ANNO DI COSTRUZIONE);

p, PROFONDITÀ MINIMA DELLO STATO CARBONATATO ;

SI AMMETTE UNA LEGGE DI TIPO PARABOLICO PER LA VALUTAZIONE NEL TEMPO DELLA CARBONATAZIONE;

COEFFICIENTE (K) DI CARBONATAZIONE:

s, EFFETTIVO SPESSORE DEL COPRIFERRO;

t, TEMPO DI INNESCO: con s [mm] e K [mm/anno1/2]

ANNO DI PROBABILE INIZIO DELLA CARBONATAZIONE: (=ANNO DI COSTRUZIONE + t)

CARBONATAZIONE - ESEMPIO

ANNO DI COSTRUZIONE: 1970

ANNO ATTUALE: 2006 n = 2006 – 1970 = 36 anni

p = 35 mm 1/2

1/2

355,84[ / ]

36K mm anno

s = 20 mm

220

125,84

t anni

ANNO DI PROBABILE INIZIO DELLA CARBONATAZIONE: 1970 + 12 = 1982

OSSIDAZIONE DELLE ARMATURE

CAUSE: o carbonatazione del copriferro; o penetrazione dei cloruri; o per pH > 11,5 presenza di sottile pellicola protettiva di ossido di ferro che preserva dalla corrosione (condizione di passività). Distruzione della pellicola (condizione di depassivazione). CORROSIONE: ASPETTI, MISURA;

o esame visivo: presenza macchie di ruggine, spalling, presenza di

fessure; o determinazione della concentrazione dei cloruri; o misura dei potenziali spontanei con impiego di una semicella elettrochimica o con il potential wheel; o la normativa C867STM tratta la valutazione del potenziale di corrosione del tondino di ferro in corrosione; o sia D V la differenza di potenziale: o se D V è maggiore di -0,20 V (volt), la possibilità di corrosione è quasi scomparsa; vi è il 95% di probabilità che la corrosione non si attivi; o se D V è maggiore di -035 V, il ferro ha una probabilità del 90% di essere in corrosione.

CORROSIONE

processo secondo il quale i corpi ,in particolare quelli metallici, si trasformano nel tempo nei propri elementi combinandosi con le sostanze presenti nell’ambiente; EFFETTI: o sgretolamento e distacchi del calcestruzzo e conseguente disattivazione degli ancoraggi; o progressiva diminuzione nel tempo del diametro dei tondini; o riduzione dell’aderenza ferro – calcestruzzo;

SEMICELLA

POTENTIAL WEEL

REAZIONE ALCALI – SILICE: ASR

Gli elementi aggressivi possono: o provenire dall’ambiente in cui il calcestruzzo lavora; o essere contenuto all’interno del materiale a causa di una scelta non oculata degli inerti (gessosi o contenenti silice reattiva); o in presenza di aggregati reattivi si manifestano nel tempo (non prima di sei mesi dall’esecuzione dell’opera) rigonfiamenti localizzati con fessurazioni di forme irregolari dalle quali fuoriesce un liquido gelatinoso biancastro (silicato sodico); ne segue il distacco superficiale del calcestruzzo. Quest’effetto è noto come reazione alcali – silice (vedi 5.7. della UNI 9850, 1981 e la UNI 8250/22), si manifesta in un tempo molto lungo (da qualche mese a qualche decina di anni) ed è insidioso perché dà luogo al degrado quando la struttura è in servizio. L’ASR comporta: o instabilità locale; o aumento di deformabilità; o formazione di vie di accesso per elementi aggressivi;

Definizione di resistenza a compressione del

calcestruzzo

La resistenza a compressione del calcestruzzo in situ è il valore medio ottenuto dalla campagna di indagini in situ mediante prove distruttive talvolta integrate da prove non distruttive (metodi indiretti). Si vedano: le NTC 08 e relative istruzioni di cui alla circolare n. 617 dello 02.02.2009, CEN 2004, EROCODICE 8, parte 3, 2004.

