Logiciel CBAEL

Embed Size (px)

Citation preview

  • 8/19/2019 Logiciel CBAEL

    1/52

      1

    CBAEL: LOGICIEL D’ANALYSE STATIQUE / DYNAMIQUE,

    DESIGN ET OPTIMISATION DES STRUCTURES SELON

    CBA 93 – BAEL 91 – RPA 99/2003

    Par Professeur Abdelhamid CHARIF

    1 INTRODUCTION

    Le développement de logiciels professionnels est un thème qui peut fortbien figurer à l’ordre du jour d’un débat politique sur l’économie de marché.Tous les spécialistes s’accordent à affirmer qu’il est nettement plus économiqued’acheter ou louer un logiciel que de s’embarquer dans une coûteuse aventure de

    développement. En dépit d’un marché gigantesque, les risques de «faillite» sontextrêmement grands. La réussite se focalise souvent sur un nombre très restreint

    «d’élus» qui s’adjugent très vite «des pouvoirs dictatoriaux de quasi-monopole»(Exemple de MicroSoft).

    Dans les établissements universitaires et de recherche, le problème estperçu autrement. L’élaboration de programmes informatiques est devenue

    indissociable de l’acquisition et transfert du savoir et son activité ne cesse de

    s’épanouir. Dans les domaines des sciences et techniques de pointe, l’édition deslogiciels se fait en général par ou avec les universitaires. L’utilisation de

    logiciels commerciaux de recherche dans le cadre de préparation de thèsesdevient par ailleurs de plus en plus répandue. Ces programmes constituentincontestablement de puissants outils de recherche mais leur utilisation ne doit

    pas se faire au détriment de l’activité de développement. S’il est vrai qu’un

    chercheur (thésard) utilisant un logiciel peut produire plus rapidement des

    résultats de qualité originale, il n’en demeure pas moins que son collègue, quiélabore son propre programme, assimile et maîtrise plus de connaissancespluridisciplinaires. Même ci ce dernier chercheur passe plus de temps à

    «redécouvrir», il finira toutefois par acquérir plus d’autonomie et depolyvalence. Ces aspects doivent donc faire partie des éléments d’appréciation

    et d’évaluation scientifique et la revalorisation du résultat original ne doit pasocculter ou réduire l’importance du cumul des compétences.

  • 8/19/2019 Logiciel CBAEL

    2/52

      2

    2 BETON ARME ET INFORMATIQUE

    La théorie et la pratique du béton armé semblent rester en marge de larévolution informatique. Les grands bouleversements qu’a connus l’analyse des

    structures ont eu très peu d’influence sur la discipline de béton armé. Même si

    les recherches sur le comportement du béton armé ont beaucoup progressé, lescursus de formation accusent un retard certain.

    En dépit de la prolifération de logiciels professionnels de calcul desstructures, les outils, permettant de ferrailler et vérifier les différents éléments de

    B.A. aux ELU / ELS selon les codes techniques, sont presque inexistants. Celas’explique en partie par la complexité de la réglementation qui varie d’un pays à

    un autre. Les quelques outils (importés) censés effectuer les calculs de B.A.

    selon la réglementation algérienne se sont avérés insatisfaisants et n’ont pas tenuleurs promesses. Il est de l’avis de l’auteur que cette tâche ne peut être

    correctement entreprise que par des compétences nationales. 

    3 PRESENTATION DU LOGICIEL CBAEL

    CBAEL est un logiciel d’analyse, ferraillage, vérification et optimisation

    des structures en béton armé selon les règlements CBA 93 [1], BAEL 91 [2] etRPA 99 / 2003 [3]. Il a été élaboré sous Windows 95/98/2000/NT avec le

    Fortran Power Station 4.0 de MicroSoft [4] qui offre toutes les convivialitésd’un langage évolué. La version actuelle de CBAEL comporte dix modules

    pilotés par un logiciel principal.Le logiciel met en œuvre et utilise les plus récents concepts d’analyse

    numérique :

    • •• •   Eléments finis : Utilisation d’éléments robustes, mailleurs automatiques;

    re-numérotation nodale optimale; assemblage et résolution en profil;

     projection pondérée des efforts aux nœuds; gestion et allocation dynamique de

    toute la mémoire machine; fichiers binaires pour récupérer les analyses

    antérieures.

    • •• •   Graphisme : Environnement graphique convivial; contours graphiques

     plans et en perspectives; plans d’exécution; algorithme efficace pour les

    surfaces cachées; reconnaissance des formes quelconques; interface

    graphique (pré et post processeurs) avec menus, boites de dialogue,boutons d’aide...

    • •• •   Béton armé : Méthode de dichotomie contrôlée pour la résolution des

    équations d’équilibre; interface graphique (tableaux de bords) rappelant

    les prescriptions réglementaires; ferraillage avec plusieurs nappes;

    algorithmes itératifs accélérés pour les blocs des contraintes, courbe

    d’interaction et loi moment-courbure.

  • 8/19/2019 Logiciel CBAEL

    3/52

      3

    4 INTERFACE GRAPHIQUE

    L’interface graphique du CBAEL facilite l’utilisation de l’outil et permetune saisie et une édition interactives et conviviales des données avec des échos

    graphiques. Les nombreuses prescriptions réglementaires sont gérées par un

    «tableau de bord» permettant d’éviter tout recours à la documentationréglementaire. L’utilisateur n’aura pas à introduire des données de manière

    séquentielle. Il peut naviguer sur les différents «outils de contrôle» et fixer ouchanger ses choix avant de les valider. Les options usuelles sont fixées par

    défaut et les «outils de contrôle» et les clauses réglementaires sont activés oudésactivés de manière interactive selon les options choisies. Les erreurs ou

    incompatibilités de données sont toujours détectées et signalées. Cette

    conception de «tableau de bord» sert non seulement d’assistant à l’utilisateurmais elle lui permet aussi de devenir graduellement un expert.

    Le pré-processeur (décrit dans un autre rapport) permet de générer des

    modèles en éléments finis sans recours à un fichier de données et le post-processeur graphique facilite l’interprétation des différents résultats (uneillustration graphique vaut mieux qu’un long listing d’un fichier de résultats). Le

    fichier des résultats numériques peut être consulté à partir du post-processeur

    dans une même session. Les valeurs maximales des déplacements et efforts sontautomatiquement détectées et le ferraillage peut être obtenu aux sections

    critiques ou bien ailleurs. Les variations des différentes variables sontgraphiquement illustrées par plusieurs types de représentations.

