21
LNG Vaporizer Rangkuman Diskusi KBK Proses Editor : Zulfan Adi Putra Swastioko Budhi S. Moderator KBK Proses Eldwin Djajadiwinata - Gyeongsang National University, South Korea Saya anggota baru di millist ini. Senang bisa bergabung di Milist Migas Indonesia. Sekarang ini saya baru akan melakukan riset mengenai LNG Vaporizer untuk meraih gelar S2 di Korsel. Oleh karena itu saya memerlukan info mengenai proses produksi LNG, transportasinya, receiving terminalnya dan jenis-jenis LNG vaporizer berikut cara kerjanya, terutama jenis LNG vaporizer yang dipakai di Indonesia. Saya masih sangat awam mengenai LNG. Kalau ada yang memiliki artikel, jurnal atau info mengenai hal tersebut, mohon dikirimkan. Atas bantuannya saya ucapkan terima kasih banyak Danan Suryo Wicaksono – Teknik Kimia ITB Kebetulan sekali. Saya juga bergelut di dunia LNG walaupun topiknya sedikit berbeda. Mas Eldwin, setahu saya Indonesia itu eksporter LNG (malah terbesar di dunia saat ini, walaupun sebentar lagi bakal disalip Qatar). Jadi singkatnya di Indonesia, gas alam diubah jadi LNG cair. Nah, LNG ini kemudian dikapalkan ke negara importer seperti Korea dkk. LNG vaporizer itu merupakan fasilitas untuk mengubah LNG cair kembali menjadi gas untuk kemudian didistribusikan ke user, semisal power plant etc. Jadi setahu saya LNG vaporizer itu adanya di terminal importer, sedangkan (setahu saya lagi) Indonesia tidak mengimpor LNG (malah mengekspor). Mas Eldwin saya senang sekali jikalau kita bisa berdiskusi lebih jauh mengenai bidang ini. Eldwin Djajadiwinata - Gyeongsang National University, South Korea Untuk mas Danan, terima kasih atas infonya. Tapi ada nggak LNG untuk keperluan dalam negeri ?. Misalnya di daerah yang jauh dari sumber gas alam tersebut sehingga harus dicairkan dulu untuk dikirim ke sana.

LNG Vaporizer

Embed Size (px)

Citation preview

Page 1: LNG Vaporizer

LNG Vaporizer Rangkuman Diskusi KBK Proses Editor 1048707Zulfan Adi Putra 1048707Swastioko Budhi S 1048707Moderator KBK Proses

Eldwin Djajadiwinata - Gyeongsang National University South Korea

Saya anggota baru di millist ini Senang bisa bergabung di Milist Migas Indonesia Sekarang ini saya baru akan melakukan riset mengenai LNG Vaporizer untuk meraih gelar S2 di Korsel Oleh karena itu saya memerlukan info mengenai proses produksi LNG transportasinya receiving terminalnya dan jenis-jenis LNG vaporizer berikut cara kerjanya terutama jenis LNG vaporizer yang dipakai di Indonesia Saya masih sangat awam mengenai LNG Kalau ada yang memiliki artikel jurnal atau info mengenai hal tersebut mohon dikirimkan Atas bantuannya saya ucapkan terima kasih banyak

Danan Suryo Wicaksono ndash Teknik Kimia ITB

Kebetulan sekali Saya juga bergelut di dunia LNG walaupun topiknya sedikit berbeda Mas Eldwin setahu saya Indonesia itu eksporter LNG (malah terbesar di dunia saat ini walaupun sebentar lagi bakal disalip Qatar) Jadi singkatnya di Indonesia gas alam diubah jadi LNG cair Nah LNG ini kemudian dikapalkan ke negara importer seperti Korea dkk LNG vaporizer itu merupakan fasilitas untuk mengubah LNG cair kembali menjadi gas untuk kemudian didistribusikan ke user semisal power plant etc Jadi setahu saya LNG vaporizer itu adanya di terminal importer sedangkan (setahu saya lagi) Indonesia tidak mengimpor LNG (malah mengekspor) Mas Eldwin saya senang sekali jikalau kita bisa berdiskusi lebih jauh mengenai bidang ini

Eldwin Djajadiwinata - Gyeongsang National University South Korea

Untuk mas Danan terima kasih atas infonya Tapi ada nggak LNG untuk keperluan dalam negeri Misalnya di daerah yang jauh dari sumber gas alam tersebut sehingga harus dicairkan dulu untuk dikirim ke sana

