33
PROPAGACIÓN DE ONDA EN LÍNEA DE TRANSMISIÓN 1 www.coimbraweb.com Edison Coimbra G. ANTENAS Y PROPAGACIÓN DE ONDAS Tema 2 de: Manual de clases Objetivo Objetivo Describir las características de las líneas de transmisión y su efecto sobre las ondas de radio que se propagan través de ellas. Última modificación: 11 de junio de 2014

Lineas de Transmision 4

Embed Size (px)

Citation preview

Page 1: Lineas de Transmision 4

PROPAGACIÓN DE ONDAEN LÍNEA DE TRANSMISIÓN

1www.coimbraweb.com

Edison Coimbra G.

ANTENAS Y PROPAGACIÓN DE

ONDAS

Tema 2 de:

Manual de clases

ObjetivoObjetivoDescribir las características de las líneas de transmisión y su efecto sobre las ondas de radio que se propagan través de ellas.

Última modificación:11 de junio de 2014

Page 2: Lineas de Transmision 4

1.- CONCEPTOS DE LÍNEAS DE TRANSMISIÓN

2www.coimbraweb.com

Tipos de líneas de transmisiónTipos de líneas de transmisión (Frenzel, 2003) (Blake, 2004)

Cualquier par de conductores actúa como una línea de transmisión.Cualquier par de conductores actúa como una línea de transmisión.

LÍNEAS DE TRANSMISIÓN

Las líneas de transmisión están formadas por conductores metálicos con una disposición geométrica determinada para transportar energía.

Tipo Descripción

Línea de pares

Formada por 2 conductores paralelos. Sus diversas variantes se utilizan en telefonía y transmisión de datos, y para conectar generadores y antenas en las frecuencias de 300 kHz a 30 MHz (Bandas MF y HF).

Coaxial Formada por 2 conductores concéntricos separados por un dieléctrico sólido. Se utilizan en sistemas de banda ancha como telefonía multicanal, televisión y RF hasta frecuencias del orden de 1 GHz.

Microcinta Construida en una tarjeta de circuitos impresos, con 2 conductores, uno en un lado de la tarjeta y el otro el plano de Tierra. Se utilizan en sistemas de microondas.

Guía de ondas

Constituida por 1 conductor; un tubo hueco de sección rectangular, circular o elíptica. Se utilizan en sistemas de microondas, como alternativa al coaxial.

Según la conexión

Línea balanceada. Los voltajes de los conductores son simétricos respecto a tierra. Por ejemplo: líneas de pares.Línea no balanceada. Uno de los conductores está conectado a tierra, por donde retorna la corriente. Por ejemplo: coaxial y microcinta.

Línea de paresLínea de pares

CoaxialCoaxial

Guía de ondasGuía de ondas

MicrocintaMicrocinta

Page 3: Lineas de Transmision 4

Transporte de energía en la línea

3www.coimbraweb.com

¿Cómo se transporta la energía?¿Cómo se transporta la energía?

LÍNEAS DE TRANSMISIÓN

Transporte de energía

Una aplicación de las líneas es el transporte de energía electromagnética del generador a la carga. La energía se propaga alrededor de los conductores de la línea.

Si se aplica un voltaje (VS) a una línea de pares, se genera un campo E entre los conductores, ya que acumulan cargas opuestas. La dirección del campo se invierte en cada semiciclo del voltaje.

El voltaje (VS) hace fluir una corriente eléctrica Ipor los conductores de la línea terminada en una impedancia de carga (ZL ). Esta corriente genera, a su vez, un campo H alrededor de los conductores. La dirección de la corriente y de los campos se invierte en cada semiciclo del voltaje.

La energía se propaga, por tanto, en forma de campos E y H transversales entre sí y, a su vez, transversales a la dirección de propagación. Este modo de propagación se denomina modo TEM.

(Kraus, 2000)

TEM (Transverse Electro-Magnetic Wave).TEM (Transverse Electro-Magnetic Wave).

Corte transversalCorte transversalT

ran

spo

rte d

e e

nerg

íaT

ran

spo

rte d

e e

nerg

ía

(Frenzel, 2003)

Page 4: Lineas de Transmision 4

Circuitos y líneas: una comparación

4www.coimbraweb.com

En altas frecuencias los circuitos se consideran líneasEn altas frecuencias los circuitos se consideran líneas

La teoría de líneas implica parámetros distribuidos.La teoría de líneas implica parámetros distribuidos.

CIRCUITOS Y LÍNEAS

Circuitos LíneasEn bajas frecuencias, el circuito tiene dimensiones pequeñas comparadas con la longitud de onda, por lo que lacorriente que circula por un cable en un instante dado, tiene la misma amplitud y fase en todos los puntos del cable.

En altas frecuencias, el circuito tiene dimensiones comparables con la longitud de onda, por lo que la corriente que circula por un cable en un instante dado, no tiene la misma amplitud ni fase en otros puntos del cable.

En bajas frecuencias, el circuito se analiza con la teoría de circuitos, donde se usan conceptos como voltajes, corrientes y parámetros concentrados.

En altas frecuencias, el circuito se considera línea con parámetros distribuidos, y su análisis requiere de la teoría de líneas, derivada de la teoría del campo electromagnético.

Los parámetros concentrados son: resistencia, conductancia, inductancia y capacitancia. Están concentrados en un solo elemento o componente bien localizado físicamente.

En una línea, la resistencia, conductancia inductancia o capacitancia no están concentradas en un punto de la línea, sino distribuidas uniformemente a lo largo de ella. A pesar de ello, la teoría de líneas permite aprovechar muchas de las leyes y propiedades que se estudian en electrónica de baja frecuencia.

