14
JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた ミューオントリガーの改良 救仁郷拓人, 石野 雅也, 隅田 土詞, 田代 拓也, 蔵重 久弥 A , 長谷川 A , 矢カ部 遼太 A , 佐々木 B ATLAS 日本 TGC グループ 京大, 神戸大 A , KEK B 3/29/ 2014 1 29pTH-11

LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

ミューオントリガーの改良

救仁郷拓人, 石野 雅也, 隅田 土詞, 田代 拓也, 蔵重 久弥A, 長谷川 誠A, 矢カ部 遼太A, 佐々木 修B

他 ATLAS 日本 TGC グループ 京大,  神戸大A,  KEKB  

!3/29/ 2014

1

29pTH-11

Page 2: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

TGC, Tile カロリーメータ

2

• MWPC の 2 次元読み出し • ミドルTGC 7 層 + インナーTGC 2層 • ミドル TGC で pT を計り、高い pT の µ に対してトリガーを出力

• 鉄とシンチレータの サンドイッチ構造

• 奥行き方向に 3 層

TGC  (  Thin  Gap  Chamber  )

Tile  カロリーメーター

2008 JINST 3 S08003

supplies which power the readout are mounted in an external steel box, which has the cross-sectionof the support girder and which also contains the external connections for power and other servicesfor the electronics (see section 5.6.3.1). Finally, the calorimeter is equipped with three calibrationsystems: charge injection, laser and a 137Cs radioactive source. These systems test the opticaland digitised signals at various stages and are used to set the PMT gains to a uniformity of ±3%(see section 5.6.2).

5.3.1.2 Mechanical structurePhotomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic showing how the mechan-ical assembly and the optical readout of the tilecalorimeter are integrated together. The vari-ous components of the optical readout, namelythe tiles, the fibres and the photomultipliers, areshown.

The mechanical structure of the tile calorime-ter is designed as a self-supporting, segmentedstructure comprising 64 modules, each sub-tending 5.625 degrees in azimuth, for each ofthe three sections of the calorimeter [112]. Themodule sub-assembly is shown in figure 5.10.Each module contains a precision-machinedstrong-back steel girder, the edges of whichare used to establish a module-to-module gapof 1.5 mm at the inner radius. To maximisethe use of radial space, the girder provides boththe volume in which the tile calorimeter read-out electronics are contained and the flux returnfor the solenoid field. The readout fibres, suit-ably bundled, penetrate the edges of the gird-ers through machined holes, into which plas-tic rings have been precisely mounted. Theserings are matched to the position of photomul-tipliers. The fundamental element of the ab-sorber structure consists of a 5 mm thick mas-ter plate, onto which 4 mm thick spacer platesare glued in a staggered fashion to form thepockets in which the scintillator tiles are lo-cated [113]. The master plate was fabricatedby high-precision die stamping to obtain the dimensional tolerances required to meet the specifica-tion for the module-to-module gap. At the module edges, the spacer plates are aligned into recessedslots, in which the readout fibres run. Holes in the master and spacer plates allow the insertion ofstainless-steel tubes for the radioactive source calibration system.

Each module is constructed by gluing the structures described above into sub-modules on acustom stacking fixture. These are then bolted onto the girder to form modules, with care beingtaken to ensure that the azimuthal alignment meets the specifications. The calorimeter is assembledby mounting and bolting modules to each other in sequence. Shims are inserted at the inner andouter radius load-bearing surfaces to control the overall geometry and yield a nominal module-to-module azimuthal gap of 1.5 mm and a radial envelope which is generally within 5 mm of thenominal one [112, 114].

– 122 –

トロイド磁石

• 磁場によって µ を曲げる。その曲がり具合から ミドルTGC で pT を判定

Page 3: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan 3

インナーコインシデンス

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

TGC

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

End-cap toroid

η=1.3

(TILE + EIL4) & TGC coincidence

1.0 < |η| < 1.3η=1.0

1206 Eur. Phys. J. C (2010) 70: 1193–1236

Fig. 1 A cut-away drawing ofthe ATLAS inner detector andcalorimeters. The TileCalorimeter consists of onebarrel and two extended barrelsections and surrounds theLiquid Argon barrelelectromagnetic and endcaphadronic calorimeters. In theinnermost radii of ATLAS, theinner detector (shown in grey) isused for precision tracking ofcharged particles