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan

LNG dibuat dari gas alam bertekanan yang didinginkan Prosesnya berupa antara lain penghilangan impurities (mercuri air carbon dioksida) dilanjutkan dengan proses pendinginan tiga tahap yang diselingi dengan proses pemurnian Pendinginan awal dilakukan secara umum (propan-butan cooler) kemudian dengan MCR Multi Component Refrigeration (methane-propane) dilanjutkan dengan MHE (Main Heat Exchanger) dengan prinsip joule-thompson effect Pada setiap tingkatan pendinginan dilakukan proses pemurnian sehingga terdapat column-column antara lain depentanizer debutanizer depropanizer dan deethanizer Keluaran dari MHE (column dengan tube terbuat dari aluminium coil yang sangat panjang-ribuan meter) mempunyai temperature -160 derajat celcius masuk ke dalam double wall tank (yang dilapisi pearlite diantaranya) untuk mengurangi boil-off Produk boil off disedot oleh boil-off compressor dan dapat dipakai sebagai bahan bakar untuk power generator Dari tangki produk disalurkan ke kapal setelah sebelumnya line transfer dipurge dengan nitrogen yang juga dikirim ke fuel gas atau flare Kapal pengangkut bersifat double wall pula dan produk boil-offnya dipergunakan sebagai bahan bakar kapal Biasanya maksimum boil off selama perjalanan ke JepangKorea berkisar 2-3 dari jumlah cargo Temperatur tetap dijaga pada waktu sampai ke tangki pemakai juga dilakukan prosedur yang sama Tanki pemakai umumnya berupa tanki underground untuk mengurangi losses temperature yang terlalu cepat Proses penguapan LNG secara cepat pada waktu pemakaian puncak dapat dilakukan dengan bantuan fin cooler Note info ini hanya saya peroleh dari orang lain saya tidak terjun secara detail

Eldwin Djajadiwinata - Gyeongsang National University South Korea

Saya punya article tentang LNG vaporizer types download dari internet Tapi bahasa Jepang Mungkin ada yang ngerti dan bisa memberikan penjelasan ke kita Saya sendiri nggak bisa bahasa Jepang

Amir Harahap - Pertamina Divisi Pemasaran LNG

Selamat Pagi Mas Danan dan Mas Eldwin Saya mau sedikit sharing info untuk dapat mengetahui proses produksi LNG bisa dibrowsing di wwwbadaklngcoid atau di wwwrasgascom dimana gas alam dari sumur gas akan dipisahkan kotorannya baik CO2 H2S air Mercury dan Hydrocarbon beratnya Gas alam yang sudah bersih ini akan didinginkan dengan menggunakan MCR (Multi Component Refrigerant) seperti N2 C1 C2 dan C3 dengan komposisi tertentu Mengenai proses pencairan gas ada beberapa teknik yang juga bisa dibrowse di internet seperti APCI CoPi (ConocoPhillips) Linde dll Tetapi saat ini yang terbanyak memakai APCI yang digunakan baik di Bontang Arun (Indonesia) Malaysia atau Qatar Pencairan gas (LNG) dilakukan agar diperoleh pengecilan volume sehingga efisien dalam transportasinya Setelah LNG tiba di tempat pembeli maka akan diuapkan kembali menggunakan vaporizer (heat Exchanger) dengan media pemanas seperti udara air laut atau air panas dari exhaust gas boiler Jadi kondisi dinginnya LNG juga bisa dimanfaatkan Mengenai typenya ada yang open rack dan ada yang submersible Untuk yang ini lebih detail bisa dibrowse di httpwwwsppcojpEnglish jigyouekika-ehtml httpwwwtokyo-gascojplngtechorvindexhtml atau httpwwwtokyo-gascojptechnostp02a8_ehtml Osaka Gas salah satu pembeli LNG Indonesia juga sedang riset mengenai vaporizer ini dan bisa dilihat pada httpwwwosakagas cojprdsheet007ehtm Melihat lokasi kuliah anda di Tongyeong Korea sebaiknya dapat mengunjungi terminal pembeli Kogas yang juga berada di Tongyeong dengan rekomendasi dari

universitas anda Mudah-mudahan disana akan dapat melihat baik teori maupun praktek dari vaporizer ini karena Kogas banyak mengembangkan peralatan yang lebih efisien Mudah-mudahan anda bisa menyelesaikan riset tersebut dengan baik dan dapat memberikan kontribusi dalam iptek dan juga dapat diaplikasikan untuk receiving terminal di Indonesia nantinya Bila ingin diskusi lebih detail bisa lewat japri saja

Tambahan dari Editor Rangkuman Diskusi KBK Proses Milis Migas Indonesia

LNG Vaporizer is designed to re-gasify cryogenic LNG (Liquefied Natural Gas) by heat exchange Currently LNG is essential clean energy for the industrial world and its consumption is increasing world wide because Natural Gas combustion produces less carbon dioxide than oil We SUMITOMO PRECISION PRODUCTS (SPP) have two basic types of vaporizer one is Open Rack type (ORV) and the other Submerged Combustion type (SMV) and are the leading manufacturer of LNG vaporizer not only in Japan but also in the world We have a lot of experiences to deliver our products to foreign customers and to give overseas companies technical license for domestic production

Open Rack type (ORV)

ORV utilizes seawater as heat source Seawater downflows on the outside surface of the aluminum heat exchanger panel and vaporizes inside LNG of the panel ORV has following special features - Low operation cost - Simple construction and Easy maintenance - High reliability and safety

From above features ORV is used for base load operation

ORV conceptional flow

Submerged Combustion type (SMV) SMV uses hot water heated by the submerged combustion burner to vaporize LNG in the stainless tube heat exchanger

SMV has following special features - Low facility cost - Quick startup - Wide allowable load fluctuation

From above features SMV is applied to mainly the vaporizer for emergency or peak shaving operation but it is also used as a base load vaporizer in an inland area