PROVE DISTRUTTIVE: CAROTAGGIO E MICROCAROTAGGIO (UNI 3161)

CAROTAGGIO (UNI 12504 – 1; UNI 2009): o da non effettuare nel caso di tassi di previsione di lavoro maggiori del 60/70% della tensione ammissibile; o da effettuare in zone di modeste sollecitazioni flessionali; PILASTRI: o non operare in presenza di pilastri inglobanti pluviali e canalizzazioni; o non operare alle estremità dei pilastri che sono caratterizzate da stati di tensione più elevati a causa della segregazione dei componenti del calcestruzzo, o estrarre la carota a circa 150 cm dalla base del pilastro su un’area messa a nudo di dimensioni 60/80 cm di altezza, centrale al pilastro stesso e compresa tra due staffe successive; o estrarre la carota per una lunghezza di circa tre volte il suo diametro e lavorarla successivamente in modo da ottenere un provino avente pari a 2 il rapporto altezza/diametro; o tenere presente che se l’estrazione avviene in direzione perpendicolare al getto del calcestruzzo, la resistenza è minore del 5 - 8% rispetto a quella ottenuta operando nella direzione del getto, se si prevede una resistenza caratteristica di 25 Nmm-2

Per resistenze caratteristiche previste di 40 Nmm-2 la direzione di estrazione non ha alcuna incidenza. o scegliere i piastri ai piani più bassi (i più sollecitati dai carichi dai carichi verticali e da quelli sismici) in posizione di bordo o di angolo e dei pilastri non confinati da tamponature. TRAVI o possibilmente non operare su travi piatte (a spessore di solaio); o effettuare l’estrazione della carota sulla faccia della trave a circa 1/4- 1/5 dal filo interno del pilastro; o preferire metodi indiretti a causa della onerosità conseguente alla’esecuzione di ponteggi e trabatelli; o escludere le basi delle travi dove è probabile vi sia segregazione del materiale; Le NTC08 non specificano il numero di carote da sottoporre a prove di schiacciamento. Allo scopo si può far riferimento alla norma prEN 1.370/1 la quale prevede un minimo di tre carote per ogni elemento da indagare ed un numero complessivo di carote maggiore di 15 (approccio A) oppure compreso tra 3 e 14 (approccio B).

CAROTAGGIO CALCESTRUZZO

BRITISH STANDARS INSTITUTION (1981):

1,3 1,31,5

POT ATT CAROTA

kR R R

dh

ANAS (1988):

*1,5

0,80 0,85 1,5POT CAROTA

kR R

dh

con:

k* = 2,00 per carotaggio verticale;

k* = 1,84 per carotaggio orizzontale.

h

d

CAROTAGGIO esempio – provini cilindrici alla pressa

prima dopo

MICROCAROTAGGIO

UNI 10766:1999

APPLICAZIONE:

elementi di piccolo spessore;

sezioni molto armate;

necessità di contenere il prelievo per ragioni estetiche.

DIMENSIONI (p.to 1 della UNI10776/1999):

h = d = 20/30 mm, preferibilmente 28 mm (Cfr. punto 11.3 – Linee Guida Consiglio Sup. LL.PP., pag 113), lunghezza ≥ 15 cm. La lunghezza della microcarota viene frazionata in tre parti dal rapporto lunghezza/larghezza pari ad 1,5 cm

NUMERO DI MICROCAROTE:

≥ 12 per ogni area di prova

INIDONEO:

per calcestruzzo C16/20

METODI INDIRETTI: SEMIDISTRUTTIVI, NON DISTRUTTIVI

o misurano la resistenza attraverso il valore della durezza superficiale. Risentono della carbonatazione e dell’umidità superficiale. o pacometro; o sclerometro; o pull – out (estrazione con inserti pre o post inseriti); o estrazione con espansione (metodo di Chabowski); o penetrazione (Windsor); o pull – off; o break – off; o colorimetria (UNI 9.994) con soluzione di fenoftaleina all’1% in alcol etilico; Se pH è ≥ 9,2 la fenoftaleina vira al rosso vivo: assenza di zone carbonatate; Se pH è < 9,2 la fenoftaleina rimane inerte: presenza di zona carbonatata;

o analisi chimiche,

CONGLOMERATO CEMENTIZIO

PACOMETRO (MISURATORE DI RICOPRIMENTO – BS 1881: 2004):

principio di induzione magnetica;

misura (anche in continuo) del copriferro e del diametro delle armature.

