1
Mars Geophysical Lander Mission A Mission Concept from the 2003 NASA Planetary Science Summer School Emily M. Craparo Naval Postgraduate School [email protected] An Early Insight… Mission Design Conclusions Landing Sites During an intensive week in summer 2003, the PSSS team developed the Mars Geophysical Lander (MGL) mission concept and gained valuable interdisciplinary skills in mission design. The recently selected NASA InSight mission shares MGL’s seismometer payload and lander design. Acknowledgements: The PSSS MGL team would like to thank JPL’s Team X, CoCo Karpinski, Anita Sohus, Jason Andringa, Jean Clough, Daniel Sedlacko, and Bruce Banerdt for their assistance with this project. Abstract #1706 Ground Penetrating Radar Thrusters GRP Thin Walled Tube Medium Gain Antenna Panning Camera UHF Antenna Solar Arrays Dart Antennae (5 Each) Seismograph Met Station Pressurant and Fuel Tanks La#tude: between 3060°S for power constraints, poleward of 30°S for near surface water Geologic se1ng: sites of recent fluvial acWvity where subsurface water may be expected (i.e. gully locaWons), sites of predicted seismic acWvity Eleva#on: maximum 1.3 km above the MOLA datum Site roughness: smooth flat plains relaWvely devoid of large obstacles Landing ellipse: must fit within flat plateau region MGL was designed to be a Discovery class mission proposed for the Mars Scout Program. The esWmated mission cost without launch vehicle was $415M in FY2003 dollars. In comparison, InSight is capped at $425M in FY2010 dollars. MGL borrows from the Phoenix Mars Lander heritage. It is not surprising that the upcoming InSight mission shares this lander design heritage. Basing the spacecraa on Phoenix provides for low risk entry, descent, landing, and mission operaWons. The Mars Geophysical Lander (MGL) is aimed at studying the MarWan interior in search of past habitability and future exploraWon support. Some of the design elements proposed for MGL have now been realized in NASA’s recently selected InSight (Interior ExploraWon using Seismic InvesWgaWons, Geodesy and Heat Transport) mission, which is scheduled to go to Mars in 2016. This poster summarizes the work of the 2003 NASA Planetary Science Summer School (PSSS) student team 10 years aaer creaWng a mission proposal authorizaWon review for the Mars Geophysical Lander. 2013 marks the 25 th anniversary of the NASA Planetary Science Summer School (PSSS), which is held every summer at the NASA Jet Propulsion Laboratory to provide postdocs and Ph.D. students with an intensive interdisciplinary experience in planetary roboWc mission design under the tutelage of JPL's Advanced Projects Design Team ("Team X"). 5 kg tungsten sphere Released from spacecraa 10 weeks prior to Mars landing Impacts at a known locaWon to provide a large seismic source Seismic waves recorded by VBBS to help study the MarWan interior Very Broadband Seismometer (VBBS) 3axis, lowpower broadband sensor Frequency range 0.05 mHz – 50 Hz Developed by IPGP, NetLander heritage Operates for 1 MarWan year Measures Wdes, free oscillaWons, and seismicity to characterize the MarWan core, mantle, and crust Tunable Diode Laser Spectrometer (TDLS) ConWnuously tunable Narrow spectral linewidth Wavelengths 0.5 – 3.5 µm SensiWve to organic molecules High Res. CCD Camera (HRCC) 1024 x 1024 pixel resoluWon ObservaWon of dust dissipaWon and selling, charge detonaWon OrientaWon of TDLS and MAM Payloads and Experiments Daniel W. Kwon Orbital Sciences Corp. [email protected] Samantha L. Infeld AnalyWcal Mechanics Assoc. [email protected] Jennifer L. Heldmann NASA Ames Research Center [email protected] Fraser S. Thomson Space Systems Loral [email protected] Brian R. Shiro University of Hawaii [email protected] 2003 Planetary Science Summer School Team Figure 1: MGL Mission Goals Figure 2: MGL lander MGL explores geophysical properWes of Mars uWlizing a suite of instruments for determining the nature of the MarWan subsurface, and for characterizing the interacWon of the atmosphere with the MarWan surface. It carries five scienWfic experiments. Parachute deployment (L - 2 min) 8800 m 490 m/s Heat shield jettison (L – 110 s) 7500 m 250 m/s Radar ground acquisition (altitude mode) (L – 58 s) 2500 m 85 m/s Radar ground acquisition (Doppler speed and direction mode) (L – 44 s) 1400 m 80 m/s Lander separation & powered descent (L – 43 s) 1300 m 80 m/s Turn to entry attitude (L - 12 min) 3000 km 4800 m/s Cruise solar array separation (L - 10 min) 2300 km 4800 m/s Atmospheric entry (L - 5 min) 125 km 5600 m/s Touchdown 2.5 m/s Solar panel & instrument deployments 1600 m h = 1300 m v = 80 m/s L . 