17
Low-Power SRAM ECE 4332 Fall 2010 Team 2: Yanran Chen Cary Converse Chenqian Gan David Moore

Low-Power SRAM ECE 4332 Fall 2010

  • Upload
    asa

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

Low-Power SRAM ECE 4332 Fall 2010. Team 2: Yanran Chen Cary Converse Chenqian Gan David Moore. Metric. Metric = (Active Energy per Access) 2 *Delay*Area*IdlePower Active Energy per Access = 9.704 fJ Delay = 7.186 ns Area = ~1.2 mm 2 Idle Power = 57.78 uW - PowerPoint PPT Presentation

Citation preview

Page 1: Low-Power SRAM ECE 4332 Fall 2010

Low-Power SRAMECE 4332 Fall 2010

Team 2:Yanran Chen

Cary ConverseChenqian GanDavid Moore

Page 2: Low-Power SRAM ECE 4332 Fall 2010

Metric

Metric = (Active Energy per Access)2*Delay*Area*IdlePower

• Active Energy per Access = 9.704 fJ

• Delay = 7.186 ns

• Area = ~1.2 mm2

• Idle Power = 57.78 uW

• Our Metric = 4.692e-41 J2*s*mm2*W

Page 3: Low-Power SRAM ECE 4332 Fall 2010

Metric Breakdown Values

• 1 Bitcell Area = 0.649 um2

 

• Read Energy = 9.678 fJ • Write Energy = 9.834 fJ

 • Read Delay = 7.186 ns

 • Write Delay = 6.491 ns

 • Idle Power = 57.71 uW 

o With 0.3 V VDDsleep => 0.483 uW  

Page 4: Low-Power SRAM ECE 4332 Fall 2010

Full SRAM Diagram

 

Page 5: Low-Power SRAM ECE 4332 Fall 2010

Memory Block Diagram

 

Page 6: Low-Power SRAM ECE 4332 Fall 2010

Special Features Overview

• Latching Voltage Sense Amplifier

• Low Voltage (w/ sleep mode) • Single Bit Error Correcting Code

 

Page 7: Low-Power SRAM ECE 4332 Fall 2010

Latching Voltage Sense Amplifier

• Minimizes BL sagging to reduce the energy/read

• Allows faster read

Modified from Ryan & Calhoun, 2008

Page 8: Low-Power SRAM ECE 4332 Fall 2010

Low Voltage

Data Retention Voltage:• 0.6 V for active operation• 0.3 V for sleep mode

 HOLD butterfly plots at lowervoltages indicate data canbe retained when sleep voltageis as low as 0.3 V.

Sleep VDD  0.35v

0.30v

0.25v

Page 9: Low-Power SRAM ECE 4332 Fall 2010

Single Bit Error Correcting Code

• Importance:o Compensate for smaller SNMs due to lower voltageo Maintaining important data

 • Hamming Code:

o 6 Parity Bitso 32 Data Bitso Allows correction of 1 error per word, detection of 2 errors

per word • Process:

o Determine parity bits at Writeo Correct word at Read

Page 10: Low-Power SRAM ECE 4332 Fall 2010

Single Bit ECC, continued

• Requires significant overhead:o Areao Delayo Power

 • Additional components required:

o Parity generation/check circuits: XORso Decodero Correction circuit: Inverter, 2:1 Multiplexer

Page 11: Low-Power SRAM ECE 4332 Fall 2010

ECC Diagram

Parity Bit Generation

(at write)

Parity Checking & Correction

(at read)

Page 12: Low-Power SRAM ECE 4332 Fall 2010

Design Considerations

• Ensure Voltage is high enough to protect data • Avoid extreme delay due to low voltage

 • Minimize impact of ECC on area, delay

 • Memory block division

Page 13: Low-Power SRAM ECE 4332 Fall 2010

Block Size

• Tradeoff between block complexity and top level complexity• Smaller blocks have lower access energy as shown using

data from an early model• Additional blocks require wider output muxes, more

complicated distribution of Input Data• Chose to use 16 256x256 blocks - later extended for ECC

Page 14: Low-Power SRAM ECE 4332 Fall 2010

Layout/ Notes on topology

• High Vt bitcells to reduce leakage, and require less cell ratio, pull down ratio reduced area

 • Blocks of memory to decrease WL capacitance

Page 15: Low-Power SRAM ECE 4332 Fall 2010

4-Bitcell Array

 

Page 16: Low-Power SRAM ECE 4332 Fall 2010

Block Layout (64kb)

• All Row Periphery, Column Periphery Complete

• Array consumes majority of area

• Uses metal4 and lower

Page 17: Low-Power SRAM ECE 4332 Fall 2010

Sources

• ECE 4332 2009 Group Projects Pages. UVa ECE Wiki.• Kaxiras, S., Zhigang, H., & Martonosi, M. Cache Decay: Exploiting

Generational Behavior to Reduce Cache Leakage Power. 9th

International Symposium on Computer Architecture, 2001.• Ling, S., Kim, Y. B., & Lombardi, F. A Low-Leakage 9T SRAM Cell

for Ultra-Low Power Operation, 2008.• Rabaey, J. Digital Integrated Circuits: A Design Perspective. Prentice

Hall, 2003.• Ryan, J. F., & Calhoun, B. H. Minimizing Offset for Latching Voltage

Mode Sense Amplifiers for Sub-Threshold Operation. 9th

International Symposium on Quality Electronic Design, 2008.• Wang, A., Calhoun, B. H., & Chandrakasan, A. P. Sub-Threshold

Design for Ultra Low-Power Systems. Springer, 2006.