Fig. 2 Segmentation in depth and η of the Tile Calorimeter modules inthe barrel (left) and extended barrel (right). The bottom of the picturecorresponds to the inner radius of the cylinder. The Tile Calorimeter is

symmetric with respect to the interaction point. The cells between twoconsecutive dashed lines form the first level trigger calorimeter tower

(one inserted from each face) and extended barrel modulesare read out by one drawer each. Each drawer typically con-tains 45 (32) readout channels in the barrel (extended barrel)and a summary of the channels, cells and trigger outputs inTileCal is shown in Table 1.2

The front-end electronics as well as the drawers’ LowVoltage Power Supplies (LVPS) are located on the calorime-ter itself and are designed to operate under the conditions

2The 16 reduced thickness extended barrel C10 cells are readout byonly one PMT. Two extended barrel D4 cells are merged with the cor-responding D5 cells and have a common readout.

of magnetic fields and radiation. One drawer with its LVPSreads out a region of ∆η × ∆φ = 0.8 × 0.1 in the barrel and0.7 × 0.1 in the extended barrel.

In the electronics readout, the signals from the PMT arefirst shaped using a passive shaping circuit. The shapedpulse is amplified in separate high (HG) and low (LG) gainbranches, with a nominal gain ratio of 64:1. The shaper, thecharge injection calibration system (CIS), and the gain split-ting are all located on a small printed circuit board knownas the 3-in-1 card [6]. The HG and LG signals are sampledwith the LHC bunch-crossing frequency of 40 MHz using a10-bit ADC in the Tile Data Management Unit (DMU) chip

1.3D5 D6

Tile Extended-Barrel

1.0

η=1.9

EIL1~3 & TGC coincidence

1.3 < |η| < 1.9

⌘ = � ln

✓tan

2

• Run 2 における新たなトリガー条件

!✦1.0 < |η| < 1.3 ミドル TGC & { インナー TGC ( EIL4 ) || Tile }

!✦1.3 < |η| < 1.9 ミドル TGC & インナー TGC (FI)

(Tile + EIL4 ) & TGC

1.0 < |η| < 1.3 の領域に新しく Tile カロリーメータとの コインシデンスを導入する

( 2015 ~ )

FI & TGC

Page 4: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

Fake Trigger

4

Fake

•現状 TGC が発行するトリガーの多く ( 60 ~ 70 % ) は IP からの µ でない

•トロイド磁石より内側の検出器とコインシデンスをとることで、 IP からの µ を選択的に取得することが出来る

IP  からのμ

L1η

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Num

ber o

f eve

nts/

0.05

02000400060008000

100001200014000160001800020000 ATLAS Work in progress

L1_MU20

offline selected muons

η

TGC  が発行するトリガー

トロイド磁石

ECM  =  8  TeV,  bunch-spacing  25ns  in  2012  

Page 5: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

Run 2 に向けたアップグレード

5

LHC parameter Run 1!( ~ 2012 )

Run 2!( 2015 ~ )

重心系エネルギー ( TeV) 7 ~ 8 13 ~ 14

バンチ間隔 ( ns ) 50 25

ATLAS LVL1 muon trigger Run 1!( ~ 2012 )

Run 2!( 2015 ~ )

15 GeV/c 20 GeV/c

Trigger rate 6 kHz 34  kHz

L1  トリガー全体で100kHz  以内にしないといけない  なので  μ  のレートも  出来るだけ減らしたい

出来るだけ pT threshold は低くしたい

物理解析からの要請

トリガーレートを許容される範囲に抑えるためにFake Trigger を減らす必要がある

解決策

pT threshold

Luminosity ( cm-2s-1 ) 0.7 × 1034 2.0 × 1034

Page 6: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

コインシデンスの取り方: インナー TGC

6

✦ミドル TGC unit : 2π を 48 分割 

✦インナー TGC unit : 2π を 24 分割

• IP からの µ がインナー TGC につくるべきヒットと position matching がとれる時にコインシデンスと判定

•コインシデンスマップのチューニングにより、トリガーの削減を高効率で行うことが可能

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

JPS 2014 spring in Shonan

コインシデンスの取り方: インナー TGC

6

• TGC に hit があった時にインナー TGC を参照する範囲

-6000 -4000 -2000 0 2000 4000 6000

-6000

-4000

-2000

0

2000

4000

6000

��������

-10000 -5000 0 5000 10000

-10000

-5000

0

5000

10000

�������

✦ TGC エンドキャップ: 2π/ 48 Sector

✦インナー TGC: 2π / 24 Slot

色をつけた場所を一枚の VME モジュールで処理

神戸大学: 稲丸氏

!  !!!!:!ICWA��0>'(�EQIO9�/47:�<5GNQJPA� 0>,(A�0&�)!