SMV conceptional flow

Customers considering installing new vaporizers or revamping existing equipment can now take advantage of the most reliable and high performing ORV provided by Tokyo Gas at a considerably lower construction cost2 than before

The ORV is also the worldrsquos most economical for lifecycle costs including maintenance Sumitomo Precision Products and Tokyo Gas have been jointly developing this technology

Below is a birdrsquos-eye view of the ORV and shows an outline of the panel composed of heat transfer tubes

In order to enhance thermal efficiency Tokyo Gas revised design methods wherein conventional trials were used as a base The newly developed optimal design technology enabled to determine the most suitable shape of heat transfer tube in an efficient manner using numerical analysis

The newly developed HiPerV3 utilizes the optimal design technology to greatly increase vaporization performance in addition to

bull Considerably reducing construction costs (20 percent less) through decreasing the number of tubes by half and

bull Reducing installation space by (30 percent less)

In 1985 Tokyo Gas developed and began using explosive joints so that quick startup from ambient temperature is possible without cool-down running which was required in conventional operation

Explosive joints are made from layered pipes of aluminum titanium nickel and stainless steel The joints are structured so that they can absorb thermal stress by combining them in order of the coefficient of thermal expansion from large to small Currently the joints are used in connecting off-site LNG pipes to vaporizers The joints have improved safety and contributed to making operations easier

From 1998 Tokyo Gas adopted anticorrosive material-clad heat transfer tubes from the extrusion forming stage The cladding is made from an aluminum-zinc alloy and serves as a sacrificial anode

Utilizing the clad heat transfer tubes makes repair of the aluminum-zinc alloy coating unnecessary resulting in considerable savings on maintenance costs

Over the four years since the HiPerV was first introduced Sumitomo Precision Products has sold 16 units as shown below The company has sold approximately 130 units in Japan and approximately 40 units overseas of the conventional-type ORVs These results clearly show this is the ORV most favored by customers

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 2: LNG Vaporizer

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan

LNG dibuat dari gas alam bertekanan yang didinginkan Prosesnya berupa antara lain penghilangan impurities (mercuri air carbon dioksida) dilanjutkan dengan proses pendinginan tiga tahap yang diselingi dengan proses pemurnian Pendinginan awal dilakukan secara umum (propan-butan cooler) kemudian dengan MCR Multi Component Refrigeration (methane-propane) dilanjutkan dengan MHE (Main Heat Exchanger) dengan prinsip joule-thompson effect Pada setiap tingkatan pendinginan dilakukan proses pemurnian sehingga terdapat column-column antara lain depentanizer debutanizer depropanizer dan deethanizer Keluaran dari MHE (column dengan tube terbuat dari aluminium coil yang sangat panjang-ribuan meter) mempunyai temperature -160 derajat celcius masuk ke dalam double wall tank (yang dilapisi pearlite diantaranya) untuk mengurangi boil-off Produk boil off disedot oleh boil-off compressor dan dapat dipakai sebagai bahan bakar untuk power generator Dari tangki produk disalurkan ke kapal setelah sebelumnya line transfer dipurge dengan nitrogen yang juga dikirim ke fuel gas atau flare Kapal pengangkut bersifat double wall pula dan produk boil-offnya dipergunakan sebagai bahan bakar kapal Biasanya maksimum boil off selama perjalanan ke JepangKorea berkisar 2-3 dari jumlah cargo Temperatur tetap dijaga pada waktu sampai ke tangki pemakai juga dilakukan prosedur yang sama Tanki pemakai umumnya berupa tanki underground untuk mengurangi losses temperature yang terlalu cepat Proses penguapan LNG secara cepat pada waktu pemakaian puncak dapat dilakukan dengan bantuan fin cooler Note info ini hanya saya peroleh dari orang lain saya tidak terjun secara detail

Eldwin Djajadiwinata - Gyeongsang National University South Korea

Saya punya article tentang LNG vaporizer types download dari internet Tapi bahasa Jepang Mungkin ada yang ngerti dan bisa memberikan penjelasan ke kita Saya sendiri nggak bisa bahasa Jepang

Amir Harahap - Pertamina Divisi Pemasaran LNG

Selamat Pagi Mas Danan dan Mas Eldwin Saya mau sedikit sharing info untuk dapat mengetahui proses produksi LNG bisa dibrowsing di wwwbadaklngcoid atau di wwwrasgascom dimana gas alam dari sumur gas akan dipisahkan kotorannya baik CO2 H2S air Mercury dan Hydrocarbon beratnya Gas alam yang sudah bersih ini akan didinginkan dengan menggunakan MCR (Multi Component Refrigerant) seperti N2 C1 C2 dan C3 dengan komposisi tertentu Mengenai proses pencairan gas ada beberapa teknik yang juga bisa dibrowse di internet seperti APCI CoPi (ConocoPhillips) Linde dll Tetapi saat ini yang terbanyak memakai APCI yang digunakan baik di Bontang Arun (Indonesia) Malaysia atau Qatar Pencairan gas (LNG) dilakukan agar diperoleh pengecilan volume sehingga efisien dalam transportasinya Setelah LNG tiba di tempat pembeli maka akan diuapkan kembali menggunakan vaporizer (heat Exchanger) dengan media pemanas seperti udara air laut atau air panas dari exhaust gas boiler Jadi kondisi dinginnya LNG juga bisa dimanfaatkan Mengenai typenya ada yang open rack dan ada yang submersible Untuk yang ini lebih detail bisa dibrowse di httpwwwsppcojpEnglish jigyouekika-ehtml httpwwwtokyo-gascojplngtechorvindexhtml atau httpwwwtokyo-gascojptechnostp02a8_ehtml Osaka Gas salah satu pembeli LNG Indonesia juga sedang riset mengenai vaporizer ini dan bisa dilihat pada httpwwwosakagas cojprdsheet007ehtm Melihat lokasi kuliah anda di Tongyeong Korea sebaiknya dapat mengunjungi terminal pembeli Kogas yang juga berada di Tongyeong dengan rekomendasi dari