Circuito en baja fCircuito en baja f

Circuito en alta f = líneaCircuito en alta f = línea

(Kraus, 2000)

Page 5: Lineas de Transmision 4

2.- TEORÍA DE LÍNEAS DE TRANSMISIÓN

5www.coimbraweb.com

¿Qué son los parámetros distribuidos?¿Qué son los parámetros distribuidos? (Anguera, 2008) (Blake, 2004)

Los parámetros distribuidos se distribuyen uniformemente a lo largo de la línea.Los parámetros distribuidos se distribuyen uniformemente a lo largo de la línea.

PARÁMETROS DISTRIBUÍDOS DE LA LÍNEA

Parámetro Descripción

Resistenciadistribuida R

Resistencia en serie por unidad de longitud(/m). Depende la resistividad de los conductores y de la frecuencia. En altas frecuencias, la resistencia aumenta debido al efecto skin, que es la tendencia de la corriente a acumularse en la capa superficial del conductor, produciendo atenuación en la onda.

Conductancia distribuida G

Conductancia en paralelo por unidad de longitud (S/m). El dieléctrico no es perfecto y tiene resistividad finita, por lo que parte de la corriente se “fuga” entre los conductores, contribuyendo a la atenuación en la onda. A bajas frecuencias éstas pérdidas son tan pequeñas que se ignoran; sin embargo, son significativas a medida que aumenta le frecuencia.

Inductanciadistribuida L

Inductancia en serie por unidad de longitud (Hy/m). El flujo de corriente en los conductores genera un campo H alrededor de ellos, lo cual se modela como un inductor en serie que almacena dicha energía magnética. Cuando aumenta la frecuencia, la inductancia comienza a tener efecto, porque mayor será la reactancia inductiva en serie.

CapacitanciaDistribuida C

Capacitancia en paralelo por unidad de longitud (F/m). El voltaje entre los conductores genera un campo E entre ellos, lo cual se modela como un capacitor en paralelo que almacena dicha energía eléctrica. Cuando aumenta la frecuencia, la capacitancia comienza a tener efecto, porque menor será la reactancia capacitiva en paralelo.

Page 6: Lineas de Transmision 4

Modelo circuital de la línea de transmisión

6www.coimbraweb.com

¿Cómo se puede modelar la línea?¿Cómo se puede modelar la línea?

Los 4 parámetros distribuidos se calculan para cada caso particular si se conocen las dimensiones de la línea. Los 4 parámetros distribuidos se calculan para cada caso particular si se conocen las dimensiones de la línea.

MODELO CIRCUITAL DE LA LINEA

Línea de 2 conductoresEl comportamiento de la línea a altas frecuencias se analiza con la teoría de líneas y con una extensión de la teoría de circuitos que implica parámetros distribuidos. Para ello, se la divide en secciones de longitud infinitesimal ∆z.El modelo considera las pérdidas y el almacenamiento de energía en cada una de estas secciones. Uno adecuado es una red de cuadripolos, donde R, G, L, y C son los parámetros distribuidos de la línea.Este elemento infinitesimal se supone tan pequeño que los parámetros del circuito pueden considerarse concentrados.

Modelo de una secciónModelo de una sección

CÁLCULO DE PARÁMETROS DISTRIBUIDOSLos parámetros distribuidos de las líneas dependen del grosor de los conductores, su separación y de la permitividad del dieléctrico que los separa. Se han desarrollado fórmulas para calcularlos. Se resumen en tablas.

Page 7: Lineas de Transmision 4

Análisis del modelo circuital

7www.coimbraweb.com

El análisis genera ecuaciones de onda para el voltaje y la corrienteEl análisis genera ecuaciones de onda para el voltaje y la corriente

Se llaman también Ecuaciones de Helmholtz.Se llaman también Ecuaciones de Helmholtz.

ANÁLISIS DEL MODELO

Suponiendo una variación senoidal del voltaje y la corriente y usando notación fasorial, se aplican las leyes de Kirchoff al cuadripolo.

Se obtienen ecuaciones diferenciales cuyas soluciones son las ecuaciones de onda para el voltaje y la corriente en la línea y la constante de propagación.

Análisis del cuadripoloAnálisis del cuadripolo

Ondas de voltaje y corrienteOndas de voltaje y corriente

Atenuación de la ondaAtenuación de la onda

(Kraus, 2000)

INTERPRETACIÓN DE LA SOLUCIÓN

Ecuaciónde onda

Una superposición de 2 ondas: una incidente que viaja del generador hacia la carga y otra reflejadaque viaja en sentido contrario, para el voltaje y para la corriente.

Constante de propagación

La onda de voltaje, o corriente, se atenúa exponencialmente conforme se propaga a lo largo de la línea.

Page 8: Lineas de Transmision 4

Impedancia característica de la línea

8www.coimbraweb.com

¿Qué es la impedancia característica?¿Qué es la impedancia característica?

Se la conoce como el modelo de alta frecuencia de la línea.Se la conoce como el modelo de alta frecuencia de la línea.

IMPEDANCIA CARACTERÍSTICA

Conceptos

En una línea hipotéticamente infinita, la onda incidente viaja a lo largo de ella por siempre, y nunca se refleja.

En ausencia de ondas reflejadas, si las ondas incidentes de voltaje y de corriente se vinculan entre sí,en cualquier punto de la línea, se obtiene la impedancia característica, parámetro con dimensiones de resistencia que caracteriza a la línea.

La impedancia característica depende de los parámetros distribuidos de la línea y la frecuencia. Es compleja, contiene elementos reactivos, lo que señala un desfase entre las ondas de voltaje y de corriente.

En la práctica, se usan líneas de bajas pérdidas, y si la frecuencia es suficientemente alta, la potencia de pérdidas se ignora, pues es mucho menor que la potencia almacenada en el campo electromagnético que se propaga como una onda en la línea.