!!!  !!!:!ICWA��0>'(7:RoI9Inner!CoincidenceA��0>,A�0&�)08@3(!

June!19,!2013!

TR

TIC

68>RoI9;��/8*)!RIC < TIC

TICTR95conv.90list!

6!

������� MC で作成した µ を用いて、IP 由来の µ が作るインナー TGC のヒット 情報からコインシデンスが取られるべき組み合わせ (

マップ ) を作成する ( 稲丸氏 )

それに一致するヒットがあった時にコインシデンスが取れたと判定

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

1.0 < |η| < 1.3 の領域はトロイド磁石と干渉するために、チェンバーがない場所がある

η  =  1.3

η  =  1.0

JPS 2014 spring in Shonan

コインシデンスの取り方: インナー TGC

6

• TGC に hit があった時にインナー TGC を参照する範囲

-10000 -5000 0 5000 10000

-10000

-5000

0

5000

10000

�������

✦ TGC エンドキャップ: 2π/ 48 Sector

✦インナー TGC: 2π / 24 Slot

色をつけた場所を一枚の VME モジュールで処理

神戸大学: 稲丸氏

!  !!!!:!ICWA��0>'(�EQIO9�/47:�<5GNQJPA� 0>,(A�0&�)!

!!!  !!!:!ICWA��0>'(7:RoI9Inner!CoincidenceA��0>,A�0&�)08@3(!

June!19,!2013!

TR

TIC

68>RoI9;��/8*)!RIC < TIC

TICTR95conv.90list!

6!

������ � MC で作成した µ を用いて、IP 由来の µ が作るインナー TGC のヒット 情報からコインシデンスが取られるべき組み合わせ (

マップ ) を作成する ( 稲丸氏 )

それに一致するヒットがあった時にコインシデンスが取れたと判定

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

JPS 2014 spring in Shonan

コインシデンスの取り方: インナー TGC

6

• TGC に hit があった時にインナー TGC を参照する範囲

-6000 -4000 -2000 0 2000 4000 6000

-6000

-4000

-2000

0

2000

4000

6000

��������

-10000 -5000 0 5000 10000

-10000

-5000

0

5000

10000

�������

✦ TGC エンドキャップ: 2π/ 48 Sector

✦インナー TGC: 2π / 24 Slot

色をつけた場所を一枚の VME モジュールで処理

神戸大学: 稲丸氏

!  !!!!:!ICWA��0>'(�EQIO9�/47:�<5GNQJPA� 0>,(A�0&�)!

!!!  !!!:!ICWA��0>'(7:RoI9Inner!CoincidenceA��0>,A�0&�)08@3(!

June!19,!2013!

TR

TIC

68>RoI9;��/8*)!RIC < TIC

TICTR95conv.90list!

6!

������� MC で作成した µ を用いて、IP 由来の µ が作るインナー TGC のヒット 情報からコインシデンスが取られるべき組み合わせ (

マップ ) を作成する ( 稲丸氏 )

それに一致するヒットがあった時にコインシデンスが取れたと判定

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

IP  からの  μが作るべきヒット

神戸大学: 稲丸氏 2013 秋: 20pSM-7

Page 7: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

-500 0 500 1000 1500 2000 2500-500

0

500

1000

1500

2000

2500

th2100Entries 787Mean x 760.6Mean y 799.1RMS x 816.7RMS y 811

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

th2100Entries 787Mean x 760.6Mean y 799.1RMS x 816.7RMS y 811ts00_D56

200 400 600 800 10000102030405060708090

100

ATLAS Work in progress

コインシデンスの取り方: TileCal

7

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

th2Entries 192Mean x 7.499Mean y 7.498RMS x 3.451RMS y 4.621

3295 187 3108 1257 1122 135 4553 1310 3243

0

10

20

30

40

50

60

70

th2Entries 192Mean x 7.499Mean y 7.498RMS x 3.451RMS y 4.621

3295 187 3108 1257 1122 135 4553 1310 3243

O,C;997C�+75EAC�0 ���1

0 2 4 6 8 10 1256

57

58

59

60

61

62

63

64

65

th2Entries 192Mean x 0.5114Mean y 62.15RMS x 0.5146RMS y 0.8021

0 0 0 560 187 373 3992 1122 2869

0

10

20

30

40

50

60

70

th2Entries 192Mean x 0.5114Mean y 62.15RMS x 0.5146RMS y 0.8021

0 0 0 560 187 373 3992 1122 2869

-$% &C8H@9���I�F���Q-E=;;9E,97GCE��

,;>7�&A6F>7�0 ���1

Tile  unit

6 ヒット

accept

reject

Check  2  Tile  unit  Energy

Tile  #5  Cell-Energy  (MeV)

