Manfra- Ch 6 - Quantum Mechanics II

Embed Size (px)

Citation preview

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    1/32

    6.1 The Schrdinger Wave Equation

    6.2 Expectation Values

    6.3 Ininite Square!Well "otential

    6.# $inite Square!Well "otential

    6.% Three!&i'ensional Ininite!"otential Well

    6.6 Si'ple (ar'onic )scillator

    6.* +arriers and Tunneling

    CHAPTER 6

    Quantum Mechanics II

    Er,in Schrdinger -1*!1/610

    A careful analysis of the process of observation in atomic physics has

    shown that the subatomic particles have no meaning as isolated

    entities, but can only be understood as interconnections between the

    preparation of an experiment and the subsequent measurement.

    ! Er,in Schrdinger

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    2/32

    Opinions on quantum mechanics

    I think it is safe to say that no

    one understands quantummechanics. Do not keep saying

    to yourself, if you can possibly

    avoid it, ut how can it be like

    that!" because you will get

    down the drain" into a blind

    alley from which nobody has yetescaped. #obody knows how it

    can be like that.

    ! ichard $en'an

    ichard $en'an -1/1!1/0

    $hose who are not shocked

    when they first come across

    quantum mechanics cannot

    possibly have understood it.

    ! iels +ohr

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    3/32

    6.1: The Schr!in"er #a$e Equation

    The Schrdinger ,ave equation in its ti'e!dependent or' or aparticle o energE'oving in a potential Vin one di'ension is4

    ,here iis the square root o !1.

    The Schrodinger Equation is T(E unda'ental equation o 5uantu'

    echanics.

    ,here V = V(x,t)

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    4/32

    %enera& So&ution o' the Schr!in"er #a$e

    Equation (hen V) *

    Tr this solution4

    This ,or7s as long as4,hich sas that the total

    energ is the 7inetic energ.

    ( )i kx t i Ae it

    = =

    22

    2 k

    x

    =

    ( )( )i i i

    t

    = =

    h h h

    2 2 2 2

    2

    2 2

    k

    m x m

    =

    h h

    2 2

    2

    k

    m=

    hh

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    5/32

    %enera& So&ution o' the Schr!in"er

    #a$e Equation (hen V) *

    In ree space -,ith V8 90: the general or' o the ,ave unction is

    ,hich also descri;es a ,ave 'oving in thexdirection. In general the

    a'plitude 'a also ;e co'plex.

    The ,ave unction is also not restricted to ;eing real. otice that this

    unction is co'plex.

    )nl the phsicall 'easura;le quantities 'ust ;e real. These

    include the pro;a;ilit: 'o'entu' and energ.

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    6/32

    +orma&i,ation an! Pro-a-i&it

    The pro;a;ilitP(x) dxo a particle ;eing ;et,eenxandx + dxis

    given in the equation

    The pro;a;ilit o the particle ;eing ;et,eenx1andx2is given ;

    The ,ave unction 'ust also ;e nor'ali

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    7/32

    Properties o' /a&i! #a$e 0unctions

    Con!itions on the (a$e 'unction:1. In order to avoid ininite pro;a;ilities: the ,ave unction 'ust ;e

    inite ever,here.

    2. The ,ave unction 'ust ;e single valued.

    3. The ,ave unction 'ust ;e t,ice dierentia;le. This 'eans that itand its derivative 'ust ;e continuous. -=n exception to this rule

    occurs ,hen Vis ininite.0

    #. In order to nor'ali

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    8/32

    The potential in 'an cases ,ill not depend explicitl on ti'e.

    The dependence on ti'e and position can then ;e separated in theSchrdinger ,ave equation. >et4

    ,hich ields4

    o, divide ; the ,ave unction (x)f(t)4

    TimeIn!epen!ent Schr!in"er #a$e Equation

    The let side depends onl on t: and the right side

    depends onl onx. So each side 'ust ;e equal to

    a constant. The ti'e dependent side is4

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    9/32

    ultipl ;oth sides ;f(t)/i4

    ,hich is an eas dierential equation to solve.

    TimeIn!epen!ent Schr!in"er #a$e Equation

    +ut recall our solution or the ree particle4

    in ,hichf(t) = exp(-it): so4 = B / orB = : ,hich 'eans that4B = E?

    So 'ultipling ; (x): the spatial Schrdinger equation ;eco'es4

    ignoring the proportionalit

    constant: ,hich ,ill co'e ro'

    the nor'ali

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    10/32

    TimeIn!epen!ent Schr!in"er #a$e Equation

    This equation is 7no,n as the timein!epen!ent Schr!in"er

    (a$e equation: and it is as unda'ental an equation in quantu''echanics as the ti'e!dependent Schrodinger equation.

    So oten phsicists ,rite si'pl4

    ,here4

    is an operator.

    H E =

    2 2

    2

    2H V

    m x

    = +

    h H

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    11/32

    Stationar States

    The ,ave unction can ;e ,ritten as4

    The pro;a;ilit densit ;eco'es4

    The pro;a;ilit distri;ution is constant in ti'e.

    This is a standing ,ave pheno'enon and is called a stationar state.

    * *( ) ( )i t i t x e x e =2

    ( )x=

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    12/32

    6.2: E3pectation /a&ues

    In quantu' 'echanics: ,e@ll co'pute expectation values.