    Les sorties graphiques produites par CBAEL peuvent être directement

    exploitées dans des rapports scientifiques ou techniques (thèses, rapports de

    recherche, notices de calcul…). Toutes les figures contenues dans ce manuel ontété générées par le post-processeur du CBAEL. L’écran graphique peut êtreimprimé directement ou bien sauvegardé dans un fichier «bitmap» pour untraitement ultérieur.

  • 8/19/2019 Logiciel CBAEL

    4/52

      4

    5 MODULE DE FLEXION PLANE

    Le module de flexion plane (simple ou composée) est un véritable «atelierde béton armé» et est structuré en cinq options comme suit :

    A/ Ferraillage aux états limites ultimes ELU de divers types de sectionsB/ Ferraillage aux états limites de service ELS de divers types de sections

    C/ Vérification aux ELS et re-ferraillage optimal éventuelD/ Calcul et vérification des flèches selon les règlements.

    E/ Courbes d’interaction M-N et lois moment- courbure aux ELU/ELS pourdivers types de sections pleines ou caissons en béton seul ou ferraillées par

    une ou plusieurs nappes.

    Le module permet d'analyser, ferrailler et vérifier, aux états limites

    ultimes et de service, divers types de sections selon les règlements CBA 93 et

    BAEL 91. Le ferraillage peut être soit (a) optimal, soit (b) symétrique, ou bien(c) avec une valeur de A' imposée par l'utilisateur. Les éventuels cas de sectionsexcessives ou insuffisantes sont détectés et signalés et les pourcentages

    minimaux et maximaux réglementaires sont vérifiés.

    Un re-ferraillage éventuel est possible aux ELS en cas de non vérificationdes contraintes (option 3). Dans ce cas, seule l'armature (A et/ou A') insuffisante

    est corrigée en tenant compte des autres données.La réduction de la contrainte admissible de l'acier aux ELS par une

    fissuration nuisible ou très nuisible (visant à limiter l'ouverture des fissures) n'est

    considérée que dans les aciers tendus.

    Aux ELU et en flexion composée avec compression, il est loisible deconsidérer ou non les effets éventuels du second ordre (flambement). Les blocsdes déformations et contraintes (linéaire aux ELS et parabole-rectangle auxELU) sont systématiquement livrés en faisant ressortir aux ELU le pivot (A, B

    ou C) concerné (Fig. 1).L'option 4 calcule et vérifie (selon CBA 93 & BAEL 91) les flèches

    instantanée et différée pour des éléments consoles ou doublement appuyés etsupportant des cloisons ou non. Les données et résultats de cette option sontaffichés sur un même écran (Fig. 2).

    L'option 5 permet de tracer les courbes d'interaction M-N (zone derésistance), aux ELU et ELS, pour divers types de sections (pleines ou en

    caissons) de béton seul ou armées par une ou plusieurs nappes d'acier (Fig.3 etFig.4). L’introduction d’un grand nombre de nappes est facilité par les

    possibilités de répétition aussi bien pour les valeurs des sections d’acier quepour les espacements. Les sections en caissons sont obtenues en superposant dessections pleines avec des sections «négatives». Les courbes enveloppes limites

    et celles délimitant les zones où les sections sont entièrement ou partiellementtendues ou comprimées, sont toutes déterminées. Les tronçons relatifs aux 3

  • 8/19/2019 Logiciel CBAEL

    5/52

      5

    pivots A, B et C (aux ELU) sont distinctement illustrés. La loi de comportement(parabole-rectangle du CBA-BAEL aux ELU) est numériquement intégrée et la

    plastification graduelle des aciers écrouis est prise en compte. La courbed'interaction permet d'analyser et vérifier la sécurité (et l'économie) d'une

    section vis à vis de plusieurs combinaisons M-N simultanément. Elle résout

    définitivement le problème très délicat de recherche de la combinaisondéfavorable en flexion composée.

    Il est loisible d'obtenir, avec la courbe d'interaction, les blocs desdéformations et contraintes pour différentes combinaisons M-N ainsi que les lois

    moment-courbure pour diverses valeurs de l'effort normal N (Figs.3 et 4) Cettedernière option permet d'apprécier et quantifier la ductilité (et la fragilité) de la

    section et constitue un véritable outil de recherche. La réduction de la ductilité

    avec un effort normal élevé peut en outre être mise en évidence et quantifiée.L’algorithme utilisé à cet effet permet de suivre diverses lois de comportement

    non linéaires y compris celles comprenant des branches descendantes.

    La figure 3 illustre les résultats d’analyse d’une section caisson avecquatre nappes d’armatures.

  • 8/19/2019 Logiciel CBAEL

    6/52

      6

    Figure 1 : Module de flexion plane (ferraillage aux ELU)Données (Tableau de bord) et résultats

  • 8/19/2019 Logiciel CBAEL

    7/52

      7

    Figure 2 : Tableau de bord de calcul & vérification des flèches

  • 8/19/2019 Logiciel CBAEL

    8/52

      8

    Figure 3 : Module de flexion plane (courbes d’interaction M-N et moment –

    courbure) - Section en caisson avec 4 nappes d’armatures.

  • 8/19/2019 Logiciel CBAEL

    9/52

      9

    Figure 4 : Etude d’une section en Té (Module de flexion plane)

  • 8/19/2019 Logiciel CBAEL

    10/52

      10

    6 MODULE DES VOILES ET PAROIS

    Le module des voiles comprend cinq options comme suit :

    A/ Ferraillage avec deux nappes A et A’B/ Ferraillage plusieurs nappes égales mais d’espacements quelconques.

    C/ Re-ferraillage proportionnel avec plusieurs nappes et espacementsquelconques

    D/ Courbes d’interaction M-N et lois moment- courbureE/ Ferraillage ponctuel avec les composantes des contraintes.

    Ce module permet d'analyser, ferrailler et vérifier les voiles et parois auxcontraintes admissibles en flexion plane (simple ou composée) selon les textes

    réglementaires en vigueur (DTU 23.1 & DTR-BC 2.42) [5-6].

    L'option 1 effectue un ferraillage conventionnel avec 2 nappes A et A'(ferraillage optimal, symétrique ou avec A' imposée).L'option 2 permet de déterminer le ferraillage avec plusieurs nappes

    égales mais d'espacements quelconques fixés par l'utilisateur. Des espacements

    nuls permettent de grouper des nappes et obtenir ainsi une distribution nonuniforme du ferraillage.