Tile  #6  Cell-Energy  (MeV)

TGC  unit  #6  にヒット

ヒットがあった TGC unit に対応 する Tile unit のエネルギーが threshold ( e.g. 500 MeV ) 以上であればコインシデンスと判定

Threshold  (MeV)

✦ TGC unit : 2π を 48 分割

✦ TileCal unit : 2π を 64 分割

efficiency・rate  reduction  (%)

e.g.  threshold  500MeV  efficiency              :  97.4  %  rate  reduction  :  14.6  %  

TGC  unit

200 400 600 800 10000102030405060708090

100

ATLAS Work in progress

200 400 600 800 10000102030405060708090

100

ATLAS Work in progress

Page 8: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

efficiency reduction: 1.0 < |η| < 1.3• この領域ではインナー TGC と Tile の 2 つを使用可能

• どのように混ぜ合わせて使用するかを調べた

8

Tile のみ Exclusive-ORインナー TGC!

のみ

インナー TGC

Tile

efficiency!( % ) 97.4 97.8 99.5rate!

reduciton!( % )

14.6 12.5 60.7

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

Large (odd numbered) sectors

BIL

BML

BOL

EEL

EML EOL

EIL

CSC

1 2 3 4 5 6

1

2

3

4

5

6

EIL4

0

1 2 3 4 5 6

1 2 3 4 5 6

TGCs

1

2

3

4

5

1

2

3

End-cap

magnet

RPCs

y

z

1

2

Small (even numbered) sectors

EES

EMSEOS

RPCs

y

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12 m

0

BIS

BMS

BOS

EIS

CSC

0

TGCs

1

2

3

4

5

1

2End-cap

magnet

z

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6 BEE7 81 2

1 2 3 4 5 6

2

1

Figure 2: Schematic side view of the ATLAS muon spectrometer depicting the naming andnumbering scheme; top: sector with large chambers; bottom: sector with small chambers.

2

は検出器の単位 のイメージ ! :インナー TGC : TileCal

threshold  500MeV

•rate  reduction  L1  トリガーが削減される割合  !•efficiency  再構成できる  μ  を保つ割合

実装するモード

Page 9: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

L1η

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Num

ber o

f eve

nts/

0.05

02000400060008000

100001200014000160001800020000 ATLAS Work in progress

no cutrequire Inner TGCrequire TileCal

efficiency reduction: 全 eta

9

TGC と Tile のコインシデンスを使用することで、 efficiencyを保ち、Fake Trigger のみを選択的に削減可能

トリガーレート : 34 kHz -> 21 kHz ( 2 × 1034 cm-2 s-2 )

rete!reduction!

( % )efficiency!

( % )

no cut 100.0 100.0インナー TGC 69.6 98.5

Tile 53.4 98.1η

Run  2  で実装する

Page 10: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

まとめ1.2015  年から始まる  LHC-ATLAC  実験  Run2  においてμ  トリガーの純度をあげることが不可欠である。そのために  TGC  と  Tile  カロリーメータとのコインシデンスを利用した、新しい手法を開発した  

2.Tile  カロリーメータを用いてコインシデンスをとる際の最適な                    オペレーション手法を研究した  

✓ Tileのみで 高efficiency・高reduction( 97.4%・14.6% ) (1.0<|η|<1.3 )で IP からのμを選別可能  

⇒ この領域においては Tile のみの使用で運用する方針

3.これらをふまえて  Run2  で期待される  L1-μ  トリガーのレートを算出した

10

トリガーレート:  34  kHz  ->  21kHz  (  2  ×  1034  cm-2  s-1  )

•今後  

✦ 神戸大学で実際に処理を行う FPGAのファームウェアを開発中。協力してインストールを進める

✦ 2014 年夏からコミッショニングを CERN で進める

Page 11: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

Backup

11

Page 12: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

pileup

12

ATLAS Phase-I UpgradeTrigger and Data Acquisition

Technical Design Report30 November 2013

4.3.1 Tile hadronic calorimeter muon identification

The TileCal signals have two read-out paths, one in which trigger tower energy signals aretransmitted to the Level-1 trigger and the other being the standard ATLAS read-out path, viaread-out drivers to the data acquisition system. A prototype Level-1 trigger receiver modulefor the TileCal D-layer muon signals has been developed [4.10] and used to receive data fora small number of D-layer trigger cells during ATLAS running in 2010 and 2011. These datahave been used to establish the signal-to-noise ratio (SNR) between the most probable valueof the estimated energy distribution of the muon signals and noise, defined as the RMS ofenergy depositions in cells, using zero-bias data samples.

