56
MAAP4 0 6 Simulation of Beyond DBA MAAP4.0.6 Simulation of Beyond DBA BWR3 Mark I Dr. John H. Bickel

MAAP4.0.6 Simulation of Beyond DBA BWR3 Mark I rev03

Embed Size (px)

Citation preview

Page 1: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

MAAP4 0 6 Simulation of Beyond DBAMAAP4.0.6 Simulation of Beyond DBA BWR3 Mark I 

Dr. John H. Bickel

Page 2: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Monticello Nuclear Generating Plant, Monticello, Minnesota   1775 MWt (currently) → 2004 MWt (EPU)                 Xcel Energy

Original License: 9 1970 Re Licensed to operate until 2030Original License: 9‐1970                                                   Re‐Licensed to operate until 2030

2

Page 3: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

BWR3, Mark I – DBA Features:• Electric driven Main Feedwater, Condensate Pumps• 2 Diesels supply: 4kV power, 480V, 250VDC, 125VDC• 2 Trains Electric Driven LPCI with 2 RHR Heat Exchangers• 2 Trains Electric Driven LPCI with 2 RHR Heat Exchangers

– Safety system designed for Large Design Bases LOCA

• LPCI also has Drywell and Suppression Pool Spray Function• 2 Trains Electric Driven Core Spray Pumps

– Safety system designed for Large Design Bases LOCA

• 1 Train HPCI with suction from CST1 Train HPCI with suction from CST– Safety system designed for Small/Medium LOCA 

• Automatic Depressurization SystemS f d i d f S ll/M di LOCA i h HPCI f il– Safety system designed for Small/Medium LOCA with HPCI failure

• 1 Train RCIC with suction from CST– Non‐Safety system designed for heat removal when main condenser 

unavailable 

• 2 Trains HP Control Rod Drive Hydraulic Pumps (~90‐200gpm)3

Page 4: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

BWR3, Mark I – Beyond DBA Features:BWR3, Mark I  Beyond DBA Features:• 2 trains Manual SLCS capable of injecting Sodium Pentaborate

– Anticipated Transients Without Scram

• CST can be replenished with River water or Fire Truck to prolong HPCI, RCIC, CRD injectionHPCI, RCIC, CRD injection

• “Security Diesel” 480V power can be connected to Battery Chargers (pre‐staged cable spools with quick‐connect plugs)

• Alternate Makeup to Reactor via existing piping connections:– RHR Service Water (from River)

– Diesel Driven Fire Pump (from River)Diesel Driven Fire Pump (from River)

– “B.5.b Pump” (from River)

• 18” Hard Pipe Vent from Torus to Atmosphere (preferred) – 18” equivalent to ~21 MWt decay heat removal (~decay heat after 1 hr)

4

Page 5: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

BWR‐3 with Mark I Containment(Courtesy of General Electric)

Features:‐Engineered in 1960’s to address Large DBA LOCA‐ Design Press: 56psig‐ Ultimate Press. ~110psigHard Pipe Vent installed to‐ Hard Pipe Vent installed to 

vent Torus to atmosphere 

Limitations:‐Small, compact, containment volume requires N2 inerting for  DBA LOCA‐ Credits DBA Large LOCACredits DBA Large LOCA containment pressure to assure ECCS pump NPSH‐ Not designed for severe 

id

5

accidents

Page 6: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Mark I Containment Under Construction

6Courtesy  TVA Browns Ferry NPP

Page 7: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

What Reactor Building Looks Like in Refueling withDrywell Head Removed

7Courtesy  TVA Browns Ferry NPP

Page 8: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

What Reactor Building Looks Like During Operation 

8Courtesy  TVA Browns Ferry NPP

Page 9: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

8 Safety/Relief Valves (S/RVs)Features:‐ Dual Action‐Mechanical spring‐loaded 

f t f tioverpressure safety function‐DC/N2 operated relief valve function (for automatic  depressurization)‐3/8  S/RVs  used to rapidly depressurize RPV to allow core flooding.