En tales condiciones, la impedancia característica es real, puramente resistiva, y no depende de la frecuencia, únicamente de la inductancia y capacitancia.

Bajas pérdidas y alta frecuenciaBajas pérdidas y alta frecuencia

Impedancia característicaImpedancia característica

Z0 = impedancia característica, en .

V, I = voltaje y corriente en un punto.

R, G, L, C= parámetros distribuidos.

= 2f = frecuencia angular, en rad.

Z0 = impedancia característica, en .

V, I = voltaje y corriente en un punto.

R, G, L, C= parámetros distribuidos.

= 2f = frecuencia angular, en rad.

0

G 0

(Frenzel, 2003) (Blake, 2004)

Page 9: Lineas de Transmision 4

Ejemplos con impedancia característica

9www.coimbraweb.com

Para calcular la impedancia característica se utilizan tablasPara calcular la impedancia característica se utilizan tablas (Blake, 2004)

La impedancia característica depende de las dimensiones físicas de la línea.La impedancia característica depende de las dimensiones físicas de la línea.

Respuesta Ejemplo 1

0 = 169 .

Ejemplo 1.- Línea de pares

Una línea telefónica de uso en interiores, tiene 2 conductores paralelos de cobre de 0.60 mm de diámetro. La separación entre ellos es de 2.5 mm y el aislante entre ambos es polietileno con permitividad2,26. Calcule la impedancia característica del cable suponiendo su utilización a altas frecuencias.

Respuesta Ejemplo 2

0 = 46,5 .

Ejemplo 2.- Cable coaxial

Un cable coaxial usado en sistemas VHF, UHF y microondas, tiene conductores de cobre aislados entre sí con polietileno de permitividad 2,26. El diámetrodel conductor interno es de 3 mm y del externo 9,6 mm. Calcule la impedancia característica del cable.

De tablaDe tabla

De tablaDe tabla

Page 10: Lineas de Transmision 4

3.- PROPAGACIÓN EN LINEA ACOPLADA

10www.coimbraweb.com

¿Qué es una línea acoplada?¿Qué es una línea acoplada? (Blake, 2004)

La línea acoplada no produce reflexiones.La línea acoplada no produce reflexiones.

LÍNEA ACOPLADA

ConceptoPara no tratar con una línea infinita, producto de la imaginación, se utiliza una de longitud finita terminada con una impedancia de carga igual a la impedancia característica.El efecto visto desde el generador es que la onda incidente viaja hasta la carga donde es absorbida totalmente y no se refleja.Una línea de longitud finita que se termina en su impedancia característica se llama línea acoplada; no produce onda reflejada.

VALORES DE IMPEDANCIAS

Aplicación Valor

Coaxial transmisor y receptor de RF 50

Coaxial televisión por cable 75

Coaxial red de computadores 93

Par trenzado UTP 100

Par trenzado STP 150

Línea de cinta antena de televisión 300

Línea acopladaLínea acoplada

ImpedanciasImpedancias

VALORES DE IMPEDANCIAEn la práctica, no es necesario calcular la impedancia característica, puesto que es parte de las especificaciones de un cable, lo cual simplifica los criterios de acoplamiento.

Page 11: Lineas de Transmision 4

Velocidad de propagación en la línea

11www.coimbraweb.com

¿A qué velocidad se propaga la onda en la línea?¿A qué velocidad se propaga la onda en la línea? (Blake, 2004)

El factor de velocidad depende del dieléctrico de la línea.El factor de velocidad depende del dieléctrico de la línea.

VELOCIDAD DE PROPAGACIÓN EN LA LÍNEA

DescripciónLa velocidad a la cual se propaga la onda en la línea es menor que la velocidad de la luz en el vacío. Cerca del 66% de la velocidad de la luz en cable con dieléctrico de polietileno sólido. Cerca del 78% en cable con dieléctrico de espuma de polietileno.Cerca del 95% en cable con aire como dieléctrico.

Además de la velocidad de propagación, es normal que los fabricantes especifiquen el factor de velocidad de los cables, el cual depende casi por completo del dieléctrico utilizado en la línea.

Factor de velocidadFactor de velocidadVF = factor de velocidad.

= velocidad de propagación en la línea, en m/s.

= velocidad de la luz en el vacío, en m/s.

= permitividad relativa del dieléctrico.

VF = factor de velocidad.

= velocidad de propagación en la línea, en m/s.

= velocidad de la luz en el vacío, en m/s.

= permitividad relativa del dieléctrico.

VF1

VF1

Respuesta Ejemplo 3

a) VF = 0,69.b) = 207.000 km/s.

Ejemplo 3.- Velocidad de propagación

Para un cable con un dieléctrico de teflón (permitividad de 2,1), calcule:a) El factor de velocidad.b) La velocidad de propagación en el cable.

Page 12: Lineas de Transmision 4

Onda incidente en la línea

12www.coimbraweb.com

¿Cómo se propaga en la línea? ¿Cómo se propaga en la línea? (Blake, 2004)

También se le llama onda progresiva.También se le llama onda progresiva.

PROPAGACIÓN DE ONDA INCIDENTE

Descripción

En una línea acoplada, la onda incidente viaja hasta la carga donde es absorbida totalmente y no se refleja.

El proceso se lleva a cabo en cierto tiempo hasta que la primera parte de la onda llegue a la carga.

Si fuera posible la “instantánea” del voltaje a lo largo de la línea se vería como la onda seno en función de la distancia en lugar del tiempo; por lo que un ciclo completo de la onda ocuparía una longitud de onda en lugar de un periodo.

En cualquier punto de la línea la onda es la misma que en el generador, excepto por un desfase.

Desfase de la onda

La longitud de una línea que no es igual a la longitud de onda produce un desfase proporcional a su longitud. Una longitud de onda produce un desfase de 360º.