    L'option 3 offre la possibilité de générer des répartitions adéquates pourles armatures. Un puissant algorithme de correction proportionnelle (paramplification ou par réduction) fournit le ferraillage désiré à partir d'une

    distribution initiale quelconque (nappes et espacements quelconques, Fig. 5).

    L’introduction d’un grand nombre de nappes est facilité par lespossibilités de répétition aussi bien pour les valeurs des sections d’acier quepour les espacements.

    Le pourcentage minimal imposé par le RPA est respecté.

    L'option 4 construit et trace la courbe d'interaction M-N permettantd'analyser et vérifier la section vis à vis de plusieurs combinaisons

    simultanément. Les blocs des contraintes et déformations (pour différentesvaleurs de M et N) ainsi que les lois moments - courbures (pour différentesvaleurs de l'effort normal N) sont également livrés.

    Les contraintes admissibles des matériaux (béton et acier) sont calculéesselon les règlements à partir des données fournies par l'utilisateur. Les

    conditions d'application des prescriptions réglementaires sont automatiquementtestées. La possibilité d'introduire des valeurs différentes (pour les contraintes

    admissibles) est offerte afin de pouvoir étendre ce puissant module à d'autressituations et d'autres règlements.

  • 8/19/2019 Logiciel CBAEL

    11/52

      11

    L'option 5 permet d'effectuer un ferraillage (ELU et ELS) point par pointselon CBA 93 et BAEL 91 pour les structures ou les sollicitations sont

    inconnues et seules les contraintes sont disponibles (certains programmes enéléments finis). A partir des composantes des contraintes, le logiciel détermine

    les directions et contraintes principales et livre deux solutions de ferraillage:

    selon les axes principaux, et selon les axes de référence. Le ferraillage évalué aumètre linéaire est soit bidirectionnel (contraintes planes), ou bien tri-directionnel

    (déformations planes).

  • 8/19/2019 Logiciel CBAEL

    12/52

      12

    Figure 5 : Module des voiles (re-ferraillage proportionnel avec plusieurs nappes)

  • 8/19/2019 Logiciel CBAEL

    13/52

      13

    7 MODULE DES SEMELLES

    Le module des semelles est structuré en trois options comme suit :

    A/ Etude de semelles isolées rectangulaires sous poteaux rectangulaires

    B/ Etude de semelles isolées circulaires sous poteaux circulairesA/ Etude de semelles filantes sous murs (voiles)

    Ce module permet d'analyser, dimensionner et ferrailler aux ELU et ELS

    les semelles isolées rectangulaires ou circulaires sous poteaux ainsi que lessemelles filantes sous murs.

    Les dimensions minimales sont déterminées par le logiciel qui propose

    ensuite des valeurs arrondies à 5 cm près par excès. L'utilisateur peut confirmerou corriger ces dimensions avant d'effectuer le ferraillage. Les éventuelles

    valeurs corrigées ne sont acceptées par le logiciel que si elles vérifient la

    condition de portance du sol.Il faut rappeler que le RPA préconise de majorer, pour une combinaisonsismique (accidentelle), la valeur de la portance de 50 % pour un sol ferme et 30

    % pour un sol meuble.

    La hauteur des semelles est déterminée par la condition d'angle des biellespermettant d'éviter la vérification du cisaillement et justifiant l'hypothèse des

    semelles rigides.Des sollicitations combinant un effort normal et des moments de flexion

    peuvent être considérées. Seul l'effort normal de compression est étudié car la

    traction soulage la semelle même si elle peut poser un problème de stabilité

    globale de la structure.Les semelles rectangulaires (option 1) sont étudiées en double flexioncomposée selon les deux sens et sont dimensionnées homothétiquement auxpoteaux. Il est néanmoins loisible de corriger par des dimensions non

    homothétiques pourvu que la portance du sol soit vérifiée.Les semelles circulaires (option 2) sont ferraillées identiquement selon les

    2 sens en considérant un seul moment de flexion. Il appartient à l'utilisateurd'introduire dans le cas d'une flexion déviée le moment maximal ou combiné.

    Le dimensionnement des semelles filantes (option 3) n'est pas

    homothétique (ce dernier engendre des consoles et ferraillages excessifs). Lalargeur de la semelle est interactivement déterminée à partir de la longueur fixée

    par l'utilisateur. Il est conseillé à cet effet d'éviter de grands débords par rapportà la longueur du mur.

    Le ferraillage est effectué en flexion simple avec le moment maximal dansla semelle déterminé à partir de la distribution des pressions dans le sol et descontraintes dans le béton.

  • 8/19/2019 Logiciel CBAEL

    14/52

      14

    Le post-processeur livre les diagrammes des contraintes dans le sol, lemoment maximal dans la semelle ainsi que 4 variantes de ferraillage donnant les

    détails des armatures et les conditions d'ancrage (Figs.6 à 9).Le graphisme d'exécution, donnant tous les détails ainsi que les conditions

    d’ancrage et les longueurs développées des barres, peut être obtenu pour chaque

    variante (Figs. 7 à 9).Tous les autres types de fondations (semelles continues sous poteaux et

    murs, semelles excentrées avec poutres de redressement, radiers nervurés ounon, semelles sur pieux ...) peuvent être étudiés et ferraillés avec les modules

    des poutres et plaques sur sol élastique.

  • 8/19/2019 Logiciel CBAEL

    15/52

      15

    Figure 6 : Module des semelles (étude d’une semelle circulaire)

  • 8/19/2019 Logiciel CBAEL

    16/52

      16

    Figure 7 : Module des semelles (Post-processeur et plans d’exécution)

  • 8/19/2019 Logiciel CBAEL

    17/52

      17

    Figure 8 : Etude d’une semelle rectangulaire

  • 8/19/2019 Logiciel CBAEL

    18/52

      18

    Figure 9 : Etude d’une semelle circulaire

  • 8/19/2019 Logiciel CBAEL

    19/52

      19

    8 MODULE DE L’EFFORT TRANCHANT ET TORSION

    Ce module est structuré en quatre options comme suit :

    A/ Effort tranchant selon CBA 93 et BAEL 91

    B/ Ferraillage transversal des poteaux selon RPA 99C/ Ferraillage des linteaux selon RPA 99

    D/ Torsion selon CBA 93 et BAEL 91

    Le module de l'effort tranchant et torsion permet de calculer les armaturestransversales et leurs espacements selon les règlements CBA 93, BAEL 91 et

    RPA 99 pour des sections rectangulaires ou circulaires. Il faut rappeler que les

    autres formes de sections sont remplacées par un rectangle dont la largeur estcelle de l'âme. Un contrôle préalable de la contrainte tangentielle (vis à vis de la

    valeur ultime) est effectué. Les nombreuses prescriptions des trois règlements

    sont scrupuleusement respectées et les dépassements des limites min./max. sonttoujours détectés et signalés. Une puissante interface (tableau de bord) permet àl'utilisateur de naviguer à travers les différents choix afin de rechercher

    interactivement la solution adéquate (Fig.10).

