6
Koshu Takatsuji 1 Title: Methods of Heat Transfer Description: One of the primary duties of a chemical engineer is to design properly working plants. As these plants depend heavily on maintaining a constant temperature, chemical engineers must understand how heat transfer works within certain materials. Throughout this guide we will be referencing to a thing called “heat flow” or the rate at which energy goes from one place to another. It then follows that the units for heat flow to be energy/time or (J/s). With that in mind, I will now explain what the three modes of heat transfer are. Radiation: Radiation is the transfer of heat through electromagnetic waves and is inherently a form of energy released by anything that has a temperature above 0 Kelvin. You can imagine this as little heat waves emanating from anything that has a temperature. Image from: http://enseki.or.jp/e_tokusei.php As can be seen in the above, radiation waves are being emitted from the sun and are transferring packets of energy or heat from the sun to the earth. Mathematically, the amount of heat emitted through radiation is: = (Radiation Equation) Here, q is the amount of heat emitted by the object and can be found by multiplying the area of the object (A) by , the StefanBoltzman constant ( !.!"!!" !! ! ! ! ! ! ), and the temperature (T) to the fourth power. It becomes evident from the equation that if you increase either the area of the object or the temperature of the object that the heat emitted through radiation increases.

Lesson 1 Methods of Heat Transfer

Embed Size (px)

DESCRIPTION

Lesson on modes of heat transfer.

Citation preview

Page 1: Lesson 1 Methods of Heat Transfer

Koshu  Takatsuji    

1  

Title:  Methods  of  Heat  Transfer    Description:    

One  of  the  primary  duties  of  a  chemical  engineer  is  to  design  properly  working  plants.  As  these  plants  depend  heavily  on  maintaining  a  constant  temperature,  chemical  engineers  must  understand  how  heat  transfer  works  within  certain  materials.    

Throughout  this  guide  we  will  be  referencing  to  a  thing  called  “heat  flow”  or  the  rate  at  which  energy  goes  from  one  place  to  another.  It  then  follows  that  the  units  for  heat  flow  to  be  energy/time  or  (J/s).  With  that  in  mind,  I  will  now  explain  what  the  three  modes  of  heat  transfer  are.      Radiation:     Radiation  is  the  transfer  of  heat  through  electromagnetic  waves  and  is  inherently  a  form  of  energy  released  by  anything  that  has  a  temperature  above  0  Kelvin.  You  can  imagine  this  as  little  heat  waves  emanating  from  anything  that  has  a  temperature.    

 Image  from:  http://enseki.or.jp/e_tokusei.php    

    As  can  be  seen  in  the  above,  radiation  waves  are  being  emitted  from  the  sun  and  are  transferring  packets  of  energy  or  heat  from  the  sun  to  the  earth.  Mathematically,  the  amount  of  heat  emitted  through  radiation  is:  

𝒒 = 𝑨𝝈𝑻𝟒    (Radiation  Equation)  

  Here,  q  is  the  amount  of  heat  emitted  by  the  object  and  can  be  found  by  multiplying  the  area  of  the  object  (A)  by  𝝈,  the  Stefan-­‐Boltzman  constant  (!.!"!∗!"

!!!!!!!

),  and  the  temperature  (T)  to  the  fourth  power.  It  becomes  evident  from  the  equation  that  if  you  increase  either  the  area  of  the  object  or  the  temperature  of  the  object  that  the  heat  emitted  through  radiation  increases.    

Page 2: Lesson 1 Methods of Heat Transfer

Koshu  Takatsuji    

2  

 Conduction:     Conduction  is  the  mode  of  heat  transfer  through  a  substance  and  exists  only  when  there  is  a  difference  in  temperature  within  the  object.  You  can  imagine  this  as  energy  being  diffused  throughout  an  object  going  from  a  place  of  higher  energy  to  lower  energy.    

 Image  from:  http://www.universetoday.com/82331/what-­‐is-­‐conduction/    

      Using  the  above  picture  we  say  that:  

𝒒 = 𝒌𝑨𝛁𝑻𝒅𝒙  

(Conduction  Equation  General)     Although  we  use  a  ∇T,  to  signify  that  heat  flow  is  dependent  on  a  temperature  difference  in  the  x,y,  and  z  direction,  we  will  mostly  use  it  one  dimension,  so  we  can  simplify  it  to:  

𝒒 = 𝒌𝑨𝐝𝐓𝒅𝒙  

(Conduction  Equation  Simplified)     In  other  words,  heat  travels  from  the  hotter  place  to  the  colder  place  dependent  on  the  area  it  travels  through  (A),  the  thermal  conductivity  of  the  material    (k)  (how  easily  it  allows  heat  to  transfer),  the  difference  in  temperature  from  the  hotter  place  to  the  colder  place  (dT),  and  the  distance  it  has  to  travel  (dx).  Intuitively,  it  makes  sense  that  the  greater  the  thermal  conductivity  (k)  that  heat  can  flow  more  easily  and  the  heat  flow  term  will  be  greater.  Likewise,  a  greater  area  allows  for  more  heat  to  flow  too.        Convection:       Convection  is  the  transfer  of  heat  due  to  movement  within  a  fluid  and  is  most  easily  imagined  by  wind  moving  heat  from  an  area  of  high  temperature  throughout  the  rest  of  the  system.    