Limitations:‐Physically located in Drywell‐ On loss of DC, or Press>75psig: relief mode is inoperable‐Electro‐pneumatic controller  can failcan fail if Drywell Temp. > 335˚F(current Qualification Temp )(current  Qualification Temp.)

9Monticello NGP

Page 10: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

S/RV Controls for Emergency Manual DepressurizationEmergency Manual Depressurization

10Monticello NGP

Page 11: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

High Pressure Coolant Injection System:Features:‐ Can inject at full system press. (1050psia)‐ ~1 5x106 lbs/hr makeup1.5x10 lbs/hr makeup capability‐CST is water source, Torus is alternate water source‐Designed to mitigate small, medium LOCA‐ Can be started locally, run without DC powerwithout DC power

Limitations:‐Needs RPV supply press. > 50 i50psig‐Needs exhaust  (Torus)  press. <75psig‐DC power needed to remote pstart‐When Torus used as water source, Temperature <  200˚F11/29/2011 11

Page 12: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

HPCI Indications on Control Board

11/29/2011 12

Page 13: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

High Pressure RCIC System :Features:Can inject at full system‐ Can inject at full system 

press. (1050psia)‐ ~2x105 lbs/hr makeup capability (smaller than HPCI)‐ Designed to provide makeup after shutdown when FW unavailable‐CST is water source Torus is‐CST is water source, Torus is alternate water source‐ Can be started locally, run without DC power

Limitations:‐Needs RPV supply press. > 50psig50psig‐Needs exhaust  (Torus)  press. <75psig‐DC power needed to remote t t

13

start‐When Torus used as water source, Temperature <  200˚F

Page 14: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

RCIC Indications on Control Board

14Monticello NGP

Page 15: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

What RCIC Turbine Driven Pump Looks Like

15Courtesy  TVA Browns Ferry NPP

Page 16: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Example of Pre‐Staged Equipment for Beyond Design Bases AccidentsBeyond Design Bases Accidents 

Monticello NGP 16

Page 17: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Station DC BatteriesFeatures:‐2x 250V Batteries‐2x 125V Batteries‐Typical Lead Acid storage cells

Limitations:‐250V Batteries deplete in 7‐8 hrs without  charging‐125V Batteries deplete in 5.5‐5.75 hrs without chargingcharging‐ Depletion defined as insufficient voltage to operate critical SOVs

C t TVA B F NPP

17

Courtesy  TVA Browns Ferry NPP

Page 18: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Containment Vent for d dBeyond Design Bases Accidents

Main Features:

• Suppression Pool Vent

• Redundant air operated butterfly valves (failbutterfly valves (fail closed on loss of air)

• >56 psig rupture disk to prevent operation below normal design bases pressures

• Requires DC power, compressed air to operatep

18

Page 19: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Control Room Layout

19Monticello NGP

Page 20: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Loss of Feedwater with no Heat Removal• Initially more severe than Loss of Offsite Power

• Reactor trip, MSIV closure is Delayed

• Rate of initial RPV Level Drop is Faster• Rate of initial RPV Level Drop is Faster

• Steam Driven high pressure makeup sources (HPCI, RCIC) not Considered ‐ yetRCIC) not Considered  yet

• CRD Hydraulic makeup not considered ‐ yet

• AC/DC power available compressed N availableAC/DC power available, compressed N2 available 

• Operators follow EOPs and depressurize at TAF reflooding with LPCI to achieve stable water levelsreflooding with LPCI to achieve stable water levels

• Suppression Pool Cooling fails over long term

• Drywell Chillers Containment Venting not consideredDrywell Chillers, Containment Venting not considered

•• This is a dominant PRA accident sequenceThis is a dominant PRA accident sequence20

Page 21: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Loss of Feedwater with no Recovery, and Loss of HPCI, RCIC – first 2 hrs.,