universitas anda Mudah-mudahan disana akan dapat melihat baik teori maupun praktek dari vaporizer ini karena Kogas banyak mengembangkan peralatan yang lebih efisien Mudah-mudahan anda bisa menyelesaikan riset tersebut dengan baik dan dapat memberikan kontribusi dalam iptek dan juga dapat diaplikasikan untuk receiving terminal di Indonesia nantinya Bila ingin diskusi lebih detail bisa lewat japri saja

Tambahan dari Editor Rangkuman Diskusi KBK Proses Milis Migas Indonesia

LNG Vaporizer is designed to re-gasify cryogenic LNG (Liquefied Natural Gas) by heat exchange Currently LNG is essential clean energy for the industrial world and its consumption is increasing world wide because Natural Gas combustion produces less carbon dioxide than oil We SUMITOMO PRECISION PRODUCTS (SPP) have two basic types of vaporizer one is Open Rack type (ORV) and the other Submerged Combustion type (SMV) and are the leading manufacturer of LNG vaporizer not only in Japan but also in the world We have a lot of experiences to deliver our products to foreign customers and to give overseas companies technical license for domestic production

Open Rack type (ORV)

ORV utilizes seawater as heat source Seawater downflows on the outside surface of the aluminum heat exchanger panel and vaporizes inside LNG of the panel ORV has following special features - Low operation cost - Simple construction and Easy maintenance - High reliability and safety

From above features ORV is used for base load operation

ORV conceptional flow

Submerged Combustion type (SMV) SMV uses hot water heated by the submerged combustion burner to vaporize LNG in the stainless tube heat exchanger

SMV has following special features - Low facility cost - Quick startup - Wide allowable load fluctuation

From above features SMV is applied to mainly the vaporizer for emergency or peak shaving operation but it is also used as a base load vaporizer in an inland area

SMV conceptional flow

Customers considering installing new vaporizers or revamping existing equipment can now take advantage of the most reliable and high performing ORV provided by Tokyo Gas at a considerably lower construction cost2 than before

The ORV is also the worldrsquos most economical for lifecycle costs including maintenance Sumitomo Precision Products and Tokyo Gas have been jointly developing this technology

Below is a birdrsquos-eye view of the ORV and shows an outline of the panel composed of heat transfer tubes

In order to enhance thermal efficiency Tokyo Gas revised design methods wherein conventional trials were used as a base The newly developed optimal design technology enabled to determine the most suitable shape of heat transfer tube in an efficient manner using numerical analysis

The newly developed HiPerV3 utilizes the optimal design technology to greatly increase vaporization performance in addition to

bull Considerably reducing construction costs (20 percent less) through decreasing the number of tubes by half and

bull Reducing installation space by (30 percent less)

In 1985 Tokyo Gas developed and began using explosive joints so that quick startup from ambient temperature is possible without cool-down running which was required in conventional operation

Explosive joints are made from layered pipes of aluminum titanium nickel and stainless steel The joints are structured so that they can absorb thermal stress by combining them in order of the coefficient of thermal expansion from large to small Currently the joints are used in connecting off-site LNG pipes to vaporizers The joints have improved safety and contributed to making operations easier

From 1998 Tokyo Gas adopted anticorrosive material-clad heat transfer tubes from the extrusion forming stage The cladding is made from an aluminum-zinc alloy and serves as a sacrificial anode

Utilizing the clad heat transfer tubes makes repair of the aluminum-zinc alloy coating unnecessary resulting in considerable savings on maintenance costs

Over the four years since the HiPerV was first introduced Sumitomo Precision Products has sold 16 units as shown below The company has sold approximately 130 units in Japan and approximately 40 units overseas of the conventional-type ORVs These results clearly show this is the ORV most favored by customers

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 3: LNG Vaporizer

universitas anda Mudah-mudahan disana akan dapat melihat baik teori maupun praktek dari vaporizer ini karena Kogas banyak mengembangkan peralatan yang lebih efisien Mudah-mudahan anda bisa menyelesaikan riset tersebut dengan baik dan dapat memberikan kontribusi dalam iptek dan juga dapat diaplikasikan untuk receiving terminal di Indonesia nantinya Bila ingin diskusi lebih detail bisa lewat japri saja