Las líneas de transmisión también se utilizan para introducir, de forma deliberada, desplazamientos de fase y retardos cuando se requieran.

Instantánea del voltaje Instantánea del voltaje

Longitud de onda en la línea

Longitud de onda en la línea

λλ

λ = longitud de onda, en m.

= velocidad de propagación, en m/s.

f = frecuencia de la onda, en Hz.

= cambio de fase, en grados.L= longitud de la línea, en m.

λ = longitud de onda, en m.

= velocidad de propagación, en m/s.

f = frecuencia de la onda, en Hz.

= cambio de fase, en grados.L= longitud de la línea, en m.

Desfase que produce la línea.

Desfase que produce la línea.

360Lλ 360Lλ

Page 13: Lineas de Transmision 4

Ejemplos con fases de la onda en la línea

13www.coimbraweb.com

¿Cómo se mide el desfase de una onda? ¿Cómo se mide el desfase de una onda? (Blake, 2004)

Una longitud de onda produce un desfase de 360º.Una longitud de onda produce un desfase de 360º.

Ejemplo 4.- Fases de la onda

La fase describe la posición relativa de la onda respecto a un punto de referencia. Si se piensa que la onda se desfasa hacia delante o hacia atrás a lo largo de la línea, la fase describe la magnitud de ese desfase, indica el estado del primer ciclo.

Ejemplo 5.- Onda desfasada

Una onda se desplaza un /6. ¿Cuál es su fase en grados y radianes?

Respuesta Ejemplo 5

= 60º = /3 rad.

Ejemplo 6.- Desplazamiento

¿Qué longitud de cable coaxial se requiere para obtener un desplazamiento de fase de 45º a 200 MHz? El factor de velocidad del coaxial es 0.66.

Respuesta Ejemplo 6

L = 0,124 m.

Diferentes fasesDiferentes fases

(Forouzan, 2007)

Page 14: Lineas de Transmision 4

4.- PROPAGACIÓN EN LÍNEA NO ACOPLADA

14www.coimbraweb.com

¿Qué es una línea no acoplada?¿Qué es una línea no acoplada? (Blake, 2004)

La línea no acoplada produce reflexiones.La línea no acoplada produce reflexiones.

LÍNEA NO ACOPLADA

ConceptoSi la onda viaja en un medio e incide sobre la frontera de un segundo medio de diferentes características, parte de su energía se transmite hacia el segundo medio y otra se refleja hacia el primero.Un proceso análogo ocurre en la línea terminada en una impedancia de carga que no es igual a su impedancia característica; el primer medio sería la propia línea y el segundo la impedancia de carga.En consecuencia, parte de la energía incidente es absorbida en la carga y otra se refleja hacia el generador. A esta línea que produce onda reflejada se llama línea no acoplada.La onda reflejada se agrega a la incidente y la suma de ambas se conoce como onda estacionaria, la cual queda confinada dentro de la línea.

Onda incidente + onda reflejadaOnda incidente + onda reflejada

Onda estacionariaOnda estacionaria

Page 15: Lineas de Transmision 4

Onda estacionaria

15www.coimbraweb.com

¿Qué es la onda estacionaria?¿Qué es la onda estacionaria? (Blake, 2004)

La onda estacionaria es la suma de las ondas incidente y reflejada.La onda estacionaria es la suma de las ondas incidente y reflejada.

ONDA ESTACIONARIA

DescripciónLa interacción entre las ondas incidente y reflejada causa lo que parece ser un patrón estacionario de ondas en la línea. Debido a su apariencia, a estas ondas se las conoce como ondas estacionarias. En cada punto de la línea los valores instantáneos del voltaje incidente y reflejado se suman en forma algebraica para obtener el voltaje total. Nodos. Hay puntos que son siempre 0, no vibran, esos puntos se denominan nodos, y son la causa de que la energía en lugar de transmitirse se almacene entre cada nodo.Antinodos. Hay otros puntos que vibran en el tiempo con una amplitud de vibración máxima, igual al doble de las ondas que interfieren, y con una energía máxima, estos puntos se denominan antinodos.La distancia que separa dos nodos consecutivos es /2.

Onda estacionariaOnda estacionaria

ONDA ESTACIONARIA

AdvertenciaLa onda estacionaria que se forma en la línea no acoplada es energía que no se transmite y que puede calentar y dañar dispositivos electrónicos. Es necesario controlar la porción de onda que se refleja.

Page 16: Lineas de Transmision 4

Ondas en líneas con terminaciones extremas extremasiones

16www.coimbraweb.com

¿Cómo varía el voltaje efectivo a lo largo de la línea?¿Cómo varía el voltaje efectivo a lo largo de la línea?

La corriente responde al contrario que el voltaje.La corriente responde al contrario que el voltaje.

ONDA ESTACIONARIA

En línea con terminaciones extremas

Si se mueve un voltímetro desde el generador hasta la carga, se obtiene la variación del voltaje efectivo (RMS) a lo largo de la línea.

Terminación EventoLínea acoplada.

El voltaje incidente es absorbido por la carga.

Circuitoabierto

No hay carga que absorba alvoltaje incidente, por lo que se refleja con la misma amplitud y polaridad y se suma al nuevo incidente, produciendo un voltaje efectivo máximo.

Corto circuito No hay carga que absorba alvoltaje incidente, por lo que se refleja con la misma amplitud y polaridad opuesta y se suma al nuevo incidente, produciendo un voltaje cero.

AcopladaAcoplada

AbiertaAbierta

CortoCorto

(Frenzel, 2003) (Blake, 2004)

Page 17: Lineas de Transmision 4

Ondas en líneas con carga no extrema

17www.coimbraweb.com La SWR tiene que ver solo con magnitudes, es un número real.La SWR tiene que ver solo con magnitudes, es un número real.