    L'option 1 détermine les espacements selon le CBA 93 et BAEL 91 enflexion simple ou composée et pour un effort tranchant constant ou linéairement

    variable. Les aciers transversaux peuvent être verticaux, inclinés ou mixtes(horizontaux + verticaux).

    Les options 2 et 3 traitent les recommandations spécifiques du RPA pour

    le calcul des armatures transversales dans les poteaux et linteaux. Les différentes

    conditions de coffrage du RPA sont systématiquement testées. L'option 3 calculesimultanément les armatures longitudinales et transversales du linteau en flexionsimple. Les espacements des aciers transversaux sont déterminés en fonction deleur diamètre et du nombre de brins tels qu'introduits par l'utilisateur.

    L'option 4 permet de déterminer le ferraillage à la torsion sur la base de lathéorie de torsion des sections creuses à parois minces car seule la zone

    périphérique de la section résiste à la torsion. Un ferraillage mixte est adoptéavec un partage équitable entre les armatures longitudinales et transversales. Ceferraillage est calculé indépendamment des autres sollicitations (N, T et M) et

    une superposition éventuelle peut (doit) donc être effectuée. Il est cependantloisible pour la vérification de la contrainte tangentielle de considérer la torsion

    seule ou bien combinée avec un effort tranchant.

  • 8/19/2019 Logiciel CBAEL

    20/52

      20

    Figure 10 : Module effort tranchant et torsion

  • 8/19/2019 Logiciel CBAEL

    21/52

      21

    9 MODULE D’ANALYSE DES POUTRES

    Le module (d’analyse et ferraillage) des poutres comprend trois options :

    A/ Poutres continues

    B/ Poutres sur sol élastiqueC/ Lignes d’influence sous charge mobile

    Ce module permet d'analyser, par éléments finis robustes de rang correct,

    divers types de poutres sur appuis discrets rigides ou continus flexibles (poutressur sol élastique). L'énergie de cisaillement est prise en compte et les aires

    réduites d'effort tranchant sont calculées pour chacune des différentes formes de

    sections considérées. Des fichiers binaires permettent de récupérer des étudesantérieures.

    La section peut varier en longueur de manière linéaire ou discontinue.

    Cela permet en outre d'étudier les semelles continues (trapézoïdales) sous despoteaux inégalement chargés ainsi que les semelles excentrées liées à d'autresfondations par des poutres de redressement.

    Les ressorts de sol peuvent agir invariablement en compression et traction

    (analyse directe), ou ne résister qu'à la compression seule (analyse itérative). Laraideur du sol peut varier le long de la poutre et la combinaison avec des appuis

    rigides permet de modéliser les semelles reposant sur une file de pieux. Lesvaleurs usuelles des raideurs des sols sont disponibles (bouton d'aide) et il estrecommandé d'expérimenter sur la marge indiquée car la réponse de la fondation

    en est très dépendante. Le comportement peut varier de rigide à flexible, et

    l’option constitue un puissant outil de recherche dans ce sens (Figs.11-12).Des chargements ponctuels (poteaux), ou répartis (voiles), peuvent êtreappliqués. Ils peuvent avec les conditions limites être introduits, édités etvisualisés graphiquement grâce au pré-processeur.

    La discrétisation en éléments finis (nombres de nœuds et d'éléments,connectivités, coordonnées nodales) est automatiquement prise en charge par le

    logiciel en fonction des données introduites.Le post-processeur fournit les diagrammes des efforts (T et M) et de la

    flèche ainsi que la pression dans le sol (Figs.11-12).

    Le ferraillage longitudinal et transversal, aux ELU ou ELS, peut parailleurs être obtenu le long de la poutre ou semelle.

    L'option 3 permet d'analyser une poutre continue sous une force ou unmoment unitaire mobile. Par un balayage adéquat sur toute la longueur, le

    logiciel détermine et trace les courbes enveloppes min-max de la flèche et desefforts T et M le long de la poutre (Fig.13). L'utilisateur peut par la suite obtenirles lignes d'influence de la flèche et des efforts en n'importe quel point ainsi que

    les lignes d'influence des réactions d’appuis.

  • 8/19/2019 Logiciel CBAEL

    22/52

      22

    Figure 11 : Module des poutres (semelles continues sous trois poteaux)

  • 8/19/2019 Logiciel CBAEL

    23/52

      23

    Figure12 : Module des poutres (semelle souple et semelle rigide)

  • 8/19/2019 Logiciel CBAEL

    24/52

      24

    Figure 13 : Module des poutres (lignes d’influence et courbes enveloppes)

  • 8/19/2019 Logiciel CBAEL

    25/52

      25

    10 MODULE D’ANALYSE DES PLAQUES

    Le module (d’analyse et ferraillage) des plaques est structuré en trois options :

    A/ Plaques continues

    B/ Plaques sur sol élastiqueC/ Surfaces d’influence sous charge mobile

    Ce module permet d'analyser, par éléments finis robustes, des plaques

    minces ou épaisses sur appuis discrets rigides, ou continus flexibles (plaques sursol élastique). L'élément isoparamétrique de Mindlin Q4gama (quadrilatère à 4

    nœuds) de Batoz-Dhatt [7] est utilisé. Il permet de prendre en compte l'énergie

    de cisaillement sans verrouillage et sans intégration réduite (rang correct). Ildonne pour des géométries rectangulaires, les mêmes résultats que les éléments

    de Mac Neal (Quad4) [8], Hughes-Tezduyar (T1) [9] et de Bathe-Dvorkin [10].

    Les efforts nodaux sont évalués par projection pondérée à partir desvaleurs calculées aux points d'intégration. Cette technique, décrite en détail dansla dernière édition de l’ouvrage de Zienkiewicz et Taylor [11], est plus précise

    que les méthodes d’évaluation directe.