Tambahan dari Editor Rangkuman Diskusi KBK Proses Milis Migas Indonesia

LNG Vaporizer is designed to re-gasify cryogenic LNG (Liquefied Natural Gas) by heat exchange Currently LNG is essential clean energy for the industrial world and its consumption is increasing world wide because Natural Gas combustion produces less carbon dioxide than oil We SUMITOMO PRECISION PRODUCTS (SPP) have two basic types of vaporizer one is Open Rack type (ORV) and the other Submerged Combustion type (SMV) and are the leading manufacturer of LNG vaporizer not only in Japan but also in the world We have a lot of experiences to deliver our products to foreign customers and to give overseas companies technical license for domestic production

Open Rack type (ORV)

ORV utilizes seawater as heat source Seawater downflows on the outside surface of the aluminum heat exchanger panel and vaporizes inside LNG of the panel ORV has following special features - Low operation cost - Simple construction and Easy maintenance - High reliability and safety

From above features ORV is used for base load operation

ORV conceptional flow

Submerged Combustion type (SMV) SMV uses hot water heated by the submerged combustion burner to vaporize LNG in the stainless tube heat exchanger

SMV has following special features - Low facility cost - Quick startup - Wide allowable load fluctuation

From above features SMV is applied to mainly the vaporizer for emergency or peak shaving operation but it is also used as a base load vaporizer in an inland area

SMV conceptional flow

Customers considering installing new vaporizers or revamping existing equipment can now take advantage of the most reliable and high performing ORV provided by Tokyo Gas at a considerably lower construction cost2 than before

The ORV is also the worldrsquos most economical for lifecycle costs including maintenance Sumitomo Precision Products and Tokyo Gas have been jointly developing this technology

Below is a birdrsquos-eye view of the ORV and shows an outline of the panel composed of heat transfer tubes

In order to enhance thermal efficiency Tokyo Gas revised design methods wherein conventional trials were used as a base The newly developed optimal design technology enabled to determine the most suitable shape of heat transfer tube in an efficient manner using numerical analysis

The newly developed HiPerV3 utilizes the optimal design technology to greatly increase vaporization performance in addition to

bull Considerably reducing construction costs (20 percent less) through decreasing the number of tubes by half and

bull Reducing installation space by (30 percent less)

In 1985 Tokyo Gas developed and began using explosive joints so that quick startup from ambient temperature is possible without cool-down running which was required in conventional operation

Explosive joints are made from layered pipes of aluminum titanium nickel and stainless steel The joints are structured so that they can absorb thermal stress by combining them in order of the coefficient of thermal expansion from large to small Currently the joints are used in connecting off-site LNG pipes to vaporizers The joints have improved safety and contributed to making operations easier

From 1998 Tokyo Gas adopted anticorrosive material-clad heat transfer tubes from the extrusion forming stage The cladding is made from an aluminum-zinc alloy and serves as a sacrificial anode

Utilizing the clad heat transfer tubes makes repair of the aluminum-zinc alloy coating unnecessary resulting in considerable savings on maintenance costs

Over the four years since the HiPerV was first introduced Sumitomo Precision Products has sold 16 units as shown below The company has sold approximately 130 units in Japan and approximately 40 units overseas of the conventional-type ORVs These results clearly show this is the ORV most favored by customers

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 4: LNG Vaporizer

Submerged Combustion type (SMV) SMV uses hot water heated by the submerged combustion burner to vaporize LNG in the stainless tube heat exchanger

SMV has following special features - Low facility cost - Quick startup - Wide allowable load fluctuation

From above features SMV is applied to mainly the vaporizer for emergency or peak shaving operation but it is also used as a base load vaporizer in an inland area

SMV conceptional flow

Customers considering installing new vaporizers or revamping existing equipment can now take advantage of the most reliable and high performing ORV provided by Tokyo Gas at a considerably lower construction cost2 than before

The ORV is also the worldrsquos most economical for lifecycle costs including maintenance Sumitomo Precision Products and Tokyo Gas have been jointly developing this technology

Below is a birdrsquos-eye view of the ORV and shows an outline of the panel composed of heat transfer tubes

In order to enhance thermal efficiency Tokyo Gas revised design methods wherein conventional trials were used as a base The newly developed optimal design technology enabled to determine the most suitable shape of heat transfer tube in an efficient manner using numerical analysis

The newly developed HiPerV3 utilizes the optimal design technology to greatly increase vaporization performance in addition to

bull Considerably reducing construction costs (20 percent less) through decreasing the number of tubes by half and

bull Reducing installation space by (30 percent less)

In 1985 Tokyo Gas developed and began using explosive joints so that quick startup from ambient temperature is possible without cool-down running which was required in conventional operation

Explosive joints are made from layered pipes of aluminum titanium nickel and stainless steel The joints are structured so that they can absorb thermal stress by combining them in order of the coefficient of thermal expansion from large to small Currently the joints are used in connecting off-site LNG pipes to vaporizers The joints have improved safety and contributed to making operations easier

From 1998 Tokyo Gas adopted anticorrosive material-clad heat transfer tubes from the extrusion forming stage The cladding is made from an aluminum-zinc alloy and serves as a sacrificial anode