21

Page 22: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Executing Emergency Depressurization with LPCI or Core Spray Reflood at ‐126” is well practiced procedureSpray Reflood at ‐126  is well practiced procedure

22

Page 23: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

RPV Level Indicator on Control Board

23Monticello NGP

Page 24: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Emergency Depressurization allows L P C l I j i fl dLow Pressure Coolant Injection to reflood core

24

Page 25: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

At this point RPV level is restored and corecooling using injected LPCI flow from Toruscooling using injected LPCI flow from Torus

25

Page 26: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Without Any Suppression Pool Cooling: Containment Temperatures Pressures continually riseContainment Temperatures, Pressures continually rise

26

Page 27: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Reclosure of S/RVs ~21.5hrs: causes RPV press. rise above LPCI pump shutoff pressurep p p

27

Page 28: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

If Torus cooling fails, EOPs currently direct venting when pressure >56psig:venting when pressure >56psig:

28

Page 29: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

If venting fails: Core Uncovery ~29hrs while pressure remains elevated at S/RV safety valve pressremains elevated at S/RV safety valve press.

29

Page 30: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Delayed Core Heatup starts at ~29.5hrs withZ W R i i 30 5hZr‐Water Reaction starting ~30.5hrs

30

Page 31: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Containment Failure Likely Occurs at 35‐37hrs. Accompanied by H2 burn of in reactor buildingp y 2 g

31

Page 32: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Consequences would be Large Delayed Release(~30% Core CsI) after Containment Failure( )

32Note: Degree of retention of fission products within reactor building  not modeled.

Page 33: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Mitigation Strategy: Mitigation Strategy: If unable to vent, how much water makeup needed to cool core?water makeup needed to cool core?

• Match boil off due to decay heat:

• WBOIL = QDECAY(26hrs)/Δh

• QDECAY(26hrs) = 3.88x107 BTU/hr

• Δh = hsat(1050psia) – hCST(80F) ~1142.3 BTU/lbm

• WBOIL = (3.88x107 BTU/hr)/(1142.3 BTU/lbm) = 34,000 lbm/hr‐‐or: = (567 lbm/min)(0.016ft3/lbm) = 9.07ft3/min

• Converting to gal/min, this is only: ~67.8 67.8 gpmgpm

• Recall: CRD makeup flow to RPV is: 90 90 –– 200 200 gpmgpm

• 1 electric CRD pump could easily keep the core covered for an i d fi it i d f ti if t i t f il dif t i t f il dindefinite period of time if containment overpressure failure does if containment overpressure failure does not impact CRD pump operating environment.not impact CRD pump operating environment.

33

Page 34: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Evaluation of Station AC Blackout

• Loss of offsite power causes: Loss of Feedwater. Loss of Recirculation Flow, MSIV closure, Reactor Trip, Recirc. Pump Seal Leakage (37 – 165gpm) likelyg ( gp ) y

• Diesels fail, DC Batteries begin to discharge• All AC powered equipment shuts down

F d t d d t• Feedwater and condensate pumps• Drywell Coolers, room cooling• LPCI, Core Spray, CRD pumps cannot be operated

• HPCI RCIC potentially available provided RPV steam and DCHPCI, RCIC potentially available provided RPV steam and DC available for starting, and until room temperatures > 150˚F 

• CST available as water sourceS/ V i ll il bl bl d if i• S/RVs potentially available to blow down if containment pressure <75 psig, and ‐ BOTH: DC power, compressed N2 available

• Diesel Fire Pump (portable pumps) potentially available until out of fuel

34

Page 35: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

HPCI/RCIC start on low level. RCIC throttled Suction from CST, and run on local/manual without DC power, / p

Notes: (1) Running HPCI 

l idlone cycle rapidly refills RPV causing HPCI, RCIC auto shutdown. 

(2)  Running with HPCI in “pull to lock” and RCIClock” and RCIC throttled minimizes on/off cycles – and thus conserves DC batteries.

