Lec9 Collisions

Embed Size (px)

Citation preview

  • 8/8/2019 Lec9 Collisions

    1/73

    Lecture 7

    COLLISIONS

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    2/73

    Lecture 7

    COLLISIONS

    1 2-d elastic collision in Lab Frame

    2 Collision in CM reference frame

    3 Advantages of CM Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    3/73

    The Large Hadron Collider (LHC)

    Collisions 2/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    4/73

    The Large Hadron Collider (LHC)

    The aim of the exercise:

    To smash protons moving at 99.999999% of the speed oflight into each other and so recreate conditions a fraction of a

    second after the big bang. The LHC experiments try and

    work out what happened.

    Collisions 2/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    5/73

    The Large Hadron Collider (LHC)

    The aim of the exercise:

    To smash protons moving at 99.999999% of the speed oflight into each other and so recreate conditions a fraction of a

    second after the big bang. The LHC experiments try and

    work out what happened.

    proton-proton collisions at 7 TeV each (14 TeV in CM frame!)

    Collisions 2/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    6/73

    The Large Hadron Collider (LHC)

    The aim of the exercise:

    To smash protons moving at 99.999999% of the speed oflight into each other and so recreate conditions a fraction of a

    second after the big bang. The LHC experiments try and

    work out what happened.

    proton-proton collisions at 7 TeV each (14 TeV in CM frame!)

    2808 bunches of 1.15 1011 protons per bunch

    Collisions 2/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    7/73

    The Large Hadron Collider (LHC)

    The aim of the exercise:

    To smash protons moving at 99.999999% of the speed oflight into each other and so recreate conditions a fraction of a

    second after the big bang. The LHC experiments try and

    work out what happened.

    proton-proton collisions at 7 TeV each (14 TeV in CM frame!)

    2808 bunches of 1.15 1011 protons per bunch

    to find The Higgs Boson New particles

    Collisions 2/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    8/73

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    9/73

    Collisions

    Standard experimental method to discover the inner constituents

    of matter

    To find out the nature of sub-atomic forces

    Collisions 4/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    10/73

    Collisions

    Ernst Rutherford (1910): -particle-gold collisions

    discovered NucleusCollisions 5/16

    http://goback/http://find/http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    11/73

    Collisions

    James Chadwick (1932): -particle-Beryllium collisions

    discovered Neutron

    Collisions 6/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    12/73

    Laws of Collisions

    Characterizing a Collision

    Collisions 7/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    13/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction

    Collisions 7/16

    C

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    14/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Collisions 7/16

    L f C lli i

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    15/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    Collisions 7/16

    L f C lli i

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    16/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    1 Linear momentum is conserved:P = 0

    Collisions 7/16

    L f C lli i

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    17/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    1 Linear momentum is conserved:P = 0

    2 Kinetic Energy:

    Collisions 7/16

    La s of Collisions

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    18/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    1 Linear momentum is conserved:P = 0

    2 Kinetic Energy:

    Elastic: KE conserved

    Collisions 7/16

    Laws of Collisions

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    19/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    1 Linear momentum is conserved:P = 0

    2 Kinetic Energy:

    Elastic: KE conservedInelastic: KE = Q

    Collisions 7/16

    Laws of Collisions

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    20/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    1 Linear momentum is conserved:P = 0

    2 Kinetic Energy:

    Elastic: KE conservedInelastic: KE = Q

    Q < 0: KE converted to energy released (Explosions)

    Collisions 7/16

    Laws of Collisions

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    21/73

    Laws of Collisions

    Characterizing a Collision

    1 A very short-duration interaction2 External forces are ignorable

    Conservations that help solve the problem:

    1 Linear momentum is conserved:P = 0

    2 Kinetic Energy:

    Elastic: KE conservedInelastic: KE = Q

    Q < 0: KE converted to energy released (Explosions)Q > 0 KE is absorbed

    Collisions 7/16

    2 d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    22/73

    2-d elastic collision in Lab Frame

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    23/73

    2-d elastic collision in Lab Frame

    Conservation Equations:

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    24/73

    2-d elastic collision in Lab Frame

    Conservation Equations:

    px: m1v1 = m1v

    1 cos 1 + m2v

    2 cos 2

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    25/73

    2-d elastic collision in Lab Frame

    Conservation Equations:

    px: m1v1 = m1v

    1 cos 1 + m2v

    2 cos 2

    py: m1v

    1 sin 1 = m2v

    2 sin 2

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    26/73

    2 d elastic collision in Lab Frame

    Conservation Equations:

    px: m1v1 = m1v

    1 cos 1 + m2v

    2 cos 2

    py: m1v

    1 sin 1 = m2v

    2 sin 2

    KE:1

    2m1v

    2

    1 =1

    2m1v

    2

    1 +1

    2m2v

    2

    2

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    27/73

    2 d elastic collision in Lab Frame

    Conservation Equations:

    px: m1v1 = m1v

    1 cos 1 + m2v

    2 cos 2

    py: m1v

    1 sin 1 = m2v

    2 sin 2

    KE:1

    2m1v

    2

    1 =1

    2m1v

    2

    1 +1

    2m2v

    2

    2

    4 eqns, 3 unknowns!

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    28/73

    2 d elastic collision in Lab Frame

    Conservation Equations:

    px: m1v1 = m1v

    1 cos 1 + m2v

    2 cos 2

    py: m1v

    1 sin 1 = m2v

    2 sin 2

    KE:1

    2m1v

    2

    1 =1

    2m1v

    2

    1 +1

    2m2v

    2

    2

    4 eqns, 3 unknowns!

    One final stage parameter has to be expt. measured! e.g 1.

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    29/73

    2 d elastic collision in Lab Frame

    Conservation Equations:

    px: m1v1 = m1v1 cos 1 + m2v

    2 cos 2

    py: m1v

    1 sin 1 = m2v

    2 sin 2

    KE:1

    2m1v

    2

    1 =1

    2m1v

    2

    1 +1

    2m2v

    2

    2

    4 eqns, 3 unknowns!

    One final stage parameter has to be expt. measured! e.g 1.

    Solving,

    v1 =m1v1 cos 1

    m1 + m2 v1

    m2

    1cos2 1

    (m1 + m2)2

    m1 m2m1 + m2

    Collisions 2-d elastic collision in Lab Frame 8/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    30/73

    Analysis:

    1 Ifm

    1

    > m2,

    1 has a max. limiting value:

    Collisions 2-d elastic collision in Lab Frame 9/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    31/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2

    max= 1

    m22

    m21

    Collisions 2-d elastic collision in Lab Frame 9/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    32/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2

    max= 1

    m22

    m21 For 1 < max two possible values of v

    1

    Collisions 2-d elastic collision in Lab Frame 9/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    33/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2

    max= 1

    m22

    m21 For 1 < max two possible values of v

    1

    m1 m2, max 0

    Collisions 2-d elastic collision in Lab Frame 9/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    34/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2

    max= 1

    m22

    m21 For 1 < max two possible values of v

    1

    m1 m2, max 0

    2

    Head-on collisions: 1

    = 0

    = v1 = v1m1 m2m1 + m2

    ,

    Collisions 2-d elastic collision in Lab Frame 9/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    35/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2 max = 1

    m22

    m21 For 1 < max two possible values of v

    1

    m1 m2, max 0

    2

    Head-on collisions: 1

    = 0

    = v1 = v1m1 m2m1 + m2

    , v2 = v12m1

    m1 + m2

    Collisions 2-d elastic collision in Lab Frame 9/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    36/73

    2-d elastic collision in Lab Frame

  • 8/8/2019 Lec9 Collisions

    37/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2 max = 1

    m22

    m21 For 1 < max two possible values of v

    1

    m1 m2, max 0

    2

    Head-on collisions: 1

    = 0

    = v1 = v1m1 m2m1 + m2

    , v2 = v12m1

    m1 + m2

    Final KE of m2 =4 m1/m2

    (1 + m1/m2 )2intial KE of m1.

    i.e. measuring initial & final KE gives ratio of masses

    Collisions 2-d elastic collision in Lab Frame 9/16

    2-d elastic collision in Lab Frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    38/73