Utilizing the clad heat transfer tubes makes repair of the aluminum-zinc alloy coating unnecessary resulting in considerable savings on maintenance costs

Over the four years since the HiPerV was first introduced Sumitomo Precision Products has sold 16 units as shown below The company has sold approximately 130 units in Japan and approximately 40 units overseas of the conventional-type ORVs These results clearly show this is the ORV most favored by customers

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 5: LNG Vaporizer

In order to enhance thermal efficiency Tokyo Gas revised design methods wherein conventional trials were used as a base The newly developed optimal design technology enabled to determine the most suitable shape of heat transfer tube in an efficient manner using numerical analysis

The newly developed HiPerV3 utilizes the optimal design technology to greatly increase vaporization performance in addition to

bull Considerably reducing construction costs (20 percent less) through decreasing the number of tubes by half and

bull Reducing installation space by (30 percent less)

In 1985 Tokyo Gas developed and began using explosive joints so that quick startup from ambient temperature is possible without cool-down running which was required in conventional operation

Explosive joints are made from layered pipes of aluminum titanium nickel and stainless steel The joints are structured so that they can absorb thermal stress by combining them in order of the coefficient of thermal expansion from large to small Currently the joints are used in connecting off-site LNG pipes to vaporizers The joints have improved safety and contributed to making operations easier

From 1998 Tokyo Gas adopted anticorrosive material-clad heat transfer tubes from the extrusion forming stage The cladding is made from an aluminum-zinc alloy and serves as a sacrificial anode

Utilizing the clad heat transfer tubes makes repair of the aluminum-zinc alloy coating unnecessary resulting in considerable savings on maintenance costs

Over the four years since the HiPerV was first introduced Sumitomo Precision Products has sold 16 units as shown below The company has sold approximately 130 units in Japan and approximately 40 units overseas of the conventional-type ORVs These results clearly show this is the ORV most favored by customers

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 6: LNG Vaporizer

In 1985 Tokyo Gas developed and began using explosive joints so that quick startup from ambient temperature is possible without cool-down running which was required in conventional operation

Explosive joints are made from layered pipes of aluminum titanium nickel and stainless steel The joints are structured so that they can absorb thermal stress by combining them in order of the coefficient of thermal expansion from large to small Currently the joints are used in connecting off-site LNG pipes to vaporizers The joints have improved safety and contributed to making operations easier

From 1998 Tokyo Gas adopted anticorrosive material-clad heat transfer tubes from the extrusion forming stage The cladding is made from an aluminum-zinc alloy and serves as a sacrificial anode

Utilizing the clad heat transfer tubes makes repair of the aluminum-zinc alloy coating unnecessary resulting in considerable savings on maintenance costs

Over the four years since the HiPerV was first introduced Sumitomo Precision Products has sold 16 units as shown below The company has sold approximately 130 units in Japan and approximately 40 units overseas of the conventional-type ORVs These results clearly show this is the ORV most favored by customers

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 7: LNG Vaporizer

Tokyo Gas Ohgishima Terminal HiPerV with LNGLPG mixture calorific value control(first unit)

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 8: LNG Vaporizer

Tokyo Gas and Sumitomo Precision Products have accumulated a wealth of technological know-how over more than a quarter century through not only designing and constructing ORVs but also operation and maintenance and other technologies involving the entire installation lifecycle

Specifically the two companies analyze data acquired from trial ORV installations at the Negishi Terminal of Tokyo Gas using LNG and seawater After correlating the basic design data from numerical calculations Sumitomo Precision Products fine-tunes the design and begins manufacturing

Our ORVs boast an overwhelming market share within Japan and are the most used throughout the world owing to ongoing exporting efforts to provide excellent technologies4

Based on these cutting-edge technologies we offer open rack type LNG vaporizers which exceed customer requirements for reliability cost performance and effortless operations

1) What is an ORV A vaporizer is a device used to re-gasify liquefied natural gas (LNG) which is cooled at super low temperatures by heat exchange The open rack type LNG vaporizer (ORV) uses seawater as its heat source By running seawater over the aluminum tubes the LNG inside the tubes converts from a liquid into a gas Because this method is very cost-efficient to operate and consists of a simplistic structure it is easy to operate and maintain It is the safest and most reliable vaporizer ORVs are normally used for a base load due to these features 2) A 20 percent construction cost reduction was calculated when compared to the conventional Tokyo Gas ORVs 3) HiPerV is an acronym for High Performance ORV 4) Includes conventional ORVs

Open Rack LNG Vaporizer Low cost and high performance ORV using optimum design method for the shape of heat exchanger tubes OBJECTIVE

In order to cut the construction cost and improve operation and maintenance we developed a low-cost and easy to use open rack type LNG vaporizer (ORV) by pooling our 35 years of technical experience in the design construction and operation of such facilities

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 9: LNG Vaporizer

PRESENT SITUATION We upgraded our time-proven and reliable ORV by applying the new optimum design method to the HiPerV whose capacity is 150 th and installed 2 units in Tokyo Gass Ohgishima Terminal in November 2000 As a result we could not only succeed in drastically cutting costs but also verify that the HiPerV offers satisfying operation and maintenance performance