35

Page 36: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

RCIC will shutdown when Suppression Pool Pressure exceeds 64 7psia at ~ 13 9 hrsPressure exceeds 64.7psia at   13.9 hrs.

36

Page 37: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Core Uncovery: ~15.5 hrs, Core Melt: ~17 hrs

1.1 103

1.2 103

RPV Pressure (psia) vs. Level (ft)

800

900

1 10340

600

700 30

ress

ure

(psi

a)

PV L

evel

(ft)

PPS

XWCORE

XWSH

TAF

BAF

300

400

500

10

20Pr RPBAF

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 360

100

200

0

10

37

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Time in Hours

time

Page 38: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Containment Overpressure Failure: ~20.4 hrs

Issues: (1) EOP  C.5‐1200  calls for ventingcalls for venting containment at 56 psig (70.7 psia)At ~15hrs.(2) Without charging, last battery is depleteddepleted~ 8hrs 8hrs.

38

Page 39: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

SRVs Possibly Could not be operated >8hrsdue to 335˚F equipment qualification uncertaintiesdue to 335 F equipment qualification uncertainties

1 103

Drywell, Suppression Pool Temp (F)

800

900

600

700

(psi

a) PoolTemp

DWTemp

300

400

500

Pres

sure

SRVLimTemp

ContFailTemp

100

200

300

39

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 360

Time in Hours

TIME

Page 40: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

EOP C.5‐1200 Directs Operators to maintain Torus Temperature within Heat Capacity Temperature LimitTemperature within Heat Capacity Temperature Limit 

by Controlled RPV Depressurization

11/29/2011 jhbickel@esrt‐llc.com 40

Page 41: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

What is learned from all this:• If there is no containment heat removal working, high pressure steam 

driven pumps will eventually shutdown on backpressure at ~13.9hrs

B tt i ( ith t h ) ill ll b d l t d b ~7 8h d• Batteries (without chargers) will all be depleted by ~7‐8hrs and unavailable to open S/RVs or containment vent valves.

• Drywell temperatures >335˚F challenge EQ limit for S/RV operation at ~8 hrs

• Containment pressure reaches >56psig for procedural containment venting at ~15hrs ………………but this is 7hrs7hrs afterafter battery depletionbattery depletionventing at  15hrs ………………but this is 7hrs 7hrs afterafter battery depletionbattery depletion

• Venting at this time could allow local manual restarting of RCIC pump in time to recover water level but there is no DC powerbut there is no DC power

M i i i li i h d d DC• Maintaining core cooling is thus dependent on DC power

In Station AC Blackout: containment venting needs to be considered earlier In Station AC Blackout: containment venting needs to be considered earlier to preserve core cooling optionsto preserve core cooling optionsto preserve core cooling options.to preserve core cooling options.

41

Page 42: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Using these insights:

• Simulation studies then performed on how to successfully cope with prolonged SBO but also: Seismic SBOp g

• In both cases: no possibility for Torus Coolingno possibility for Torus Cooling

• Seismic SBO differs from SBO: – Offsite power recovery may require weeks vs. hours

– Possibly destroys CST (requiring HPCI, RCIC suction from Torus)

– This causes more rapid Torus Heatupp p

– Possibly destroys Diesel Fire Water makeup (buried piping, cast iron piping in buildings)

• Successful coping depends on:• Successful coping depends on:– Gasoline powered portable DC battery chargers (or “Security Diesel”)

– Portable, Gasoline powered pumps

– Air compressor or bottled gas supply

42

Page 43: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Strategy: Break Rupture Disk below 56 psigusing bottled gas cylinder and test connectionusing bottled gas cylinder and test connection

Availability of compressed air compressed air and DCDC becomes essential tomaintain  Containment  Vent 

43

Path open for heat removal.