Page 3: Lesson 1 Methods of Heat Transfer

Koshu  Takatsuji    

3  

 Image  from:  http://www.me.rochester.edu/courses/ME223.jcl/modes/convection.htm         To  better  ingrain  this  concept  into  your  head,  imagine  a  block  of  metal  that  is  extremely  hot  (1000  degrees  Celsius).  This  block  is  left  outside  which  has  an  ambient  temperature  of  25  degrees  Celsius.  Because  the  block  is  hotter  than  the  ambient  temperature,  heat  is  released  from  the  block  and  exits  into  the  environment  where  wind  can  then  move  the  heat  and  disperse  it  throughout  the  environment.  The  idea  where  this  happens  is  what  convection  is  and  is  mathematically  written  in  the  form  of:    

𝒒 = 𝒉𝑨∆𝑻  (Convection  Equation)  

  Here,  like  always,  q  is  the  heat  flow,  A  is  the  area,  ∆𝑻  is  the  difference  in  temperature  between  the  environment  and  the  solid,  and  h  is  the  convective  heat  transfer  coefficient.  H,  the  convective  heat  transfer  coefficient,  is  basically  a  measure  that  tells  us  how  quickly  the  fluid  (or  in  this  case  wind)  is  able  to  take  away  heat  from  the  solid  object.  It  is  important  to  understand  that  the  value  of  h  is  dependent  on  the  fluid  and  not  the  solid.      Types  of  questions:     Now  that  we  have  a  general  idea  of  what  the  methods  of  heat  transfer  are,  it  becomes  important  to  know  how  to  apply  them  in  real  life  situations.  Below  lists  a  couple  of  the  main  methods  an  engineer  should  know  how  to  manipulate  the  equations  and  the  general  intuition  that  is  needed  to  understand  how  the  equations  were  manipulated.      

1. Single  Mode  of  Heat  Transfer  In  single  mode  of  heat  transfer  type  problems,  heat  is  transferred  from  one  

area  to  another  through  one  of  the  methods  mentioned  above:  radiation,  conduction,  or  convection.  And  the  hard  part  of  this  type  of  question  is  identifying  which  method  of  heat  transfer  there  is.    

 Examples:    Question:  You  have  an  object  with  a  surface  area  of  1m2  and  a  temperature  of  200K,  how  much  heat  is  it  releasing.    Solution:  Identify  that  this  is  a  radiation  heat  transfer  question  and  refer  to  the  radiation  equation:  𝑞 = 𝐴𝜎𝑇!.  From  this  equation,  you  know  what  the  Area,  

Page 4: Lesson 1 Methods of Heat Transfer

Koshu  Takatsuji    

4  

Temperature,  and  𝝈  (boltzman  constant)  is.  You  then  plug  and  chug  your  values  to  get  the  heat  flow.      Question:  You  have  a  1m  by  1m  by  1m  metal  box  that  has  a  temperature  of  1000K  on  one  side  and  100K  on  the  other  side.    The  box  is  insulated  on  all  sides  expect  for  the  side  that  is  at  1000K  and  the  side  that  is  at  100K.  The  thermal  conductivity  of  the  metal  box  is  5W/mK.  What  is  the  heat  flow?    Solution:  Identify  that  this  is  heat  flow  through  a  solid  object  and  will  therefore  be  a  conduction  question.  Use  the  simplified  conduction  equation  because  it  is  easier  to  use:  𝑞 = 𝑘𝐴 !"

!".  Here  we  know  what  the  thermal  conductivity  is,  the  area  the  heat  

flow  will  be  traveling  through  (1m2),  the  change  in  temperature  (dT)  and  the  distance  the  heat  has  to  travel  through  (dx).  We  can  then  find  heat  flow  by  plugging  and  chugging.        

2. Multiple  Heat  Transfer  Methods  In  Multiple  Layers  of  Heat  Transfer  problems,  we  have  to  consider  that  heat  flow  dependent  on  multiple  methods  of  heat  transfer.    