    Un puissant pré-processeur (décrit dans un autre document) graphique etinteractif doté de plusieurs mailleurs permet de modéliser le domaine de

    géométrie quelconque et d'introduire les différentes conditions limites et dechargement, avec une utilisation intuitive de la souris, des menus et des optionsd'aide. L'analyse n'est pas compromise par des variations géométriques ou

    mécaniques, ni par les vides éventuels (trémies) dans les plaques.

    La présence éventuelle de raidisseurs (poutres noyées) est prise encompte. Cela permet d’étudier les plaques et les poutres simultanément en neconsidérant que les conditions limites venant des poteaux ou murs. Lesraidisseurs doivent coïncider avec les frontières des éléments plaques et leur

    positionnement est défini par les deux nœuds extrêmes seulement. Le logicielidentifie automatiquement tous les éléments concernés.

    L'épaisseur de la plaque et la raideur du sol peuvent être constantes ouvariables. Les ressorts de sol peuvent agir aussi bien en compression qu'entraction (analyse directe), ou ne résister qu'à la compression seule (analyse

    itérative). Il est recommandé d'expérimenter sur la marge de la raideur de sol carla réponse de la fondation en est dépendante (le comportement peut varier de

    rigide à flexible et le module permet d’effectuer des recherches dans cedomaine).

    Des chargements ponctuels (poteaux), ou linéiques (voiles et murs), ousurfaciques, ainsi que le poids propre, peuvent être appliqués.

    L'outil permet de modéliser des dalles continues, planchers caissons,

    planchers champignons, planchers nervurés, radiers simples ou nervurés,semelles sur pieux, tabliers et dalles de transition dans les ponts ...

  • 8/19/2019 Logiciel CBAEL

    26/52

      26

    Des fichiers binaires permettent de récupérer des études antérieures.

    Le post-processeur fournit les contours (iso-fonctions) graphiques desefforts et de la flèche ainsi que la pression dans le sol, les moments principaux

    (et leurs directions) et le moment de Von Mises, avec des vues planes ou

    isométriques (Figs.14-19). Les diagrammes des efforts dans les raidisseurs sontaussi fournis (Fig.17). Les différents contours sont construits en utilisant les

    fonctions d’interpolation pour obtenir la valeur d’une variable (dans leséléments) à partir des valeurs nodales. Les effets de perspective sont générés en

    traitant de manière tridimensionnelle la variation de la fonction, en adoptant uneprojection paramétrable, et en utilisant l’algorithme de «classification en

    profondeur» pour éliminer les faces cachées. L’effet (intensité) de perspective et

    son angle peuvent être contrôlés par l’utilisateur.Le ferraillage, aux ELU ou ELS, peut être obtenu à travers toute la surface

    de la plaque et le long des poutres noyées éventuelles. Le ferraillage

    bidirectionnel des plaques est effectué sous les moments résultants selon lesaxes de référence ou selon de nouveaux axes orthogonaux ou non (plaquesbiaises) par utilisation du critère de Wood-Armer [12-13].

    L'option 3 permet de déterminer les surfaces d'influence et les surfaces

    enveloppes (donnant les valeurs min-max) sous une force nodale unitaire mobilebalayant tous les nœuds (Fig.19). Les surfaces d'influence et les courbes

    enveloppes des efforts (T et M) dans les éventuels raidisseurs sont égalementlivrés. Cette option est très utile pour l'étude des ponts.

  • 8/19/2019 Logiciel CBAEL

    27/52

      27

    Figure 14 : Post-processeur du module des plaques (contours)

  • 8/19/2019 Logiciel CBAEL

    28/52

      28

    Figure 15 : Module des plaques (dalle pleine)

  • 8/19/2019 Logiciel CBAEL

    29/52

      29

    Figure 16 : Module des plaques (moments principaux et de Von Mises)

  • 8/19/2019 Logiciel CBAEL

    30/52

      30

    Figure 17 : Module des plaques (ferraillage de la plaque et raidisseurs)

  • 8/19/2019 Logiciel CBAEL

    31/52

      31

    Figure 18 : Module des plaques (radier circulaire)

  • 8/19/2019 Logiciel CBAEL

    32/52

      32

    Figure 19 : Module des plaques (radier et surfaces d’influence dans une dalle)

  • 8/19/2019 Logiciel CBAEL

    33/52

      33

    11 MODULE DES MURS DE SOUTENEMENT

    Ce module permet d'analyser et ferrailler les murs de soutènement. Le sol

    peut être uni ou multi-couches. La distribution de la pression latérale exercée par

    le sol est déterminée par la théorie de Rankine qui s'adapte bien aux sols multi-couches. Le remblai peut être soit horizontal ou bien incliné. Les présences

    éventuelles d'une nappe d'eau et/ou d'une surcharge sur le remblai sont prévues.L'épaisseur du rideau peut être constante ou linéairement variable. La

    semelle peut éventuellement comporter une bêche et/ou un pied. La présence dela bêche dispense de la vérification de la stabilité vis à vis du glissement

    horizontal. Pour une semelle de même longueur, la présence d'un pied réduit la

    longueur du talon (sous le remblai) et réduit donc les efforts (moment et forceverticale) stabilisants. Le pied a toutefois pour effet de réduire l'excentricité de

    l'effort normal sur la semelle et donc d'aplanir la pression dans le sol sous la

    semelle. La nécessité ou non du pied et sa dimension optimale peuvent êtredéterminées de manière interactive.La vérification de la stabilité (renversement, glissement et portance du

    sol) peut aussi être effectuée interactivement avant d'analyser et ferrailler le mur.

    La stabilité de renversement est vérifiée en calculant le rapport entre le momentstabilisant et le moment renversant. La vérification du glissement (en absence de

    bêche) se fait en calculant le rapport de la force verticale multipliée par lecoefficient de frottement du sol sur la force horizontale. Les valeurs usuelles descoefficients de frottement sont données. Les deux précédents rapports doivent

    être inférieurs au coefficient de sécurité. Ce dernier est pris égal à 2 mais

    l'utilisateur peut prendre d'autres valeurs. Toute situation d'instabilité estdétectée et signalée et des remèdes adéquats sont proposés. Le poids propre dumur est pris en compte dans le bilan des forces.