Page 44: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Vent Containment, but keep pressure: 15 – 25 psig(If any hydrogen were present in containment it would be inerted via excess Nitrogen and lacking ( y y g p g gsufficient Oxygen to ignite. Thus: we don’t want outside atmospheric air entering containment – so keep pressurized)

44

Page 45: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Initiate Manual Depressurization when Suppression Pool heats up (as in current EOPs)Suppression Pool heats up (as in current EOPs)

45

Page 46: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

After depressurization at ~8hrs core cooling can be provided by low press 100gpm portable pumpprovided by low press. 100gpm portable pump

46

Page 47: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

What is learned from all this:• Current guidance to use HPCI once and throttled RCIC:  worksworks

• Alternate means will be needed for DC Battery charging ~ 5hrs• Alternate means will be needed for DC Battery charging   5hrs

•• Venting Containment is needed earlier (~ 8hrs) Venting Containment is needed earlier (~ 8hrs) to maintain lower Drywell Temperatures to operate S/RVs allowing emergency RPV depressurization

• Earlier venting requires defeating 56 psig rupture disk

d i i l i ill ll• Emergency RPV depressurization as currently in EOPs will allow use of smaller portable pumps

• Successfully executing this long term coping strategy requiresSuccessfully executing this long term coping strategy requires logistics of staged equipmentstaged equipment and supply of “consumables” (fuelfuel, compressed gascompressed gas)

47

Page 48: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

“Supplemental”Supplemental

48

Page 49: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

How Long Can NPP Cope Without Decay Heat Removal?Without Decay Heat Removal?

• Coping time is: time from when heat removal is lost toCoping time is: time from when heat removal is lost to onset of severe core damage (available recovery time)

Coping time considersCoping time considers:

• Physical inertia built into reactor design via water to water to core power ratiocore power ratio

• Effects of water makeup systemsEffects of water makeup systems

• Effects of support features (DC power, HVAC) which enable water makeup systemsenable water makeup systems

49

Page 50: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Simplified Decay Heat Model:

50

Page 51: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Behavior of RPV Level with RCIC:• Assume pressure ~1050 psia , constant due to relief valve operation

• At constant pressure water mass loss is related to decay heat, thus: WLOSS(t) = QDECAY(t) / hfg = 0.15Qot‐0.286 / hfg (hfg = 640 BTU/lbm.)WLOSS(t)   QDECAY(t) / hfg  0.15Qot / hfg                 (hfg  640 BTU/lbm.)

• Assume  core output initially at: Qo~6.84x109 BTU/hr

• Assume when activated: RCIC injects: WRCIC(t) ~2.0x105 lbm./hr.

• Assume initial water mass above core: MCORE~1.2x105 lbm.

• Behavior of water inventory governed by:

dM

286.0

)15.0()0()( dttQWMtM

WWdt

dM

to

LOSSRCICCORE

714.0

0

15.0)0(

)()0()(

tQtWM

dth

WMtM

oRCICCORE

fg

oRCICCORECORE

)714.0()0( t

htWM

fgRCICCORE

51

Page 52: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

After water level recovers, RCIC will stop

52

Page 53: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Behavior of Water after RCIC stops:• Assume RCIC can not be operated after 8hrs• Pressure ~1050 psia and constant due to relief valve operation• At constant pressure water mass loss still related to decay heatAt constant pressure water mass loss still related to decay heat• If core output initially at: Qo~8.13E+9 BTU/hr• When RCIC stops: WRCIC(t) ~0.0 lbm./hr.• Assume same initial water mass above core: MCORE~ 1.2E+5 lbm.• Behavior of water inventory governed by:

dM

)15.0()8()(286.0

dttQhrsMtM

Wdt

dM

to

LOSSCORE

)8(15.0)8(

)()8()(

714.0714.0

8

hrstQhrsM

dth

hrsMtM

oCORE

fg

oCORECORE

)8(714.0

)8( hrsth

hrsMfg

CORE

53

Page 54: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

Behavior of Water after RCIC stops:l d b l ff d d b d hSlow steady boil‐off dictated by decay heat curve

54

Page 55: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

55

Page 56: MAAP4.0.6 Simulation of Beyond DBA  BWR3 Mark I  rev03

56