43 s h =23 m v = 9 m/s L.5s v = 30 m/s Figure 4: Entry, Descent, and Landing Figure 5: Geodart deployment Launch and EarthMars Transit: The PSSS team calculated a trajectory based upon a Delta II2925H launch from Cape Canaveral in Sept. 2011 to deliver the 1069 kg fueled MGL spacecraa to Mars in Sept. 2012 using MER heritage cruise and landing sensors. Figure 3: MGL spacecraV GESA – Geophysical Explora#on for Shallow Aquifers SEMI – Seismic Explora#on of the Mar#an Interior ISIE – Inert Seismic Impactor Experiment MACE – Minor Atmospheric Cons#tuents Experiment BLAME – Boundary Layer Meteorology Experiment distance during which Wme it drops the 5 kg geodarts for the GESA experiment (see below). Each geodart has its own 1.5 m diameter parachute to ensure it touches down at 30 m/s, which is sufficient velocity to provide safe penetraWon into the substrate. This penetrator concept was developed by the 2003 PSSS team. Geodart Deployment: Aaer parachute separaWon, the lander trajectory covers approximately 1.6 km of ground surface Figure 13: Candidate Landing Sites PotenWal Landing Site LocaWon Dao Vallis 33°S, 267°W Gorgonum Chaos 37°S, 168°W Nirgal Valles 30°S, 39°W Elysium PlaniWa 37°N, 252°W Newton Crater 41°S, 160°W Name PSSS Team Role 2003 AffiliaWon 2013 AffiliaWon Brian (White) Shiro Principal InvesWgator Washington U. NOAA/U. of Hawaii Elena Adams Program Manager U. of Michigan JHU/APL Daniel Kwon Systems MIT Orbital Sciences Jennifer Heldmann Science U. of Colorado NASA Ames Everel Salas Instruments USC Photon Systems René Elms ProgrammaWcs Texas A&M Bryan Res. Eng. Samantha Infeld Mission Design Stanford U. NASA Langley Christopher Wyckham EDL Princeton U. HeliOne Brel Williams Structures Virginia Tech Raytheon/USC Esperanza Núñez Computer/Data Sys. UC Berkeley UCSD Fraser Thomson Telecom Stanford U. Space Sys. Loral Emily Craparo Awtude Control Sys. MIT Naval Postgrad Scl. Kelly Pennell Propulsion Purdue U. U. MA Dartmouth Jonathan Sheffield Power U. of Virginia Space Sys. Loral Michael McElwain Thermal UCLA NASA Goddard Melissa (Franzen) Jones Soaware U. of Arkansas NASA JPL Colleen (Henry) Reiche Ground Systems Purdue U. AvMet Appl. JulienAlexandre Lamamy Cost and Budget MIT Orbital Sciences 2003 PSSS Team Nirgal Valles AcWve seismic refracWon, ground penetraWng radar Longterm passive seismic monitoring of mars quakes and impacts Search for liquid water aquifer Characterize crustal structure Characterize seismicity Longterm monitoring of temperature, pressure, wind velocity, solar flux, and humidity Infrared spectrometry Characterize the atmospheric boundary layer Constrain global climate models Search for minor organic consWtuents Approach Objectives Follow the Water Geology Climate Meteorological & Atmospheric Monitor (MAM) Characterize variaWons in temp, humidity, pressure, wind velocity, and solar flux Calibrate global climate models Developed by CSA, Phoenix heritage Figure 8: VBBS Figure 9: ISIE Figure 10: TDLS Figure 11: HRCC Figure 12: MAM SPMS or explosive Parachute Deployment Hardware Telecommunication Antenna Telecommunication Hardware Li-SOCl 2 Batteries Penetrator Short Period MicroSeismometer (SPMS) 3axis, lowpower MEMS sensor Frequency range 0.1 – 10 Hz Developed by JPL, NetLander heritage Deployed within 12 “geodart” penetrators Ground Penetra#ng Radar (GPR) Frequency of operaWon 15 MHz Depth range: 10s of meters Developed by CETP, NetLander heritage (LeV) Figure 6: GESA and Geodart design