    Analysis:

    1 If m1 > m2, 1 has a max. limiting value: cos2 max = 1

    m22

    m2

    1

    For 1 < max two possible values of v

    1

    m1 m2, max 0

    2 Head-on collisions:1

    = 0

    = v1 = v1m1 m2m1 + m2

    , v2 = v12m1

    m1 + m2

    Final KE of m2 =4 m1/m2

    (1 + m1/m2 )2intial KE of m1.

    i.e. measuring initial & final KE gives ratio of masses

    Chadwicks discovery of neutron

    Collisions 2-d elastic collision in Lab Frame 9/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    39/73

    CM frame is inertial:

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    40/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    41/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Here, VCM =m1v1

    m1 + m2, constant.

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    42/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Here, VCM =m1v1

    m1 + m2, constant.

    Velocity transformations:

    v1c = v1 VCM =m2

    m1 + m2v1

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    43/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Here, VCM =m1v1

    m1 + m2, constant.

    Velocity transformations:

    v1c = v1 VCM =m2

    m1 + m2v1

    v2c = v2 VCM = m1

    m1 + m2v1

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    44/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Here, VCM =m1v1

    m1 + m2, constant.

    Velocity transformations:

    v1c = v1 VCM =m2

    m1 + m2v1

    v2c = v2 VCM = m1

    m1 + m2v1

    v

    1c = v

    1

    VCM

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    45/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Here, VCM =m1v1

    m1 + m2, constant.

    Velocity transformations:

    v1c = v1 VCM =m2

    m1 + m2v1

    v2c = v2 VCM = m1

    m1 + m2v1

    v

    1c = v

    1

    VCM

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    46/73

    CM frame is inertial:

    RCM =m1r1 + m2r2

    m1 + m2

    Here, VCM =m1v1

    m1 + m2, constant.

    Velocity transformations:

    v1c = v1 VCM =m2

    m1 + m2v1

    v2c = v2 VCM = m1

    m1 + m2v1

    v

    1c =v

    1 V

    CM

    v

    2c = v

    2 VCM

    Collisions Collision in CM reference frame 10/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    47/73

    This is a zero-momentum frame

    Collisions Collision in CM reference frame 11/16

    Collision in CM reference frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    48/73

    This is a zero-momentum frame

    Momentum Conservation:

    m1v1c = m2v2c

    m1v

    1c = m2v

    2c

    Trajectories turn through anangle .

    Collisions Collision in CM reference frame 11/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    49/73

    Collision in CM reference frame

  • 8/8/2019 Lec9 Collisions

    50/73

    This is a zero-momentum frame

    Momentum Conservation:

    m1v1c = m2v2c

    m1v

    1c = m2v

    2c

    Trajectories turn through anangle .

    Magnitudes of velocities: v2c =m1m2

    v1c; v

    2c =m1m2

    v1c

    KE Conservation: v1c

    = v2c

    i.e speeds of the particles are the same in CM frame for an elastic

    collision.

    Collisions Collision in CM reference frame 11/16

    Advantages of CM frame

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    51/73

    1 Momentum is automatically conserved

    2

    Only one angle to worry about

    Collisions Collision in CM reference frame 12/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    52/73

    tan 1 =

    Collisions Collision in CM reference frame 13/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    53/73

    tan 1 =

    v1c sin

    Collisions Collision in CM reference frame 13/16

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    54/73

    Relationship between scattering angles and 1

  • 8/8/2019 Lec9 Collisions

    55/73

    tan 1 =

    v1c sin

    VCM + v

    1c cos

    =sin

    cos + VCMv1c

    Collisions Collision in CM reference frame 13/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    56/73

    Since v1c = v1c =m2m1

    VCM,

    tan 1 =

    v1c sin

    VCM + v

    1c cos

    =sin

    cos + VCMv1c

    Collisions Collision in CM reference frame 13/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    57/73

    Since v1c = v1c =m2m1

    VCM,

    tan 1 =

    v1c sin

    VCM + v

    1c cos

    =sin

    cos + VCMv1c

    tan 1 =sin

    cos + m1m2

    Cases:

    Collisions Collision in CM reference frame 13/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    58/73

    Since v1c = v1c =m2m1

    VCM,

    tan 1 =

    v1c sin

    VCM + v

    1c cos

    =sin

    cos + VCMv1c

    tan 1 =sin

    cos + m1m2

    Cases:

    1 m1 < m2: No restriction on 1

    Collisions Collision in CM reference frame 13/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    59/73

    Since v1c = v1c = m2

    m1VCM,

    tan 1 =

    v1c sin

    VCM + v

    1c cos

    =sin

    cos + VCMv1c

    tan 1 =sin

    cos + m1m2

    Cases:

    1 m1 < m2: No restriction on 1

    2 m1 = m2: 1 [0,

    2]

    Collisions Collision in CM reference frame 13/16

    Relationship between scattering angles and 1

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    60/73

    Since v1c = v1c = m2

    m1VCM,

    tan 1 =

    v1c sin

    VCM + v

    1c cos

    =sin

    cos + VCMv1c

    tan 1 = sincos + m1

    m2

    Cases:

    1 m1 < m2: No restriction on 1

    2 m1 = m2: 1 [0,

    2]

    3 m1 > m2: 1 has a maximum limiting value

    Collisions Collision in CM reference frame 13/16

    Advantages of CM frame (contd)

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    61/73

    Energy expressions:

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    62/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v2c

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    63/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c

    + (m1v1c + m2v2c) VCM

    + 12

    (m1 + m2)V2

    CM

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    64/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM

    + 12

    (m1 + m2)V2

    CM

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    E i

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    65/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM 0

    + 12

    (m1 + m2)V2

    CM

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    E i

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    66/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v

    2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM 0

    + 12

    (m1 + m2)V2

    CM KECM

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    E i

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    67/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v

    2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM 0

    + 12

    (m1 + m2)V2

    CM KECM

    KE = KEI + KECM

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    Energ e pressions

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    68/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v

    2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM 0

    + 12

    (m1 + m2)V2

    CM KECM

    KE = KEI + KECM

    Theorem

    KE of a system =

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    Energy expressions:

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    69/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v

    2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM 0

    + 12

    (m1 + m2)V2

    CM KECM

    KE = KEI + KECM

    Theorem

    KE of a system =internal KE (relative to CM)

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    Energy expressions:

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    70/73

    Energy expressions:

    KE in lab frame expressed in terms of VCM, v1c and v

    2c

    KE =1

    2m1(v1c + VCM)

    2 +1

    2m2(v2c + VCM)

    2

    = 12

    m1v2

    1c +1

    2m2v

    2

    2c KE1c + KE2c

    + (m1v1c + m2v2c) VCM 0

    + 12

    (m1 + m2)V2

    CM KECM

    KE = KEI + KECM

    Theorem

    KE of a system = internal KE (relative to CM) +KE of CM

    Collisions Advantages of CM Frame 14/16

    Advantages of CM frame (contd)

    Of the total initial KE of system only part is available for use:

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    71/73

    Of the total initial KE of system, only part is available for use:

    KEc = KEinitial KECM

    =1

    2

    m1m2m1 + m2

    (v2 v1)2

    =1

    2

    v2rel

    Collisions Advantages of CM Frame 15/16

    Advantages of CM frame (contd)

    Of the total initial KE of system only part is available for use:

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    72/73

    Of the total initial KE of system, only part is available for use:

    KEc = KEinitial KECM

    =1

    2

    m1m2m1 + m2

    (v2 v1)2

    =1

    2

    v2rel

    For an inelastic collision, KE = Q we require the masses to

    have a minimum available energy for the collision to be effective:

    KEc|min = Q

    Collisions Advantages of CM Frame 15/16

    References

    LHC Homepage:

    http://find/http://goback/
  • 8/8/2019 Lec9 Collisions

    73/73

    LHC Homepage:

    http://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/

    Images:

    http://www.boston.com/bigpicture/2008/08/the large hadron collider.

    Collisions Advantages of CM Frame 16/16

    http://find/http://goback/