ONDA ESTACIONARIA

En línea con carga no extrema

Si la línea esta desacoplada, no en extremo, parte del voltaje es absorbido en la carga y otra se refleja hacia el generador. El voltaje reflejado tiene una amplitud menor que el incidente, por lo que no habrá lugar sobre la línea donde el voltaje sea 0.

El voltaje máximo ocurre cuando los voltajes incidente y reflejado están en fase, y el mínimocuando tienen fases opuestas.

CARACTERÍSTICAS DE LAS REFLEXIONES

Coeficientede reflexión

Relación entre el voltaje reflejado y el incidente. En general es un número complejo.

Relaciónde onda estacionaria

ROE (SWR – Standing Wave Ratio). Relación entre el voltaje máximo y el voltaje mínimo.

A través de un análisis circuital en la carga y un poco de álgebra, es posible expresar ambas características en función de las impedancias característica y de carga.

Carga no extremaCarga no extrema

Coeficiente de reflexiónCoeficiente de reflexión

Relaciónde onda estacionaria

Relaciónde onda estacionaria

ZL Z0Z ZZL Z0ZL Z0

SWR áSWR á

í

SWRZ0ZSWRZ0ZL

SWRZLZSWRZLZ0

Si ZL Z0

Si Z0 ZL

¿Cómo varía el voltaje efectivo a lo largo de la línea?¿Cómo varía el voltaje efectivo a lo largo de la línea? (Frenzel, 2003) (Blake, 2004)

Page 18: Lineas de Transmision 4

Ejemplos con líneas con terminaciones extremas

18www.coimbraweb.com

Ejemplo 7.- Línea acoplada

Calcule el coeficiente de reflexión y la SWR en una línea acoplada.

Respuesta Ejemplo 7

= 0. El voltaje reflejado es 0.

SWR = 1. Los voltajes máximos y mínimos son iguales. Es una onda plana.

Ejemplo 8.- Circuito abierto

Calcule el coeficiente de reflexión y la SWR en una línea terminada en circuito abierto.

Respuesta Ejemplo 8

= 1. Los voltajes incidente y reflejadoson de igual magnitud y signo.

SWR → ∞. El voltaje mínimo es 0.

Ejemplo 9.- Corto circuito

Calcule el coeficiente de reflexión y la SWR en una línea terminada en corto circuito.

Respuesta Ejemplo 9

= 1. Los voltajes incidente y reflejado son de igual magnitud pero de signo opuesto.

SWR → ∞. El voltaje mínimo es 0.

¿Cómo varía el voltaje efectivo a lo largo de la línea?¿Cómo varía el voltaje efectivo a lo largo de la línea? (Frenzel, 2003) (Blake, 2004)

La SWR toma valores entre 1 e infinito.La SWR toma valores entre 1 e infinito.

Page 19: Lineas de Transmision 4

Ejemplos con líneas con carga no extrema

19www.coimbraweb.com

Ejemplo 10.- Onda estacionaria

Un generador se conecta a una línea en cortocircuito de 1,25 de largo. Dibuje el patrón de onda estacionaria de voltaje en la línea.

Respuesta Ejemplo 10

Ver figura.

Ejemplo 11.- Onda estacionaria

Una línea de circuito abierto tiene de largo 0.75. Dibuje un diagrama que muestre cómo varía el voltaje RMS con la posición a lo largo de la línea.

Respuesta Ejemplo 11

Ver figura.

Respuesta Ejemplo 12

a) = 0,33.b) SWR = 2.

Ejemplo 12.- Coeficiente de reflexión y SWR

Una línea de 50 se termina en una resistencia de 25 . Calcule:a) El coeficiente de reflexión.b) La relación de onda estacionaria.

¿Cómo varía el voltaje efectivo a lo largo de la línea?¿Cómo varía el voltaje efectivo a lo largo de la línea? (Frenzel, 2003) (Blake, 2004)

La SWR tiene que ver solo con magnitudes, es un número real.La SWR tiene que ver solo con magnitudes, es un número real.

Page 20: Lineas de Transmision 4

Ejemplos con líneas con carga no extrema

20www.coimbraweb.com

La SWR se puede medir, esta es su ventaja sobre el coeficiente de reflexión que es más útil en cálculos.La SWR se puede medir, esta es su ventaja sobre el coeficiente de reflexión que es más útil en cálculos.

Ejemplo 14.- SWR y resistencia de carga

Una línea ranurada de 50 y factor de velocidad de 0.95, se utiliza para llevar a cabo mediciones con un generador y una carga resistiva que se sabe es mayor que 50 (vea la figura). Se encuentra que el voltaje máximo en la línea es de 10 V y el mínimo de 3 V. La distancia entre dos mínimos es de 75 cm. Calcule:a) La longitud de onda de la línea.b) La frecuencia del generador.c) La SWR.d) La resistencia de la carga.

Respuesta Ejemplo 14

a) = 1,5 m.b) f = 190 MHz.c) SWR = 3,33.d) ZL = 167 .

¿Cómo varía el voltaje efectivo a lo largo de la línea?¿Cómo varía el voltaje efectivo a lo largo de la línea? (Frenzel, 2003) (Blake, 2004)

Ejemplo 13.- SWR y coeficiente de reflexión

Un cable coaxial de 75 tiene una onda estacionaria de 52 V máximo y 17 V mínimo. Calcule:a) La relación de onda estacionaria.b) El valor de la carga resistiva.c) El coeficiente de reflexión.

Respuesta Ejemplo 13

a) SWR = 3,06.b)ZL= 229,5 .c) = 0,51.