LPSC 2013 Poster

Embed Size (px)

DESCRIPTION

"Mars Geophysical Lander Mission: A Mission Concept from the 2003 NASA Planetary Science Summer School" poster presented on 19 March 2013 at the Lunar and Planetary Science Conference (LPSC) in The Woodlands, TX.

Citation preview

Page 1: LPSC 2013 Poster

Mars  Geophysical  Lander  Mission  A  Mission  Concept  from  the  2003  NASA  Planetary  Science  Summer  School  

Emily  M.  Craparo  Naval  Postgraduate  School  [email protected]  

An  Early  Insight…   Mission  Design  

Conclusions  

Landing  Sites  

During  an  intensive  week  in  summer  2003,  the  PSSS  team  developed   the   Mars   Geophysical   Lander   (MGL)   mission  concept   and   gained   valuable   interdisciplinary   skills   in  mission   design.   The   recently   selected   NASA   InSight  mission   shares   MGL’s   seismometer   payload   and   lander  design.  

Acknowledgements:    The  PSSS  MGL   team  would   like   to  thank   JPL’s   Team   X,   CoCo   Karpinski,   Anita   Sohus,   Jason  Andringa,   Jean   Clough,   Daniel   Sedlacko,   and   Bruce  Banerdt  for  their  assistance  with  this  project.  

Abstract  #1706  

Ground Penetrating Radar

Thrusters

GRP Thin Walled Tube

Medium Gain Antenna Panning Camera UHF Antenna

Solar Arrays

Dart Antennae (5 Each)

Seismograph

Met Station

Pressurant and Fuel Tanks

•  La#tude:    between  30-­‐60°S  for  power  constraints,  poleward  of  30°S  for  near  surface  water  

•  Geologic  se1ng:    sites  of  recent  fluvial  acWvity  where  subsurface  water  may  be  expected  (i.e.  gully  locaWons),  sites  of  predicted  seismic  acWvity  

•  Eleva#on:    maximum  1.3  km  above  the  MOLA  datum  

•  Site  roughness:    smooth  flat  plains  relaWvely  devoid  of  large  obstacles  

•  Landing  ellipse:    must  fit  within  flat  plateau  region  

MGL   was   designed   to   be   a   Discovery   class   mission  proposed   for   the   Mars   Scout   Program.   The   esWmated  mission  cost  without  launch  vehicle  was  $415M  in  FY2003  dollars.   In   comparison,   InSight   is   capped   at   $425M   in  FY2010  dollars.    MGL  borrows  from  the  Phoenix  Mars  Lander  heritage.  It  is  not   surprising   that   the   upcoming   InSight   mission   shares  this   lander   design   heritage.   Basing   the   spacecraa   on  Phoenix  provides  for   low  risk  entry,  descent,   landing,  and  mission  operaWons.  

The  Mars  Geophysical  Lander  (MGL)   is  aimed  at  studying  the  MarWan   interior   in   search   of   past   habitability   and   future  exploraWon   support.   Some   of   the   design   elements   proposed  for  MGL  have  now  been  realized   in  NASA’s   recently  selected  InSight   (Interior   ExploraWon   using   Seismic   InvesWgaWons,  Geodesy  and  Heat  Transport)  mission,  which   is   scheduled   to  go  to  Mars  in  2016.    This  poster  summarizes  the  work  of  the  2003  NASA  Planetary  Science   Summer   School   (PSSS)   student   team   10   years   aaer  creaWng  a  mission  proposal  authorizaWon  review  for  the  Mars  Geophysical  Lander.    2013   marks   the   25th   anniversary   of   the   NASA   Planetary  Science  Summer  School  (PSSS),  which  is  held  every  summer  at  the  NASA   Jet  Propulsion  Laboratory   to  provide  postdocs  and  Ph.D.   students  with   an   intensive   interdisciplinary   experience  in  planetary  roboWc  mission  design  under  the  tutelage  of  JPL's  Advanced  Projects  Design  Team  ("Team  X").  