PROVE IN SITU

INDAGINE PACOMETRICA

È UN INDAGINE NON INVASIVA CHE CONSENTE PER PILASTRI, LA MAPPATURA DEI FERRI LONGITUDINALI E DELLE STAFFE; PER I PANNELLI IL RILIEVO DEI FERRI LONGITUDINALI E TRASVERSALI, PER LE TRAVI LA DISPOSIZIONE DELLE ARMATURE PERIFERICHE E DELLE STAFFE. CON BUONA APPROSSIMAZIONE È POSSIBILE VALUTARE IL DIAMETRO DEI FERRI IN OPERA ED IL LORO COPRIFERRO.

IL PROCEDIMENTO VA TARATO METTENDO A NUDO QUALCHE STAFFA IN MODO DA IDENTIFICARNE ANCHE LA TIPOLOGIA (STAFFA APERTA O CHIUSA, RILEVANTE AI FINI DELL’EFFETTO “CONFINAMENTO”)

P

SCLEROMETRO

UNI EN 12504-2:2002 METODO DI DUREZZA SUPERFICIALE

DA EVITARE SU SUPERFICI:

umide (IR più basso);

carbonatate (IR più alto);

ruvide (IR più basso);

con grossi granuli o vuoti.

DA EFFETTUARE:

più battute (≥ 10) distanziate tra loro nell’intorno di ogni stazione di misura;

battute su conglomerato cementizio nudo;

la taratura dello strumento prima e dopo ogni giornata di lavoro o sequenza di prova.

Indice sclerometrico da corregger: 0,99 per profondità di carbonatazione tra 50 e 60 mm; 0,90 per profondità di carbonatazione ≥ 60 mm.

GENERALITÀ:

ideato nel 1958 dall’Ingegnere svizzero Ernst Schmidt;

di tipo N sia meccanico che elettronico.

PULL-OUT

UNI EN 12504-3:2005

METODO DI ESTRAZIONE NEL CALCESTRUZZO

FL forza di estrazione in kN, ottenuta come media di 3 misurazioni;

fck resistenza cilindrica a compressione in MPa;

per inserti inglobati nel calcestruzzo (Bocca, 1979):

0,44[ ]

0,77L

ck

Ff MPa

per Lock-Test (tasselli pre-inglobati) e Capo-Test (tasselli post-inglobati)

(Peterson, 1983):

31,33 10 2,933 [ ]ck Lf F MPa

i limiti del metodo sono nella previsione della posizione del tassello; l’errore è del 10 – 15%

WINDSOR – metodo penetrometrico

PROFONDITÀ DI PENETRAZIONE DI SONDE NEL CALCESTRUZZO

ULTRASUONI VELOCITÀ DI PROPAGAZIONE DI MICRO-IMPULSI

UNI EN 12504-4:2005

produzione di onde superficiali che si muovono con velocità V [m/sec];

T, tempo di transito (tempo di propagazione tra sonda emittente e sonda ricevente) letto sul temporizzatore o sull’oscilloscopio;

T1, tempo impiegato dalle onde elastiche a precorrere secondo la sua altezza il cilindro fornito a corredo dello strumento;

T0, tempo di percorrenza, predeterminato dal fabbricante relativo al cilindro di taratura;

l, distanza tra le due sonde.

METODI COMBINATI

La precisione che si richiede sui metodi combinati (Sonreb; ultrasuoni + pull out, etc.) è del ±10% - 15%; Metodo Sonreb: o sta per essere normalizzato dalle UNI; o la velocità V va misurata in condizione di equilibrio ambientale: tra il 37 ed il 50% dell’umidità; o per V tra 1.000 e 2.000 msec-1 i dati sono privi di significato; o per V tra 2.500 e 3.000 msec-1 la resistenza caratteristica è minore di 15 Nmm-2 ; o per V > 3.000 – 3.200 msec-1 i dati hanno significato; o disporre la sonda ad almeno 1 cm dalle barre di armatura; o collegamento sonda – calcestruzzo: grasso leggero o medio per superfici lisce; grasso più resistente per superfici moderatamente scabre; riempimento con grasso (stucco) per superfici irregolari; o differenza percentuale massima accettabile del 20% tra la resistenza ottenuta con carotaggio e/o quella ottenuta con metodo Sonreb e quella media ottenuta con i vari metodi interpretativi in situ.