Page 21: Lineas de Transmision 4

Ejemplos con líneas con carga no extrema

21www.coimbraweb.com

RELACIÓN DE ONDA ESTACIONARIA

Importancia prácticaEs un parámetro fácil de medir y da una indicación de las condiciones de funcionamiento de la línea y del acoplamiento de ésta a la carga y al generador.Sus valores son: 1 ≤ SWR < ∞. Para una línea acoplada (caso ideal) es igual que 1 (se expresa como 1:1 para enfatizar que es una razón), y mientras más cerca esté la línea de ser acoplada, más cerca de 1 es su SWR. En una aplicación de transmisión, la onda estacionaria pone voltaje adicional en la línea y puede producir que falle la línea o el generador. Por ejemplo, si sucede que el generador está conectado en o cerca de un voltaje máximo, su circuito de salida quedaría sujeto a una condición peligrosa de sobrevoltaje.Es muy probable que el sobrevoltaje dañe al generador, que por esta razón suele e equiparse con circuitos para reducir su potencia de salida en presencia de una SWR mayor que 2:1.

¿Cómo varía el voltaje efectivo a lo largo de la línea?¿Cómo varía el voltaje efectivo a lo largo de la línea? (Frenzel, 2003) (Blake, 2004)

La SWR toma valores entre 1 e infinito.La SWR toma valores entre 1 e infinito.

Ejemplo 15.- SWR e Impedancia característica

Una línea de transmisión de impedancia desconocida se termina con dos resistencias distintas, y la SWR se mide en cada caso. Con una terminación de 75 , la SWR mide 1,5. Con una terminación de 300 , mide 2,67. Calcule la impedancia característica de la línea.

Respuesta Ejemplo 15

Z0 = 112 .

Page 22: Lineas de Transmision 4

5.- MÁXIMA TRANSFERENCIA DE POTENCIA

22www.coimbraweb.com

¿Cuánta potencia se transfiere a la carga?¿Cuánta potencia se transfiere a la carga? (Blake, 2004)

La máxima transferencia de potencia se produce en línea acoplada.La máxima transferencia de potencia se produce en línea acoplada.

TRANSFERENCIA DE POTENCIA

ConceptosLas reflexiones causan que la potencia absorbida en la carga sea menor de lo que sería con línea acoplada, debido a que parte de la potencia se refleja hacia el generador.La potencia es proporcional al voltaje al cuadrado, por tanto la fracción de la potencia que se refleja es el coeficiente de reflexión al cuadrado.La cantidad de potencia absorbida por la carga es la diferencia entre la potencia incidente y la potencia reflejada.

Coeficiente de reflexión de potenciaCoeficiente de reflexión de potencia

= coeficiente de reflexión.

, = voltaje reflejado, incidente, en V.

, = potencia reflejada, incidente, en W.

= coeficiente de reflexión.

, = voltaje reflejado, incidente, en V.

, = potencia reflejada, incidente, en W.

Potencia absorbidaPotencia absorbida L L

Page 23: Lineas de Transmision 4

Cálculo rápido de la transferencia de potencia

23www.coimbraweb.com

TRANSFERENCIA DE POTENCIA

Cálculo rápidoPara cálculos rápidos en mediciones, se usa una curva que muestra la relación entre el porcentaje de energía reflejada y la SWR.Para SWR = 1, el porcentaje de energía reflejada es 0. Para SWR = 1.5 es de 4 %, esto no es problema, ya que el 96% de la energía va a la carga. Para SWR ≤ 2, el porcentaje es menor que 10 %, lo que significa que el 90% llega a la carga. Para la mayor parte de las aplicaciones esto es aceptable.Para SWR 2, el porcentaje aumenta de manera espectacular, y deben tomarse medidas para reducir la SWR con el fin de prevenir un daño potencial. Algunos sistemas de estado sólido, cortan en forma automática cuando la SWR sube a más de 2.La solución más común para reducir la SWR es añadir una red de acoplamiento para producir un acoplamiento correcto.

¿Cuánta potencia se transfiere a la carga?¿Cuánta potencia se transfiere a la carga? (Frenzel, 2003)

La máxima transferencia de potencia se produce en línea acoplada.La máxima transferencia de potencia se produce en línea acoplada.

Page 24: Lineas de Transmision 4

Ejemplos con transferencia de potencia

24www.coimbraweb.com

Ejemplo 16.- Potencia reflejada y disipada

Un generador envía 50 mW por una línea de 50 . El generador se acopla con la línea, pero no con la carga. Si el coeficiente de reflexión es 0.5, ¿cuánta potencia se refleja y cuánta se disipa en la carga?

Respuesta Ejemplo 16

Pr = 12,5 mW. PL = 37,5 mW.

Ejemplo 17.- Coeficiente de reflexiónUn transmisor entrega 50 W a una línea sin pérdida de 600 que se termina con una antena que tiene una impedancia de 275 , resistiva. Calcule:a) El coeficiente de reflexión.b) La potencia que en realidad llega a la antena

(potencia radiada).

Respuesta Ejemplo 17

a) = –0,371.b) PL = 43,1 W.

Ejemplo 18.- Potencia reflejada vs. SWR

Un transmisor suministra 50 W a una carga a través de una línea con una SWR de 2:1. Determine la potencia absorbida por la carga. Utilice la gráfica de % de potencia reflejada versus SWR.

Respuesta Ejemplo 18

PL = 44,4 W.

(Frenzel, 2003) (Blake, 2004)¿Cuánta potencia se transfiere a la carga?¿Cuánta potencia se transfiere a la carga?

La máxima transferencia de potencia se produce en línea acoplada.La máxima transferencia de potencia se produce en línea acoplada.

Page 25: Lineas de Transmision 4

6.- ACOPLAMIENTO DE IMPEDANCIA

25www.coimbraweb.com

¿Cómo se puede acoplar la carga a línea?¿Cómo se puede acoplar la carga a línea?