    L'analyse permet de déterminer la distribution de la poussée des sols sur le

    rideau, la pression du sol sous la semelle ainsi que les efforts (tranchant etmoment) dans les 2 éléments (Fig.20). Ces derniers sont modélisés comme des

    consoles d'un mètre de largeur.Le ferraillage aux ELU/ELS peut ensuite être obtenu aux sections

    critiques et le long du rideau et de la semelle.

  • 8/19/2019 Logiciel CBAEL

    34/52

  • 8/19/2019 Logiciel CBAEL

    35/52

      35

    12 MODULE D’ANALYSE SISMIQUE SELON RPA 99

    Ce module effectue une analyse dynamique et calcule les forces sismiquesen utilisant la méthode spectrale de superposition modale selon le RPA 99. C'est

    le seul outil (à la connaissance de l'auteur) qui intègre toutes les clauses du

    Règlement Parasismique Algérien RPA 99. Le logiciel permet d’effectuer desmodélisations planes ou tridimensionnelles avec l’hypothèse de diaphragmes

    rigides aux niveaux des planchers .Les éléments de contreventement (poteaux, voiles, profilés) sont tous appelés

    "poteaux". Un voile avec ouvertures doit être modélisé par le voile pleinéquivalent ou bien par les trumeaux si les ouvertures sont longues (portes). Les

    poteaux peuvent avoir n'importe quelle orientation dans le plan horizontal.

    Les clauses réglementaires du RPA 99 (Revision 2003) sont intégrées etaccessibles grâce à des boutons d'aide (Figure 21). L’énergie de cisaillement est

    considérée dans l’assemblage de la matrice de rigidité dynamique de la

    structure.La force totale à la base est calculée par la méthode de superposition modale etpar la méthode statique équivalente à des fins de comparaison. Le RPA 99 exigeque la force dynamique représente au moins 80 % de la force statique

    équivalente. Les deux forces sont donc systématiquement calculées même si lesconditions d'utilisation de la méthode statique ne sont pas remplies. La méthode

    dynamique est retenue même si ces conditions sont réunies.La superposition modale se fait par la règle SRSS (racine carrée de la somme

    des carrés) simple ou modifiée (avec bande de 10%) ou par la combinaisonquadratique complète CQC. On peut effectuer l'étude vis à vis d'une seule

    direction sismique d'angle quelconque ou bien combiner (de manière

    quadratique) deux excitations sismiques orthogonales. L'inertie massique peutêtre introduite par le modélisateur ou bien estimée par l'outil. La force

    dynamique totale (corrigée si elle est inférieure à 80 % de la force statique) estensuite répartie horizontalement et verticalement sur la structure en tenantcompte de la torsion accidentelle. La force due à la torsion accidentelle n'est

    considérée que si elle s'ajoute à la force de translation. La torsion accidentelle

    est systématiquement considérée dans les modèles plans, mais il est loisible de

    la négliger dans les modèles 3d car elle peut être simulée en déplaçant le centrede masse. Contrairement aux charges verticales, à rigidité égale les portiques derive sont plus sollicités que les portiques internes car ils sont plus éloignés du

    centre de torsion. Les poteaux d'angle appartenant à des portiques de rive selondeux sens sont les plus sollicités et ne doivent donc pas être sous-dimensionnés.

    Le logiciel effectue les vérifications des déplacements relatifs ainsi que les effetsdu second ordre.Les sections des éléments peuvent être rectangulaires (code=1), circulaire

    (code=2) ou bien quelconques (code=5). D'autres types de sections serontajoutés. Si les sections sont quelconques, on doit donner pour chaque poteau les

  • 8/19/2019 Logiciel CBAEL

    36/52

      36

    inerties et les coefficients de cisaillement dans les deux sens. On doit alorsdéterminer au préalable les inerties principales, le centre de gravité et les

    coefficients de cisaillement du profilé. Si les sections sont rectangulaires(code=1) ou circulaires (code=2), il suffit de donner les dimensions du poteau

    (voile). Le logiciel calculera automatiquement toutes les propriétés.

    L'écho graphique met en évidence les positions des centres de masse et derigidité ainsi que les axes principaux de la structure en chaque niveau. Le post-

    processeur fournit les déformées modales avec animation, forces modales, ainsique les déplacements (amplifiés par le coefficient de comportement) et forces

    sismiques résultants. La proportion due à la torsion est affichée. On peut détecterainsi toute torsion excessive éventuelle

    Ce module constitue un outil de recherche sur les effets des différents

    paramètres réglementaires et permet détecter les mauvaises conceptionsstructurales engendrant des torsions excessives.

    L'ancienne version du RPA 88 est toujours disponible pour comparaison.

    FICHIER DES DONNEES

    Le fichier de données commence par une ligne de titre. La second ligne doitdonner les nombre de niveaux, nombre de matériaux, nombre de sections et

    nombre maximal de poteaux dans un niveau. On doit ensuite lire les matériauxet leurs propriétés (E et Nu), puis les sections avec leurs codes et dimensions. Le

    fichier donne ensuite pour chaque niveau sa hauteur, masse, inertie massique,coordonnées du centre de masse et les deux dimensions maximales dans le plan

    du niveau. Les distances doivent être données en mètres car les formules

    empiriques du RPA 99 de calcul de la période approchée sont valables si les

    distances sont en mètres. Le logiciel doit lire ensuite les nombre de poteaux,points supplémentaires éventuels et poutres du niveau 1. On donne ensuite pourchaque poteau, son matériau, sa section, son angle avec l'axe x et sescoordonnées. Les points supplémentaires sont numérotés après les poteaux sont

    identifiés par leurs coordonnées. Pour les poutres (numérotées après lespoteaux), on donne le matériau, la section et les 2 nœuds (poteaux ou points).

    Pour les niveaux supérieurs, on introduit un nombre nul, positif, ou négatif. Si lenombre est nul, cela signifie que le niveau est similaire au précédent. Si lenombre est positif, cela signifie qu'on introduit de nouvelles données commepour le niveau 1 avec 3 nombres (poteaux, points et poutres) suivis des autres

    informations. Si le nombre est négatif, il correspond (son opposé) au nombred'éléments (poteaux ou poutres) dont la section change par rapport au niveauprécédent; les autres données restant similaires. Pour les éléments changeant desection, on doit donner leur numéro et la nouvelle section.