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 10: LNG Vaporizer

FEATURES (1) Reduction of construction costs by optimum design method We drastically reviewed the conventional experiment-based design method and developed an optimum design method using numerical analysis which we effectively determined the most suitable shape of the star-fin type tube that was developed in 1984 in order to raise its thermal efficiency Using the new method the HiPerV was given a larger diameter than conventional types and the appropriate shape of the inside and outside surfaces of tubes was determined A special feature of these tubes is that the fin grooves are not easily blocked even if heat-resistant ice forms on the outside surface of the tubes and a large quantity of seawater can be conveyed Therefore vaporization performance is dramatically improved By such means we dramatically reduced the installation space required (by about 30) and construction cost (by about 20) by halving the number of tubes

(2) Improvement of operation The vaporizer is mainly made of aluminum alloys and the connecting pipes are made of stainless steel Due to the use of flange connections the ORV needed to be kept ready (in standby mode) with a small flow of LNG to maintain the flanges at a low temperature in order to prevent an LNG leak from there at startup So we developed a transition joint in 1985 in order to enable rapid startup from ambient temperature without maintaining in standby mode The transition joint is a pipe-connecting tool consisting of aluminum titanium nickel and stainless steel in a layered configuration This structure absorbs thermal stress by putting a material with a small thermal expansion coefficient together with another material with a large thermal expansion coefficient It is normally used for the connection between the vaporizer and piping and greatly contributes to improvement of operation and maintenance

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 11: LNG Vaporizer

(3) Improvement of maintenance As the heating medium of ORVs is seawater ORV tubes are likely to corrode Although aluminum-zinc alloy coating had been conventionally applied in order to prevent corrosion of ORV tubes it was easily worn out and periodical repair work was required We have therefore adopted the use of clad tube in anti-corrosion material at the time of extrusion processing of tubes since 1998 The material used is an aluminum-zinc alloy which plays the role of the sacrifice anode The use of this cladding made repair of the aluminum-zinc alloy coating unnecessary thus drastically reducing maintenance costs

OUTLOOK Given the likely state of the energy market in the future demand for LNG is expected to grow more and more thus requiring more reliable and economical LNG vaporizers To meet the markets requirements we developed the optimum design method transition joint and cladding tube which will help drastically cut construction maintenance and operating costs

Open-Rack LNG Vaporizer(ORV)s which use sea water as the heat source are composed of panel-shaped heat transfer tubes LNG flows upward inside the finned heat transfer tubes while sea water flows down along the outer surface of the tubes For ORVs facility of operation and maintenance they have been adopted in large number of LNG terminals However it was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to ice formation on the outer surface of the heat transfer tubes

Osaka Gas and Kobe Steel have jointly developed a high performance ORV (SUPERORV) whose lower half of heat transfer tubes have double tube structure The double tube structure improves heat transfer performance by suppressing ice formation on the tube surface SUPERORV increases LNG vaporizing capacity per heat transfer tube 3 times and reduces required sea water volume construction cost and installation space by 15 10 and 40 respectively compared with a conventional ORV (HPT TYPE KOBE STEEL LTD- manufactured)

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 12: LNG Vaporizer

Heat transfer tube of SUPERORV

It was limited to increase vaporizing capacity and to reduce required sea water volume and installation space for conventional ORVs due to the following problems

1 The lower part of heat transfer tubes are easy to form a thick ice layer on their surface due to direct heat transfer between sea water and cryogenic LNG

2 Thermal conductivity of ice is less than one fortieth that of aluminum alloy The thicker the ice becomes the less heat transfer efficiency becomes

3 When fins are choked with thick ice until their configuration becomes almost invisible effective heat transfer area decreases

Therefore Osaka Gas and Kobe Steel focused on how to suppress ice formation on the heat transfer tubes SUPERORV is characterized by its heat transfer tubes having double tube structure at the lower part which is called the LNG vaporizing section Fig1 shows the structure of the heat transfer tube

The first commercial SUPERORV in Himeji terminal of Osaka Gas

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 13: LNG Vaporizer

Fig2 shows schematic heat transfer between sea water and LNG LNG is fed from the lower header into both the inner tube section and the annular channel (between the inner tube and the outer tube) LNG flowing in the annular channel is directly heated by sea water and vaporizes immediately whereas LNG flowing in the inner tube is heated via the vaporized natural gas in the annular channel and vaporizes gradually

The thin gas layer in the annular channel enables higher temperature on the outer tube surface than in the case of conventional ORV This effect suppresses ice formation on the heat transfer tube surface and keeps its effective heat transfer surface area Consequently high efficiency of heat transfer between sea water and LNG is achieved

Marketability of SUPERORV

SUPERORV is being generally recognized as a high performance Open-Rack LNG Vaporizer It received the Award For Distinguished Service from Japan Gas Association in June 2002 and the Heat Transfer Society Award For Technical Achievement in May 2003 At present 33 units of SUPERORVs (including under

Fig 2 Heat transfer model of the double tube structure

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 14: LNG Vaporizer

construction) have been applied in the LNG terminals in Japan Spain Portugal Korea France and China (as of January 2006)