 Example:    Question:    

   

Given  the  ambient  temperature,  the  cold  temperature,  and  the  thermal  conductivity  of  plastic,  cork,  and  copper,  the  convection  heat  transfer  coefficient,  and  the  surface  area  find  the  heat  flow  through  each  material  assuming  steady  state.        Solution:  It  is  important  to  first  understand  that  in  questions  that  involve  multiple  methods  of  heat  transfer  have  only  one  uniform  heat  flow  throughout  the  entire  thing.  That  means  the  heat  flow  taken  to  the  environment  from  the  plastic  through  convection  is  the  same  as  the  heat  flow  from  through  conduction  in  the  plastic,  the  heat  flow  through  conduction  in  the  cork  and  the  heat  flow  through  conduction  in  the  copper.  If  heat  flow  was  varying  from  material  to  material  then  the  temperature  

Page 5: Lesson 1 Methods of Heat Transfer

Koshu  Takatsuji    

5  

of  the  material  would  be  changing  and  that  would  mean  that  the  system  was  not  at  steady  state.  Mathematically  speaking,  we  can  then  say  that:    

𝑞 =  𝑞!"#$%!&'"# = 𝑞!"#$%&'   =  𝑞!"#$ =  𝑞!"##$%  where:  

𝑞!"#$%!&'"# =  ℎ𝐴(𝑇0− 𝑇1)  

𝑞!"#$%&'   =  𝑘!𝐴(T1− T2)(2𝑐𝑚)    

𝑞!"#$ =  𝑘!𝐴(T2− T3)(2𝑐𝑚)    

𝑞!"##$% = 𝑘!𝐴(T3− 𝑇!"#$)(2𝑐𝑚)    

  Here,  you  have  four  unknowns  (q,  T1,  T2,  and  T3)  and  four  equations  so  you  would  then  be  able  to  solve  for  the  unknown  value  and  therefore  find  the  heat  flow.       Another  way  to  solve  this  equation  would  be  to  use  a  pre-­‐derived  formula  where  hereon  out  we  shall  call  “Ohm’s  Law  for  Heat  Transfer.”  This  equation  is:  

𝒒 =  ∆𝑻

𝑹𝒕𝒉𝒆𝒓𝒎𝒂𝒍  

(Ohm’s  Law  for  Heat  Transfer)     Here,  ∆𝑻  is  the  change  in  temperature  of  the  final  and  initial  place  of  heat  flow  and   𝑹𝒕𝒉𝒆𝒓𝒎𝒂𝒍  is  the  sum  of  all  Rconvection,  Rconduction,  and  Rradiation.       Rconvection  is  always  equal  to   !!!  where  h  is  the  convection  thermal  coefficient  and  A  is  the  area.       Rconduction  for  a  rectangular  object  is  equal  to   !!"  where  L  is  the  length  the  heat  has  to  flow  through  the  material,  A  is  the  surface  area  that  the  heat  flow  is  able  to  travel  through,  and  k  is  the  thermal  conductivity  of  the  material.  However,  in  pipes  

Rconduction  is  equal  to  !"(

!!"#$%&'!!"#!$%

)

!!"#  where  k  is  the  thermal  conductivity  coefficient,  L  is  

the  length  the  heat  flow  has  to  transfer  through,  routside  is  the  outer  radius,  and  rinside  is  the  inner  radius.  Using  this  method,  we  can  find  the  heat  flow  to  be  equal  to:    

𝒒 =  ∆𝑻

𝑹𝒕𝒉𝒆𝒓𝒎𝒂𝒍=  

𝑻𝟎− 𝑻𝒄𝒐𝒍𝒅𝑹𝒄𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒐𝒏 + 𝑹𝒑𝒍𝒂𝒔𝒕𝒊𝒄   +  𝑹𝒄𝒐𝒓𝒌 +  𝑹𝒄𝒐𝒑𝒑𝒆𝒓

   

where:  

𝑹𝒄𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒐𝒏 =  𝟏𝒉𝑨  

𝑹𝒑𝒍𝒂𝒔𝒕𝒊𝒄   =  𝟐𝒄𝒎𝒌𝟏𝑨

 

 𝑹𝒄𝒐𝒓𝒌 =  𝟐𝒄𝒎𝒌𝟐𝑨

 

 𝑹𝒄𝒐𝒑𝒑𝒆𝒓 =  𝟐𝒄𝒎𝒌𝟑𝑨

 

And  because  we  know  what  h,  k1,  k2,  k3,  A,  and  T0  and  Tcold  are  (because  they  will  be  given  in  the  problem),  we  can  find  the  heat  flow.      

Page 6: Lesson 1 Methods of Heat Transfer

Koshu  Takatsuji    

6  

 3. Conduction:  When  the  Area  Changes