5  kg  tungsten  sphere  •  Released  from  spacecraa  10  weeks  

prior  to  Mars  landing  •  Impacts  at  a  known  locaWon  to  

provide  a  large  seismic  source  •  Seismic  waves  recorded  by  VBBS  to  

help  study  the  MarWan  interior  

Very  Broadband  Seismometer  (VBBS)  •  3-­‐axis,  low-­‐power  broadband  sensor  •  Frequency  range  0.05  mHz  –  50  Hz  •  Developed  by  IPGP,  NetLander  heritage  •  Operates  for  1  MarWan  year  •  Measures  Wdes,  free  oscillaWons,  and  

seismicity  to  characterize  the  MarWan  core,  mantle,  and  crust  

Tunable  Diode  Laser  Spectrometer  (TDLS)  •  ConWnuously  tunable  •  Narrow  spectral  linewidth  •  Wavelengths  0.5  –  3.5  µm  •  SensiWve  to  organic  molecules  

High  Res.  CCD  Camera  (HRCC)  •  1024  x  1024  pixel  resoluWon  •  ObservaWon  of  dust  dissipaWon  

and  selling,  charge  detonaWon  •  OrientaWon  of  TDLS  and  MAM  

Payloads  and  Experiments  

Daniel  W.  Kwon  Orbital  Sciences  Corp.  [email protected]  

Samantha  L.  Infeld  AnalyWcal  Mechanics  Assoc.  s.infeld@ama-­‐inc.com  

Jennifer  L.  Heldmann  NASA  Ames  Research  Center  [email protected]  

Fraser  S.  Thomson  Space  Systems  Loral  [email protected]  

Brian  R.  Shiro  University  of  Hawaii  [email protected]  

2003  Planetary  Science  Summer  School  Team  

Figure  1:  MGL  Mission  Goals  

Figure  2:  MGL  lander  

MGL   explores   geophysical   properWes   of   Mars   uWlizing   a   suite   of  instruments  for  determining  the  nature  of  the  MarWan  subsurface,  and   for   characterizing   the   interacWon   of   the   atmosphere  with   the  MarWan  surface.  It  carries  five  scienWfic  experiments.  

Parachute deployment (L - 2 min)!8800 m!490 m/s!

Heat shield jettison (L – 110 s)!7500 m!250 m/s!

Radar ground acquisition !(altitude mode)! (L – 58 s)!2500 m!85 m/s!

Radar ground acquisition (Doppler speed and direction mode) (L – 44 s)!1400 m!80 m/s!

Lander separation & !powered descent (L – 43 s)!1300 m!80 m/s!

Turn to entry attitude!(L - 12 min)!3000 km!4800 m/s!

Cruise solar array separation!(L - 10 min)!2300 km!4800 m/s!

Atmospheric entry (L - 5 min)!125 km!5600 m/s!

Touchdown!2.5 m/s!

Solar panel & instrument deployments!

1600$m$

h$=$1300$m$v$=$80$m/s$L$.$43$s$

h$=23$m$v$=$9$m/s$L$.$5$s$

v$=$30$m/s$

Figure  4:  Entry,  Descent,  and  Landing  

Figure  5:  Geodart  deployment  

Launch  and  Earth-­‐Mars  Transit:    The  PSSS   team   calculated   a   trajectory  based   upon   a   Delta   II-­‐2925H   launch  from  Cape  Canaveral  in  Sept.  2011  to  deliver   the   1069   kg   fueled   MGL  spacecraa   to   Mars   in   Sept.   2012  using   MER   heritage   cruise   and                                                                          landing  sensors.  

Figure  3:  MGL  spacecraV  

GESA  –  Geophysical  Explora#on  for  Shallow  Aquifers  

SEMI  –  Seismic  Explora#on  of  the  Mar#an  Interior  

ISIE  –  Inert  Seismic  Impactor  Experiment  

MACE  –  Minor  Atmospheric  Cons#tuents  Experiment  

BLAME  –  Boundary  Layer  Meteorology  Experiment  

distance  during  which  Wme  it  drops  the  5  kg  geodarts   for   the   GESA   experiment   (see  below).   Each   geodart   has   its   own   1.5   m  diameter  parachute  to  ensure  it  touches  down  at   30   m/s,   which   is   sufficient   velocity   to  provide   safe   penetraWon   into   the   substrate.  This  penetrator  concept  was  developed  by  the  2003  PSSS  team.    