NUMERO DELLE PROVE IN SITU

o almeno una indiretta per ogni maglia di telaio; o secondo FEMA almeno tre prove per piano e per tipologia di elemento strutturale in funzione dei dati geometrici del piano stesso; o i dati finali di resistenza vanno raccolti piano per piano

DIFFERENZA TRA I VALORI A ROTTURA (CAROTA) ED

EFFETTIVA QUALITA’

CAUSE: o differenza e forma del campione; o disturbo conseguente alle operazioni di prelievo; o direzione di perforazione rispetto al getto; o posizione del prelievo nell’ambito dell’elemento strutturale; o presenza di armatura; o passaggio dalla resistenza cilindrica a quella cubica; o maturazione al momento del prelievo (condizioni termo – igrometriche) incrementi per maturazione all’aria aperta (8% dopo tre mesi); in ambiente umido (13% dopo tre mesi); o pressione di consolidamento (nei pilastri fra base e sommità si possono avere variazioni di resistenza del 50 – 70% anche a causa del riempimento delle casseformi effettuato con getti differenti, segnatamente negli anni che vanno dal 1950 al 1970); o effetto griglia delle armature; o attrito esercitato dalle pareti dei casseri, o metodologia impiegata: i risultati dei vari metodi comportano differenze del 10%

LIMITI: o il valore puntuale non consente l’estendibilità dei risultati (specie per il periodo 1960-1970); o dati incongrui o dispersivi per effetto della eterogeneità del materiale in opera richiedono un maggior numero di prove; o le NTC08 non tengono conto della dispersione dei dati, ma indicano un fattore di confidenza (FC – vedi CBA appendice al capitolo 8 delle NTC08) funzione solo del livello di conoscenza (LC) LC3 : FC = 1 LC2 : FC = 1,2 LC1 : FC = 1,35 riduttore dei valori medi di resistenza (B 5.4 NTC08); o la FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) DELL’ AMERICAN SOCIATY OF CIVIL ENGINEERING tiene conto della dispersione dei dati diminuendo il valore medio della deviazione standard

ESAME CHIMICO

o esame termogravimetrico: identifica i legami idraulici presenti;

o analisi diffrattometrica ai raggi X: caratterizza in termini chimici il

materiale da saggiare. In particolare di aggregati associati a fenomeni di

degrado (per esempio etringite)

DETERMINAZIONE DELLE PROPRIETA’ MECCANICHE DELLE BARRE IN ACCIAIO (UNI EN 1002/1)

o PILASTRI: escludere le barre di angolo che hanno funzione strutturale maggiore di quelle intermedie; o TRAVI: prelevare, quando possibile, barre non sollecitate a trazione.

COSTRUZIONI METALLICHE

DIFETTI: o eccessive deformazioni; o corrosioni; o fusione o lavorazione (sfogliature); o variazione comportamento dei vincoli; o cedimento degli appoggi; o normale indurimento del materiale; o esecuzione non corretta; o errata progettazione CONTROLLI: o unioni chiodate: esame visivo delle teste per battitura; o unione bullonate: controllo dell’efficienza del serraggio con chiave dinamometrica o unioni saldate: radiografia e controllo con radiografie standard dell’Istituto Italiano della Saldatura; liquidi penetranti; magnetoscopia; ultrasuoni. Si impiega per gli ultrasuoi il sistema della riflessione per onde trasversali con sonde angolate facendo interessare tutta la sezione della saldatura con opportuni spostamenti della sonda stessa. Il metodo si basa sulla proprietà degli ultrasuoni di essere riflessi ogni volta che incontrano una discontinuità del materiale in cui si propagano. In assenza di difetti il fascio di ultrasuoni si propaga nella lamiera fino ad annullarsi (fig.1). In presenza di difetti il fascio viene da questi riflesso dando luogo ad una eco di difetto (fig.2).