Figure 45a shows the measured SNR values in cells D5+D6 as a function of the h positionof the muons. The variation in the SNR value is due to the different path lengths of muonsthrough these cells (see Figure 35). For the Level-1 read-out path, SNR values of ⇠6 have beenmeasured in the h range of interest. The electronic noise of this read-out path is measuredto be ⇠200 MeV and is the largest contribution to the RMS. Also shown in Figure 45a is theSNR obtained by using the standard ATLAS read-out path for analogue signals digitised onthe detector. SNR values of ⇠30 have been measured with a total noise of ⇠45 MeV at a µ of20.

(a)

>+<0 20 40 60 80 100

Noi

se [M

eV]

0

50

100

150ATLAS = 8 TeV, 25 nss

D5, Data D5, MCD6, Data D6, MCelectronic noise

(b)

Figure 45: (a) Signal-to-Noise ratios of muon signals of cells D5 and D6 as a function of muon trackh, for the standard read-out path (black full circle) and for the Level-1 read-out path (red open circle)as measured during 2011 operation. (b) The noise (see text) in cells D5 and D6 versus µ using thestandard read-out path.

Figure 45b shows the measured noise in the standard read-out path, in cells D5 and D6 upto a µ value of 20 using 2012 data. Also shown are the noise values obtained from simulationfor larger values of µ. It can be seen that the expected contribution of pile-up to the noise at aµ value of 80 is ⇠105 MeV.

4.3.2 Muon efficiency and fake rate reduction

Each extended barrel in TileCal consists of 64 modules in f, while the Level-1 muon triggerin the endcap region is divided into 48 trigger sectors. For a signal in a muon trigger sector itcan be expected that a high-pT muon will also have traversed one of the two TileCal modulesin front of the Level-1 muon endcap trigger sector.

78 4 Level-1 Muon Trigger

Page 13: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

オペレーションモード

13

Tile のみ Exclusive-OR AND インナー TGC!のみ

インナー TGC

Tile

efficiency!( % ) 97.4 97.8 96.9 99.5rate!

reduciton!( % )

14.6 12.5 12.1 60.7

は検出器の単位 のイメージ ! :インナー TGC : TileCal

threshold  500MeV

Page 14: LHC-ATLAS 実験における ハドロンカロリーメー …atlas.kek.jp/sub/documents/jps201403/takuto_JPS_2014...JPS 2014 spring in Shonan LHC-ATLAS 実験における ハドロンカロリーメーターを用いた

JPS 2014 spring in Shonan

D5+D6 or D6

14

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35-1.5

-1

-0.5

0

0.5

1

1.5

0

200

400

600

800

1000

Asym D5,D6

7�FEII?8?B?JO�JE�KI;�>C9>J>9I6A�V��W�G><C6A��

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35-1.5

-1

-0.5

0

0.5

1

1.5

0

200

400

600

800

100

120

140D5 vs Eta

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35-1.5

-1

-0.5

0

0.5

1

1.5

0

200

400

600

800

100

120

140D6 vs Eta

1 1.05 1.1 1.15 1.2 1.25 1.3 1.350

500

1000

1500

2000

2500

0

20

40

60

80

100

120

140

160

180ADC vs Eta

D5

D5 +D6

D6

D5 +D6

��������J�G��S

��

D5�D6

D5 +D6

QSQ

QSQQSQ

200 400 600 800 10000102030405060708090

100

ATLAS Work in progress

500 1000 1500 mm0

A3 A4 A5 A6 A7 A8 A9 A10A1 A2

BC1 BC2 BC3 BC5 BC6 BC7 BC8BC4

D0 D1 D2 D3

A13 A14 A15 A16

B9B12 B14 B15

D5 D6D4

C10

0,7 1,0 1,1

1,3

1,4

1,5

1,6

B11 B13

A12

E4

E3

E2

E1

beam axis

0,1 0,2 0,3 0,4 0,5 0,6 0,8 0,9 1,2

2280 mm

3865 mm =0,0η

~~

η

Energy  Deposit  Asymmetry