Geodart   Deployment:    Aaer   parachute  separaWon,   the   lander   trajectory   covers  approximately  1.6  km  of  ground  surface  

Figure  13:  Candidate  Landing  Sites  

PotenWal  Landing  Site   LocaWon  Dao  Vallis   33°S,  267°W  Gorgonum  Chaos   37°S,  168°W  Nirgal  Valles   30°S,      39°W  Elysium  PlaniWa   37°N,  252°W  Newton  Crater   41°S,  160°W  

Name   PSSS  Team  Role   2003  AffiliaWon   2013  AffiliaWon  

Brian  (White)  Shiro   Principal  InvesWgator   Washington  U.   NOAA/U.  of  Hawaii  

Elena  Adams   Program  Manager   U.  of  Michigan   JHU/APL  

Daniel  Kwon   Systems   MIT   Orbital  Sciences  

Jennifer  Heldmann   Science   U.  of  Colorado   NASA  Ames  

Everel  Salas   Instruments   USC   Photon  Systems  

René  Elms   ProgrammaWcs   Texas  A&M   Bryan  Res.  Eng.  

Samantha  Infeld   Mission  Design   Stanford  U.   NASA  Langley  

Christopher  Wyckham   EDL   Princeton  U.   Heli-­‐One  

Brel  Williams   Structures   Virginia  Tech   Raytheon/USC  

Esperanza  Núñez   Computer/Data  Sys.   UC  Berkeley   UCSD  

Fraser  Thomson   Telecom   Stanford  U.   Space  Sys.  Loral  

Emily  Craparo   Awtude  Control  Sys.   MIT   Naval  Postgrad  Scl.  

Kelly  Pennell   Propulsion   Purdue  U.   U.  MA  Dartmouth  

Jonathan  Sheffield   Power   U.  of  Virginia   Space  Sys.  Loral  

Michael  McElwain   Thermal   UCLA   NASA  Goddard  

Melissa  (Franzen)  Jones   Soaware   U.  of  Arkansas   NASA  JPL  

Colleen  (Henry)  Reiche   Ground  Systems   Purdue  U.   AvMet  Appl.  Julien-­‐Alexandre  Lamamy   Cost  and  Budget   MIT   Orbital  Sciences  

2003  PSSS  Team  

Nirgal  Valles  

• AcWve  seismic  refracWon,  ground  penetraWng  radar  

•  Long-­‐term  passive  seismic  monitoring  of  mars  quakes  and  impacts  

• Search  for  liquid  water  aquifer  

• Characterize  crustal  structure  

• Characterize  seismicity    

•  Long-­‐term  monitoring  of  temperature,  pressure,  wind  velocity,  solar  flux,  and  humidity  

•  Infrared  spectrometry  

• Characterize  the  atmospheric  boundary  layer  

• Constrain  global  climate  models  

•  Search  for  minor  organic  consWtuents  

               Approach   Objectives

Follo

w th

e W

ater

G

eolo

gy"

Clim

ate"

Meteorological  &  Atmospheric  Monitor  (MAM)  •  Characterize  variaWons  in  temp,  

humidity,  pressure,  wind    velocity,  and  solar  flux  

•  Calibrate  global  climate  models  •  Developed  by  CSA,  Phoenix  heritage  

Figure  8:  VBBS  

Figure  9:  ISIE  

Figure  10:  TDLS  

Figure  11:  HRCC  

Figure  12:  MAM  

SPMS or explosive"

Parachute Deployment Hardware"

Telecommunication Antenna"

Telecommunication Hardware"

Li-SOCl2 Batteries"

Penetrator"

Short  Period  Micro-­‐Seismometer  (SPMS)  •  3-­‐axis,  low-­‐power  MEMS  sensor  •  Frequency  range  0.1  –  10  Hz  •  Developed  by  JPL,  NetLander  heritage  •  Deployed  within  12  “geodart”  penetrators  

Ground  Penetra#ng  Radar  (GPR)  •  Frequency  of  operaWon  15  MHz  •  Depth  range:  10s  of  meters  •  Developed  by  CETP,  NetLander  heritage  

(LeV)    Figure  6:  GESA  and  Geodart  design