    Le fichier des données doit être dans le sous répertoire «projets» et peutêtre créé avec n’importe quel éditeur. L'utilisateur peut consulter (dans le sous

    répertoire «projets») les fichiers RPA99a, RPA99b, RPA99c et RPA99d comme

    exemples.

  • 8/19/2019 Logiciel CBAEL

    37/52

      37

    Figure 21 : Tableau de bord et forme propre (module RPA 99)

  • 8/19/2019 Logiciel CBAEL

    38/52

      38

    Figure 22 : Vue en plan et masses modales (Module RPA)(vue en plan et formes propres)

  • 8/19/2019 Logiciel CBAEL

    39/52

      39

    Figure 23 : Etude d’une tour de 25 niveaux(forces résultantes et spectre réglementaire)

  • 8/19/2019 Logiciel CBAEL

    40/52

      40

    Figure 24 : Etude d’une structure en portiques - voiles(répartition des forces sur portiques 2d)

  • 8/19/2019 Logiciel CBAEL

    41/52

      41

    13 MODULE D'ANALYSE DES STRUCTURES PLANES

    Ce module permet d'analyser, ferrailler, vérifier et optimiser, par éléments finisrobustes, des structures planes composées d'éléments portiques et/ou barres sousdifférents cas de chargements et de combinaisons et selon la réglementation

    technique en vigueur.Bien que le comportement d'une structure soit toujours tridimensionnel, la

    modélisation plane est plus simple à utiliser et s'avère souvent suffisante car lescomportements flexionnels (efforts tranchants et moments fléchissants) dans

    deux plans orthogonaux sont généralement découplés. Il y a toutefois lieu designaler que l'effort normal (dans les éléments de contreventement chargés dansdeux plans) est obtenu par une étude tridimensionnelle ou par superposition de

    deux études planes. L'utilisateur doit donc (en toute rigueur) inclure l'effort

    normal provenant de l'autre direction comme un chargement extérieur. Sa non

    considération réduit en général l'effort normal (de compression) et agit dans le

    sens de la sécurité vis à vis du ferraillage des éléments.Le module offre plusieurs options de modélisation inédites et indisponibles sur

    d'autres outils (Figs. 25-27).Les éléments peuvent être de matériaux différents et avoir diverses formes de

    sections. L'énergie de cisaillement est automatiquement considérée pour lesdifférents types de sections sans aucun risque de verrouillage.Les combinaisons des règlements CBA 93, RPA 99 et BAEL 91 avec trois cas

    de chargement (charges permanentes G, charges d'exploitation Q et actionsismique E) sont pré-programmées.

    Les éléments peuvent éventuellement comporter des tronçons rigides permettant

    ainsi, entre autres, la modélisation des voiles en portiques équivalents etl'interaction entre les deux, ainsi que la modélisation des appuis larges ou desgoussets.Les rotules internes éventuelles permettent de modéliser des structures mixtes

    (poutres et barres). On peut ainsi à la limite analyser une structure en treillis oubien étudier des structures en béton armé avec des contreventements métalliques

    ou encore modéliser les cloisons comme des bielles.

    Les diaphragmes rigides que constituent les planchers peuvent être pris encompte. Ils annulent les efforts normaux dans les poutres concernées et génèrent

    des réactions dans les nœuds concernés.

    Les chargements peuvent comporter des charges réparties sur les éléments, desforces concentrées nodales ou des déplacements imposés. Les forces sismiques(concentrées) peuvent provenir d'une étude avec le module d'analyse sismique

    selon RPA 99.

    Les conditions limites peuvent par ailleurs modéliser la présence de ressortsélastiques.

  • 8/19/2019 Logiciel CBAEL

    42/52

      42

    Le pré-processeur graphique permet de générer et d’éditer le modèle etd’introduire les conditions limites et de chargement avec une utilisation intuitive

    de la souris, des menus et des options d’aide.Des techniques numériques très performantes sont utilisées (numérotation

    nodale optimale, assemblage en profil, pré et post processing…) ainsi qu’une

    gestion dynamique de la mémoire.Le post-processeur fournit la déformée et les diagrammes des efforts et

    contraintes ainsi que les réactions pour chaque cas de chargement oucombinaison. La déformée est interpolée par des «splines cubiques » et prend en

    compte les éventuels tronçons rigides aux extrémités des éléments.Les efforts sont livrés aux nœuds, aux extrémités des tronçons rigides et aux

    points de moment optimal en travée. Les contraintes normales (effort normal,

    flexion simple ou composée) sont aussi livrées en faisant ressortir les valeursabsolues et relatives des valeurs minimale et maximale. Cette option est

    notamment intéressante pour la vérification des éléments métalliques.

    Les différentes données peuvent aussi être visualisées par le post-processeurainsi qu’un métré quantitatif donnant les longueurs, volumes et poids de lastructure. Les déplacements latéraux relatifs entre niveaux peuvent être calculés

    et vérifiés vis à vis de la condition du RPA.

    Des fichiers binaires permettent de récupérer les résultats d’analyses antérieures.Le fichier des résultats numériques peut aussi être consulté et imprimé à partir

    du post-processeur.

    FERRAILLAGE DES ELEMENTS :

    Un puissant « moteur » de ferraillage, unique en son genre, permet de

    déterminer les armatures longitudinales et transversales, aux ELU / ELS selonCBA 93 / BAEL 91, pour tous les éléments de la structure. Le ferraillage esteffectué dans les zones flexibles (ignorant les éventuels tronçons rigides). Iln’est pas basé sur les courbes enveloppes des efforts mais traite toutes les

    combinaisons des charges en distinguant entre les Etats Limites Ultimes et deService et entre les situations durables et accidentelles. Les pourcentages

    minimal / maximal sont vérifiés et tout dépassement est signalé. Toutes lesconditions réglementaires sont scrupuleusement respectées. Le ferraillage peutêtre normal ou symétrique ou mixte( normal pour les poutres et symétrique pour

    les poteaux).Le ferraillage des poutres se fait en flexion simple et livre les armatures aux

    appuis et en travée. Le ferraillage des poteaux se fait en flexion composée et leseffets de second ordre aux ELU peuvent être considérés.

    Le ferraillage transversal effectué est précédé par une vérification de lacontrainte tangente ultime. Les espacements des cadres sont fournis sur la demi-travée en fonction du diamètre des aciers transversaux et du nombre de brins en

    tenant compte des limites min / max.