La red de acoplamiento sirve para producir un acoplamiento correcto.La red de acoplamiento sirve para producir un acoplamiento correcto.

ACOPLAMIENTO DE IMPEDANCIAS

Red de acoplamientoLas reflexiones causan que la potencia absorbida en la carga sea menor de lo que sería con línea acoplada, debido a que parte de la potencia se refleja hacia el generador.

Se obtienen mejores resultados si la carga está acoplada con la impedancia característica; si ese no es el caso, se conecta una red de acoplamiento para corregir el desacoplamiento.El reto consiste en dejar la carga como está y emplear algún truco, matemáticamente bien fundamentado, para que la línea esté acoplada en la cercanía a la carga.

DIAGRAMA DE SMITHSi la impedancia característica y de carga tienen valores complejos, se utiliza el diagrama de Smith (Philip Smith, 1939) como ayuda para diseñar el acoplamiento de impedancias.Es un diagrama que permite visualizar impedancias complejas y la forma en la que varían a lo largo de la línea.En la actualidad, es común hacer cálculos de línea con la ayuda de una PC, pero muchos de los programas utilizan el diagrama de Smith para mostrar su resultado.

Red de acoplamientoRed de acoplamiento

Diagrama de SmithDiagrama de Smith

(Frenzel, 2003) (Blake, 2004)

Page 26: Lineas de Transmision 4

Tipos de red de acoplamiento

26www.coimbraweb.com El balun es un acoplador de línea balanceada a no balanceada.El balun es un acoplador de línea balanceada a no balanceada.

TIPOS DE RED DE ACOPLAMIENTO

Descripción

Transformador Logra que la impedancia de cargaresistiva se parezca a la característica, al seleccionar el número correcto de vueltas de las bobinas.

Línea de /4 Logra que la impedancia de carga resistiva se parezca a la característica, al seleccionar el valor correcto de su impedancia característica.

Reactanciaen serie

Logra que la parte reactiva de la impedancia de carga se cancele al sumar una reactancia en serie opuesta (inductiva o capacitiva).

Reactanciaen paralelo

Logra que la parte reactiva de la impedancia de carga se cancele al colocar un stub paralelo reactivo (inductivo o capacitivo) de línea cortocircuitada. Esta solución se aplica en frecuencias superiores a 30 MHz.

ZZ

V. PrimarioV. Secundario

Z0ZL

V. PrimarioV. Secundario

Z

Z0ZLZaZ0ZL

TransformadorTransformador

Línea de /4Línea de /4

Stub reactivoStub reactivo

¿Cómo se puede acoplar la carga a la línea?¿Cómo se puede acoplar la carga a la línea? (Frenzel, 2003) (Blake, 2004)

Page 27: Lineas de Transmision 4

Ejemplos con redes de acoplamiento

27www.coimbraweb.com

El diagrama de Smith ayuda a diseñar el acoplamiento de impedancias complejas.El diagrama de Smith ayuda a diseñar el acoplamiento de impedancias complejas.

Ejemplo 19.- Acoplamiento con transformador

Por lo común, los transformadores de RF son toroidales, con núcleo de ferrita o de hierro pulverizado. Encuentre la relación de transformación correcta de un transformador requerido para acoplar una línea de 50 con una impedancia de carga de 88.38 , resistiva.

Respuesta Ejemplo 20

Za= 66,48 .

Ejemplo 20.- Acoplamiento con línea de /4

Encuentre la impedancia característica de una línea de /4requerida para acoplar una línea de 50 con una impedancia de carga de 88.38, resistiva.

Respuesta Ejemplo 19

V.Primario/V.Secundario = 0.752.

Ejemplo 21.- Acoplamiento con reactancia en serie

Utilice un capacitor o inductor en serie para acoplar una línea de 50 con una impedancia de carga de 50 + j75 , a una frecuencia de 100 MHz.

Respuesta Ejemplo 21

Una reactancia capacitiva de –j75 , es decir, un capacitor de C = 21.2 pF.

¿Cómo se puede acoplar la carga a la línea?¿Cómo se puede acoplar la carga a la línea? (Frenzel, 2003) (Blake, 2004)

Page 28: Lineas de Transmision 4

7.- PÉRDIDAS EN LA LÍNEA DE TRANSMISIÓN

28www.coimbraweb.com

¿Cuáles son los mecanismos de pérdidas?¿Cuáles son los mecanismos de pérdidas?

Las pérdidas aumentan con la frecuencia.Las pérdidas aumentan con la frecuencia.

PÉRDIDAS EN LAS LÍNEAS DE TRANSMISIÓN

Ninguna línea real es completamente sin pérdidas, aunque es válida la aproximación cuando la línea es corta.

Mecanismos de pérdidas

Resistenciade los conductores

La pérdida más obvia en una línea se debe a la resistencia de los conductores. Se le llama pérdida de cobre porque este material es el común para los conductores.

La pérdida aumenta con la frecuencia debido al efecto skin, que es la tendencia de la corriente a acumularse en la capa superficial de los conductores, aumentando su resistencia al aumentar la frecuencia.

Conductancia del dieléctrico

El dieléctrico de una línea no es perfecto y tiene resistividad finita, por lo que parte de la corriente se “fuga” entre los conductores, contribuyendo a la pérdida.

Esta conductancia del dieléctrico aumenta con la frecuencia. Los coaxiales con dieléctrico de espuma tienen menor pérdida que los que utilizan polietileno sólido.

Efecto SkinEfecto Skin

Corriente de fugaCorriente de fuga

(Anguera, 2008)

Page 29: Lineas de Transmision 4

La historia de los Bel

29www.coimbraweb.com

¿Para qué sirve el decibel?¿Para qué sirve el decibel?

La atenuación en la línea se mide en dB.La atenuación en la línea se mide en dB.