COSTRUZIONI IN LEGNO

Corpo anisotropo costituito dal fusto delle piante; caratteristiche fisiche omogenee solo nella direzione delle fibre; Più comuni: quercia, olmo, larice, castagno; Di minore durata: abete, faggio, ciliegio; Lunghezza: da pochi metri a decine di metri; Dimensioni commerciali: da 4 a 4.4 m.; in quantità minore da 5 a 5 m.; Rigonfiamento: in percentuale di umidità minore di quella ambiente; Ritiro: percentuale umidità superiore a quella ambiente. Decomposizione in una componente radiale ed in una tangenziale. Effetti: stati di coazione, imbarcamento, svergolamento.

DIFETTI: tasche di resina: presenti nel durame (parte indurita e compatta: cuore); nodi: punti di radicamento dei rami con il tronco; mezzature: macchie di colore dovute ad irregolare crescita del legno; cretti centrali e periferici: spaccature dovute al gelo e/o ad essicazione troppo rapida o irregolare ; canastro: ispessimento ed indurimento della parte del tronco che è stata soggetta a compressione per effetto del vento o dissimetria della chioma; la zona si presenta di colore bruno – rossastro ed è più pesante; cipolature: distacchi totali o parziali dei tessuti di due anelli successivi; lunature: anomalia della duramificazione del legno per la quale l’alburno lo si trova anche in zone intermedie del durame (difetto poco diffuso); marcio bianco (o molle): dovuto a funghi che vivono in presenza di abbondante umidità. Il legno perde di consistenza e peso e non ritiene il chiodo; marcio rosato (o duro): difetto che non impedisce al legno ci tenere il chiodo.

BIODEGRADAMENTO

la costituzione organica del legno lo assoggetta, in certe condizioni ambientali, ad una alterazione da parte di saprofiti (funghi ed insetti) ed in acqua di mare ad altri distruttori (molluschi, crostacei); insetti: scavano nel corpo legnoso gallerie in lunghezza ed altezza. Esaminare la tipologia dei fori (ellittici, di sfarfallamento) e la presenza di di rosume e sua colorazione; funghi: demoliscono le parti cellulari del legno. Il loro effetto inizia evidenziando un cambiamento del colore naturale del legno. Si hanno variazione di cromatura: rosatura, griggiatura, azzurratura e si completa con la carie.

ISPEZIONE

incastri e collegamenti dove più frequentemente si verifica il ristagno di acqua; testate delle travi; ispezione visiva previa ripulitura della superficie da indagare con spazzolatura metallica, sabbiatura, etc; percussione con martello; esame di carote estratte con la trivella curva di Presler

CARATTERISTICHE MECCANICHE, funzione del peso specifico secco, grado di umidità, andamento delle fibre rispetto alla direzione di sollecitazione, difetti (se presenti). Le fibre compresse tendono ad ingobbirsi ed da entrare in carico di punta, quelle tese si incurvano assecondando la sollecitazione ed evidenziando una maggiore resistenza; PROVE DI LABBORATORIO su provini ricavati da merce sana. Nelle prove a flessione la rottura avviene al bordo compresso; VOLORE A COMPRESSIONE è minore di quello a trazione definito dalla resistenza a flessione; VALORE AMMISSIBILE compreso tra quello di trazione e quello di compressione. Per ogni grado di umidità il valore dello stato tensionale (ottenuto per compressione ) aumenta o diminuisce del 4%. La presenza di nodi e l’irregolare andamento delle fibre riducono la resistenza a trazione e compressione.

TECNICHE DIAGNOSTICHE

microcarotaggi; endoscopia; ultrasuoni; prova di impronta con penetrometri (durezza); prova di infissione; prova di compressione parallela ed idem ortogonale alla venatura; prova di trazione nella direzione della venatura; prova parallela alla venatura; prova di flessione.

STRUTTURE LIGNEE STRUMENTAZIONE

ESTRAZIONE DI MICRO-CAROTE

STRUTTURE LIGNEE

PENETOMETRO

STRUMENTAZIONE

STRUTTURE LIGNEE PENETOMETRO