    The e3pectation $a&ue4 4is the ,eighted average o agiven quantit. In general: the expected value oxis4

    I there are an ininite nu';er o possi;ilities: andxis continuous4

    5uantu'!'echanicall4

    =nd the expectation o so'e unction ox:g(x)4

    1 1 2 2 N N i i

    i

    x P x P x P x P x= + + + = L

    x

    ( )x P x x dx=

    * *

    ( ) ( ) ( ) ( )x x x x dx x x x dx= = *

    ( ) ( ) ( ) ( )g x x g x x dx=

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    13/32

    5raet +otation

    This expression is so i'portant that phsicists have a special

    notation or it.

    The entire expression is thought to ;e a A;rac7et.B

    =nd is called the -ra,ith the 7et.

    The nor'ali

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    14/32

    To ind the expectation value op: ,e irst need to representpin ter's

    oxand t. Consider the derivative o the ,ave unction o a ree particle,ith respect tox4

    With k=p/ ,e have

    This ields

    This suggests ,e deine the 'o'entu' operator as .

    The expectation value o the 'o'entu' is

    Momentum Operator

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    15/32

    The positionxis its o,n operator. &one.

    Energ operator4 The ti'e derivative o the ree!particle ,ave

    unction is4

    Su;stituting = / ields

    The energ operator is4

    The expectation value o the energ is4

    Position an! Ener" Operators

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    16/32

    Su;stituting operators4

    E4

    K+V4

    8eri$in" the Schro!in"er Equation

    usin" operators

    The energ is4

    Su;stituting4

    2

    2

    pE K V Vm

    = + = +

    E i t

    =

    h

    221

    2 2

    pV i V

    m m x

    + = + h

    2

    2

    pE Vm

    = +

    2 2

    22V

    m x = +

    h

    2 2

    22i V

    t m x

    = +

    hh

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    17/32

    Some !i''erentia& equation so&utions

    Consider this dierential equation4

    +ecause the constant k2is positive: the solution is4

    o, suppose the dierential equation is4

    +ecause the constant !k2is negative: the solution is4

    kis real

    2

    2

    2

    d kdx

    =

    ( ) kxx Ae =

    2

    2

    2

    dk

    dx

    =

    ( ) sin( ) cos( )ikxx Ae A kx B kx = +or

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    18/32

    6.9: In'inite Square#e&& Potentia&

    The si'plest such sste' is that o a particle

    trapped in a ;ox ,ith ininitel hard ,alls thatthe particle cannot penetrate. This potential is

    called an ininite square ,ell and is given ;4

    Clearl the ,ave unction 'ust ;e

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    19/32

    +oundar conditions o the potential dictate

    that the ,ave unction 'ust ;e

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    20/32

    Quanti,e! Ener"

    The quanti

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    21/32

    6.: 0inite Square

    #e&& Potentia&

    The inite square!,ell potential is4

    Considering that the ,ave unction

    'ust ;e

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    22/32

    Inside the square ,ell: ,here the potential Vis

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    23/32

    The partic&e penetrates the (a&&s;

    The penetration depth is

    the distance outside the

    potential ,ell ,here the

    pro;a;ilit signiicantl

    decreases. It is given ;

    The penetration distanceis proportional to "lanc7@s

    constant.

    This violates classical

    phsics?

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    24/32

    6.6: Simp&e Harmonic Osci&&ator

    Si'ple har'onicoscillators descri;e

    'an phsical

    situations4 springs:

    diato'ic 'olecules

    and ato'ic lattices.

    Consider the Talor expansion o a

    potential unction4

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    25/32

    Consider the second!order ter'

    o the Talor expansion o a

    potential unction4

    Simp&e Harmonic

    Osci&&ator

    >ettingx0= 0

    >et and ,hich ields4

    Su;stituting this into

    Schrdinger@s equation4

    2102

    ( ) ( )V x x x=

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    26/32

    The Para-o&ic

    Potentia& #e&&

    The ,ave unction solutions

    are ,hereHn(x)

    are Hermite po&nomia&so

    order n.

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    27/32

    The Para-o&ic

    Potentia& #e&&

    Classicall: the pro;a;ilit

    o inding the 'ass is

    greatest at the ends o

    'otion and s'allest atthe center.

    Contrar to the classical

    one: the largest

    pro;a;ilit or this lo,estenerg state is or the

    particle to ;e at the

    center.

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    28/32

    Ana&sis o' the Para-o&ic Potentia& #e&&

    =s the quantu' nu';er increases: ho,ever: the solution

    approaches the classical result.

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    29/32

    The Para-o&ic Potentia& #e&&

    The energ levels are given ;4

    The

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    30/32

    6.

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    31/32

    Re'&ection an! Transmission

    The ,ave unction ,ill consist o an incident ,ave: a relected ,ave: and

    a trans'itted ,ave.

    The potentials and the Schrdinger ,ave equation or the three regions4

    =ll three

    constants

    are

    negative.

    Sines and

    cosines in all

    three regions

    Since the ,ave 'oves ro' let to right: ,e can reDect so'e solutions4

    The corresponding solutions are4

  • 7/26/2019 Manfra- Ch 6 - Quantum Mechanics II

    32/32

    Pro-a-i&it o' Re'&ection an! Transmission

    The pro;a;ilit o the particle ;eing relectedRor trans'itted Tis4

    +ecause the particle 'ust ;e either relected or trans'itted4

    R+ T= 1.

    + appling the ;oundar conditions

    x ,x= 0: andx=L: ,e arrive at

    the trans'ission pro;a;ilit4

    ote that the trans'ission pro;a;ilit can ;e 1.