Mohamad Zaki Zulqornain - Valco Mulia International

Pak Eldwin sedikit menambahkan aja Pengubahan gas alam menjadi LNG sebenarnya hanyalah mengubah fasa dari gas menjadi cair untuk kemudahan transportasi Dengan mengubah menjadi cair didapat volume yang jauh lebih kecil dari volume awal dalam fasa gas Biasanya gas diubah menjadi LNG jika buyer berada dalam jarak yang jauh sehingga tidak ekonomis untuk dialirkan melalui pipa LNG plant jenis ini sering disebut baseload Walaupun demikian ada juga gas yang diubah menjadi LNG agar mudah disimpan dan dicairkan kembali ketika dibutuhkan (misal di musim dingin ketika kebutuhan gas untuk pemanas di rumah-rumah meningkat tajam) Untuk hal ini tujuan produksi LNG adalah untuk menjaga tingkat produksi gas suatu lapangan agar tidak terlalu fluktuatif LNG plant yang demikian biasa disebut peak shaving Business chain LNG secara umum cukup panjang dari mulai well lalu gas processing facilities amp LNG plant LNG transporttanker LNG terminal baru pipeline ke end user Indonesia mempunyai 2 kompleks LNG plant yang telah beroperasi (Arun dan Bontang) dan satu yang sedang dibangun (Tangguh) tapi keseluruhan produknya ini untuk ke luar negeri (Jepang Korea Selatan Cina) Karena itu business chain LNG di Indonesia berhenti di LNG plant (plus LNG vessel kalau penjualannya secara CIF) Selama ini kebutuhan gas di dalam negeri dicukupi lewat gas pipa Seperti diketahui konsentrasi industri di Indonesia kebanyakan di Jawa dan selama ini kebutuhan gas di Jawa relatif bisa dipenuhi dari lapangan-lapangan gas di sekitar Jawa Di waktu-waktu belakangan ini mulai ditingkatkan pengaliran gas alam dari Sumatera melalui pipa ke Jawa (proyek PGN) karena mulai terjadinya kecenderungan penurunan produksi gas di Jawa Dalam kaitannya dengan situasi ini muncul ide untuk pembangunan LNG terminal di Jawa untuk menghindari kekurangan pasokan gas ke Jawa Tapi kelihatannya sampai sekarang belum ada kemajuan yang berarti dalam rencana pembangunan LNG terminal di Jawa ini Terakhir malah muncul ide utk mengalirkan gas dari Kaltim ke Jawa

Stephanus Sulaeman - Pertamina Unit Pengolahan V Balikpapan According to HP APCI is the most usual LNG process for big capacity And from HP April 2000 there are many other LNG processes like Prico ABB lummus amp Costain

Mohamad Zaki Zulqornain - Valco Mulia International

Kayaknya yang diterangkan Pak Stepanus ini proses APCI ya Memang di Badak amp Arun semuanya pakai APCI dengan pendinginan bertahap Selain APCI ada teknologi Phillips Cascade Prico dari Black amp Veatch dan juga Linde Phillips Cascade dipakai di Egypt LNG Kenai LNG di Alaska dan Atlantic LNG di Trinidad Black amp Veatchs Prico dipakai di Skikda LNG di Aljazair (first LNG baseload in the world) Linde dipakai di Snohvit LNG di Norway (nggak tahu sudah on stream belum kalau nggak salah delay) Terlampir saya sertakan sedikit flow diagram APCI Prico dan Cascade Sorry nggak punya flow diagramnya Linde Ini juga dapat copy paste dari beberapa sumber Pak Budhi tolong email ini amp attachmentnya bisa diloloskan

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 15: LNG Vaporizer

Typical Black amp Veatch Single Mixed Refrigerant process using PRICO

Typical APCI propane pre-cooled mixed refrigerant process

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 16: LNG Vaporizer

Phillipsrsquo Cascade process

Swastioko Budhi Suryanto ndash BP West Java Untuk membantu rekan Eldwin Djajadiwinata yang sedang menyelesaikan Thesis S-2 nya di Korea Selatan Pak Widodo Wirjono dari KMI Timur Tengah mengirimkan dokumen QatarGas II - Full Supply Chain Overview Semoga bermanfaat The Qatargas II LNG Project (QG II) is an exciting full supply chain joint venture conceived by Qatar Petroleum (70) and ExxonMobil (30) which will set new standards for scale and economy of LNG production The project will expand the existing Qatargas LNG facility at Ras Laffan Qatar with the addition of two LNG trains significantly larger than any previously built Each train will have an LNG production capacity of approximately 78 million tonneyr (MTA) Feed gas will come from the North Field which is the largest non-associated gas field in the world The onshore plant will extract LPGs (propane and butane) which will be fractionated stored and exported from Ras Laffan Lean LNG production is targeted for the United Kingdom market using new larger LNG transportation ships A new receiving terminal in the UK will regasify the LNG and send out sales gas into the U K NTS (national gas transmission system) Attachment QatarGas II - Full Supply Chain Overview (258 KB)

Maison Des Arnoldi - Pertamina Unit Pengolahan II Dumai

Yang pernah saya lihat dipanaskan dengan air laut dengan menggunakan heat exchanger tentu diatur jumlah masing-masing medianya

Page 17: LNG Vaporizer