  • 8/19/2019 Logiciel CBAEL

    43/52

      43

    OPTMISATION DE LA STRUCTURE :

    Tous les éléments pour lesquels le ferraillage longitudinal dépasse lepourcentage maximal ou pour lesquels la contrainte de cisaillement n’est pas

    vérifiée sont considérés comme sous-dimensionnés et sont proposés pour un re-

    dimensionnement à la hausse. Les éléments ferraillés au pourcentage minimalsont considérés comme sur-dimensionnés et peuvent, selon le désir de

    l’utilisateur, être re-dimensionnés à la baisse. Le re-dimensionnement peut êtresoit automatique (variations de 10 % des dimensions) ou bien être contrôlé par

    l’utilisateur (variations de 5 cm de certaines dimensions).Les re-dimensionnements et ré-analyses successifs permettent d’optimiser la

    structure sans aucune intervention de l’utilisateur. Cette option d’optimisation,

    unique en son genre, permet de garantir le double impératif de sécurité etd’économie et constitue un puissant outil pour le calcul et le contrôle (Fig.28).

    Il devient désormais possible d’uniformiser le niveau de sécurité à travers tous

    les éléments de la structure et éviter les sur-dimensionnements localisés sansincidence positive sur la sécurité. La mauvaise qualité d’exécution peut, quant àelle, être prise en compte en déclassant les matériaux.  L’utilisateur peut suivre

    et comparer (par rapport au modèle initial) l’évolution du comportement de la

    structure (déformée, efforts, réactions, ferraillage …) ainsi que l’évolution dumétré quantitatif.

    La figure 28 montre les résultats d’optimisation d’une structure étudiée sous lestrois cas de chargement G, Q et E en zone sismique 2. On y voit que 5 sectionsdifférentes ont été retenues pour les poteaux et deux pour les poutres. Les

    poteaux de rive sont moins sollicités que les poteaux centraux au premier niveau

    mais aux niveaux supérieurs, la tendance est inversée à cause de l’actionsismique.

  • 8/19/2019 Logiciel CBAEL

    44/52

      44

  • 8/19/2019 Logiciel CBAEL

    45/52

      45

  • 8/19/2019 Logiciel CBAEL

    46/52

      46

    14 MODULE DES ECOULEMENTS EN MILIEUX POREUX

    Ce module permet d’analyser par éléments finis les écoulementsstationnaires dans les milieux poreux. L’écoulement peut être confiné (sanssurface libre) ou non confiné avec une surface libre de saturation et une zone de

    suintement inconnues. Dans ce dernier cas le problème est traité par un puissantalgorithme non linéaire permettant de capturer la surface libre et le suintement

    sans recourir aux techniques de correction géométrique des maillages. L’outilpeut ainsi traiter les cas de sols hétérogènes et anisotropes sans difficulté et

    résout le problème de la fonction de potentiel et le problème inverse des lignes

    de courant. Le potentiel φ , la pression P et la côte y sont liés par :

    γ  φ 

    P y +=   où γ    est le poids spécifique du liquide (eau).

    Figure 29 : Ecoulement stationnaire à travers un milieu poreux

    Les différentes conditions limites sont :

    Base imperméable AE : 0=∂

    n

    φ   (1)

    Face amont AB (upstream) : 1φ φ   =   (2)

    Face aval DE (downstream) : 2φ φ   =   (3)

    A

    B

    C

    D

    E

     y

  • 8/19/2019 Logiciel CBAEL

    47/52

      47

    Surface libre BC (inconnue) :  y=φ    (4)

    et 0=

    n

    φ   (5)

    Surface de suintement éventuel CD (inconnue) :  y=φ    (6)

    Les conditions limites (1) et (5) étant de type «naturel», elles sontdonc implicitement et automatiquement prises en compte par la méthode des

    éléments finis. Les valeurs de potentiel imposées (2) et (3) sont quant à ellesprises en compte par la technique de pénalisation (terme diagonal prépondérant).Le problème est cependant compliqué du fait que la surface libre et le

    suintement éventuel (4) et (6) sont inconnus. Il est usuellement traité par destechniques de correction géométrique du maillage de manière à obtenir un

    modèle complètement saturé où tous les éléments sont en dessous de la surfacelibre. Cette technique est très efficace mais n’est applicable que pour lesgéométries simples avec un seul sol homogène. L’algorithme itératif utilisé dans

    le logiciel CBAEL permet de capturer la surface libre et le suintement sans

    correction géométrique du modèle. La non linéarité due à la surface libre est

    traitée comme en élasto-plasticité en considérant une perméabilité nulle pour leszones au dessus de la surface libre et le suintement est pris en compte paractualisations successives appropriées des conditions limites.

    Un puissant pré-processeur graphique et interactif doté de plusieursmailleurs permet de modéliser le domaine de géométrie quelconque et

    d’introduire les différentes conditions limites avec une utilisation intuitive de lasouris, des menus et des options d’aide. L’analyse n’est pas compromise par desvariations géométriques ou mécaniques

    L’outil permet de modéliser les écoulements à travers et sous les barrageset autour des rideaux de palplanches (Figs 30-34) et d’étudier les effets des

    noyaux, drains et celui de l’envasement. Les écoulements dans les aquifères

    avec ou sans puits peuvent aussi être simulés.La topologie spécifique du domaine est efficacement exploitée dans les

    différentes techniques numériques (numérotation nodale optimale, assemblageen profil, …).

    Le post-processeur fournit les contours (iso-valeurs) graphiques dupotentiel, fonction de courant et la pression (Figs. 30-34). Des fichiers binaires

    permettent de récupérer les résultats d’analyses antérieures.

    Le fichier des résultats numériques peut aussi être consulté et imprimé àpartir du post-processeur.

  • 8/19/2019 Logiciel CBAEL

    48/52

      48

    Figure 30 : Iso-valeurs du potentiel et de la fonction de courant dans un barrage 

  • 8/19/2019 Logiciel CBAEL

    49/52

      49

    Fig.31 : Iso-valeurs de pression et réseau d’équipotentielles et lignes de courant

  • 8/19/2019 Logiciel CBAEL

    50/52

      50

    Fig.32 : Iso-valeurs potentiel et fonction de courant autour d’une palplanche 

  • 8/19/2019 Logiciel CBAEL

    51/52

      51

    Fig.33 : Réseau d’écoulement autour d’une palplanche 

    Fig.34 : Equipotentielles de l’écoulement sous un barrage en béton 

  • 8/19/2019 Logiciel CBAEL

    52/52