ORIGEN DEL DECIBEL

Evento

Originado en los Laboratorios Bell, el decibel surgió debido a la necesidad de definir una unidad que diera una idea de la pérdida de potencia (atenuación) obtenida a la salida de una línea telefónica con respecto a la entrada.

Los primeros sistemas telefónicos usaban líneas abiertas (alambres de acero paralelos de 0.9 mm de diámetro). Se observó que, cuando se inyectaba una potencia a la entrada, a una frecuencia de 886 Hz, al cabo de 10 millas la potencia se reducía a 1/10 (a un 10%).

Esta proporción de 10:1 entre la potencia de entrada y de salida se volvió una unidad de medida: se llamó Bel, en honor al inventor del teléfono Alexander Graham Bell.

Pero, debido a que la proporción 10:1 es grande, se la dividió en unidades más pequeñas, es así que nació el decibel (dB).

A = atenuación, en dB.

P1 = potencia de entrada, en W.P2 = potencia de salida, en W.

A = atenuación, en dB.

P1 = potencia de entrada, en W.P2 = potencia de salida, en W.

10log10210log102

1

Fórmula de la atenuaciónFórmula de la atenuación

APLICACIÓN DEL DECIBEL

El decibel queda definido como una relación de dos potencias, luego se lo extiende para relacionar voltajes, corrientes o cualquier otro parámetro.

El valor de A es negativo si se ha atenuado, y positivo si se ha amplificado.

Pérdida de potencia o atenuaciónPérdida de potencia o atenuación

Page 30: Lineas de Transmision 4

Ejemplos con atenuación de línea

30www.coimbraweb.com

Ejemplo 22.- Atenuación de línea

Una onda viaja a través de una línea de transmisión y su potencia se reduce a la mitad. Calcule la atenuación de la onda en dB.

Respuesta Ejemplo 22

A = –3dB.

Ejemplo 23.- Atenuación y amplificación

Una razón por la que los ingenieros usan dB para medir cambios de potencia de una señal es que los dB se suman o restan cuando se miden varios puntos. La Figura muestra una señal que viaja desde el punto 1 al 4. Está atenuada al llegar al 2. Entre 2 y 3, se amplifica. De nuevo, entre 3 y 4, se atenúa. Se obtiene los dB resultantes sin más que sumar los dB medidos entre cada par de puntos.

Respuesta Ejemplo 23

A1-4 = +1dB.

La atenuación de la línea se mide en dBLa atenuación de la línea se mide en dB

Los dB se pueden sumar y restar.Los dB se pueden sumar y restar.

(Forouzan, 2007)

Page 31: Lineas de Transmision 4

Ejemplos con atenuación de línea

31www.coimbraweb.com

(Blake, 2004)

Ejemplo 24.- Atenuación de línea

Las pérdidas de las líneas regularmente están dadas en dB por 100 metros. Una línea de transmisión acoplada tiene una pérdida de 1.5 dB/100 m. Si se suministran 10 W a la entrada de la línea, ¿cuántos W llegan a la carga situada a 27 m?.

Respuesta Ejemplo 24

PL = 9.1 W.

Ejemplo 25.- Atenuación de línea

Se requiere que una fuente de RF entregue 100 W a una antena a través de un cable coaxial de 45 m con una pérdida de 4 dB/100 m. ¿Cuál debe ser la potencia de salida de la fuente, suponiendo que la línea está acoplada?

Respuesta Ejemplo 25

PG = 151 W.

La atenuación de la línea se mide en dBLa atenuación de la línea se mide en dB

El dB es una relación de potencias.El dB es una relación de potencias.

Page 32: Lineas de Transmision 4

Atenuación vs. Frecuencia en líneas

32www.coimbraweb.com

¿Cómo varía la atenuación en función de la frecuencia?¿Cómo varía la atenuación en función de la frecuencia? (Stallings, 2004)

Los pares trenzados y coaxiales no se usan en frecuencias de microondas.Los pares trenzados y coaxiales no se usan en frecuencias de microondas.

ATENUACIÓN VS. FRECUENCIA

En líneas de transmisiónAl elegir una línea, debe ponerse atención a las pérdidas. Recuerde, por ejemplo, que una pérdida de 3 dB en una línea entre un transmisor y su antena significa que sólo la mitad de la potencia del transmisor llega a la antena. El resto de la potencia circula como calor en la línea.A modo de comparación, se muestran la atenuación de algunos tipos de líneas en función de la frecuencia de operación del sistema.

Atenuación vs. Frecuencia en líneasAtenuación vs. Frecuencia en líneas

Page 33: Lineas de Transmision 4

33www.coimbraweb.com

BibliografíaAnguera, J. & Perez, A. (2008). Teoría de Antenas. Barcelona: La Salle OnLineAPC, Asociación para el progreso de las comunicaciones (2007). Redes Inalámbricas en los Países en Desarrollo. Mountain View, CA. USA: Limehouse Book Sprint Team.Blake, Roy (2004). Sistemas electrónicos de comunicaciones . México: Thomson.Forouzan, B. A. (2007). Transmisión de datos y redes de comunicaciones. Madrid: McGraw-Hill.Frenzel (2003). Sistemas Electrónicos de Comunicaciones. Madrid: Alfaomega.Kraus, J., & Fleisch, D. (2000). Electromagnetismo con Aplicaciones. México: McGraw-Hill.Miranda, J. M. & otros (2002). Ingeniería de Microondas. Madrid: Prentice Hall.Stallings, W. (2004). Comunicaciones y Redes de Computadores. Madrid: Pearson - Prentice Hall.

FINEdison Coimbra G.

ANTENAS YPROPAGACIÓN DE ONDAS

Tema 2 de:

Bibliografía¿Cuáles son las referencias bibliográficas?¿Cuáles son las referencias bibliográficas?