29
Massimo Caccia, P.I. Universita’ dell’Insubria [UINS] Como (Italy) & INFN- Sezione di Milano GSI, Darmstadt, July 22 nd , 2011 The MIMOTERA: a monolithic pixel detector for real-time beam imaging and profilometry [U.S. patent no. 7,582,875 ] Featuring: Designers: G. Deptuch [FERMIlab] W. Dulinski [IRES-Strasbourg] DAQ: A. Czermak [INP-KraKow] I. Defilippis [SUPSI-Lugano] Exploitation team: A. Bulgheroni [UINS/JRC Ispra] C. Cappellini [UINS] L. Negrini [UINS] M. Maspero[UINS] F. Toglia [UINS] F. Risigo [UINS] M. Jastrzab[AGH-Krakow] S. Martemyianov [ITEP/UINS] Staff at HIT & CERN-AD M. Holzscheiter [MPI-Heidelberg & UNM Albuquerque, US R. Boll [Heidelberg University] Staff at LARN-Namur: A. C. Heuskin [LARN] A.C. Wera [LARN] S. Lucas [LARN]

Massimo Caccia, P.I. Universita’ dell’Insubria [UINS] Como (Italy) & INFN- Sezione di Milano

  • Upload
    helki

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

The MIMOTERA: a monolithic pixel detector for real-time beam imaging and profilometry [ U.S. patent no. 7,582,875 ]. Featuring: Designers: G. Deptuch [ FERMIlab] W. Dulinski [IRES-Strasbourg] DAQ: A. Czermak [INP-KraKow] I. Defilippis [SUPSI-Lugano]. Exploitation team: - PowerPoint PPT Presentation

Citation preview

Page 1: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Massimo Caccia, P.I.

Universita’ dell’Insubria [UINS]

Como (Italy)

&

INFN- Sezione di Milano

GSI, Darmstadt, July 22nd, 2011

The MIMOTERA: a monolithic pixel detector for real-time

beam imaging and profilometry[U.S. patent no. 7,582,875 ]

Featuring: Designers:

G. Deptuch [FERMIlab]W. Dulinski [IRES-Strasbourg]

DAQ: A. Czermak [INP-KraKow] I. Defilippis [SUPSI-Lugano]

Exploitation team:A. Bulgheroni [UINS/JRC Ispra] C. Cappellini [UINS] L. Negrini [UINS] M. Maspero[UINS] F. Toglia [UINS] F. Risigo [UINS] M. Jastrzab[AGH-Krakow] S. Martemyianov [ITEP/UINS]

Staff at HIT & CERN-AD M. Holzscheiter [MPI-Heidelberg & UNM Albuquerque, US] R. Boll [Heidelberg University]

Staff at LARN-Namur:A. C. Heuskin [LARN] A.C. Wera [LARN] S. Lucas [LARN]

Page 2: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Su

bar

ray

0 Su

bar

ray

1 Su

bar

ray

2 Su

bar

ray

3

17.136 × 17.136 mm2

digital

28 columns (30 clocks)

112 rows (114 clocks)

MimoTera

chip size: 17350×19607µm2

array 112×112 square pixels,

four sub-arrays of 28×112 pixels read out in parallel tread/integr<100µs (i.e. 10 000 frames/second)

Backthinned to the epi-layer (~ 15 µm ), back illuminated through an ~80 nm entrance window

AMS CUA 0.6 µm CMOS 15 µm epi,

no dead time

Essentials on the MIMOTERA (1/2):

Page 3: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Essentials on the MIMOTERA (2/2):

Charge To Voltage Factor = ~250nV/e- @ 500fF well capacity of ~ 36 MeV Noise ~1000 e- 280 e- kTC (ENC) @ 500fF

pixel 153×153 µm2 square pixels,

two 9×9 interdigited arrays (A and B) of n-well/p-epi collecting diodes (5×5 µm2) + two independent electronics – avoiding dead area,

In-pixel storage capacitors – choice ~0.5 pF or ~5 pF to cope with signal range (poly1 over tox capacitors),

153 m

Layout

of

one p

ixel

A B

Page 4: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Original push for the MIMOTERA development:minimally invasive real-time profilometry of hadrontherapy beams by secondary electron imaging[IEEE Trans.Nucl.Sci. 51, 133 (2004) and 52, 830 (2005))]

vacuum chamber

HV

secondary emission foil

electron detector

PROFILE/CURRENT MEASUREMENT

beam

Basic principle: collection and imaging of secondary 20 keV electrons emitted by sub- m thin Aluminum foils

The SLIM installed on an extraction line at the Ispra JRC-Cyclotron(p, 2H, 4H at energies 8-38 MeV, 100 nA- 100uA)

Secondary electrons emitted by a proton beam through a multi-pin hole collimator (Ø = 1mm, pitch = 1.5-6.5 mm)

Step 1 Step 2 Step 3

Today: results on beam imaging by DIRECT IMPACT on the sensor

Page 5: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Introductory slides on different imaging modalities

Page 6: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

The analysis matrix

Imaging modality

Frame by frameDifferential Imaging

(pair of frames)

Analog pulse

a11 a12

Counting a21 a22meth

od

s

• is any of the matrix elements more robust and reliable?• any irreducible problem preventing to use any of them?

Page 7: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Imaging modalities: Advantages and disadvantages

Single matrix+ single polarity signal+ spot the detail of the

matrix (e.g. hot pixels)- strongly dependent on a

good pedestal calculation

- And even more on a reliable pedestal variation tracking (due to thermal effects, Charge Collection efficiency variations, else)

Differential imaging- both positive and

negative signals- If pile-up occurs, the

signal averages out to ZERO

- Matrix details can be masked off

+ NO NEED of pedestals+ self-tracking of the

pedestal variations

Page 8: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Methods: Advantages and Disadvantages

Analog Info- provides and effective

measurement of the intensity, requiring a [possibly time dependent] calibration

- Possibly affected by Pixel-to-pixel gain variations (requires a normalization, implemented by measuring the signal in sigma units)

+ it works also when pile-up occurs

IDEAL for real-time,

qualitative, imaging More difficult to get a

quantitative measurement

Counting+ provides a direct measurement

of the flux [provided you can spot in an unbiased way the hit pixels…]

+ in principle, no calibration required

+ not expected to depend on local gain variations

- HARD to use it as pile-up approaches [look at the non-fired pixels..]

RELIABLE & ROBUST for a quantitative approach

as the pile-up probability increases, play with the integration time…

Page 9: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Assisting the AD-4 [ACE] collaboration [ACE, http://www.phys.au.dk/~hknudsen/introduction.html]

Michael Holzscheiter, ACE spokesperson (left), retrieves an experimental sample after irradiation with antiprotons, while Niels Bassler (centre) and Helge Knudsen from the University of Aarhus look on [courtesy of ACE]

[courtesy of ACE]

“Cancer therapy is about collateral damage” compared to a proton beam, an antiproton beam causes four times less cell death in the healthy tissue for the same amount of cell deactivation in the cancer.

Page 10: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Shot-by-shot beam recording at the CERN anti-proton decelerator tests

beam characteristics:-120 MeV energy- 3x107 particles/spill- 1 spill every 90”- FWHM ~ 8 mm

acquisition modality: - triggered imaging modality: - differential radiation damage: - irrelevant so far

[max no. of spills on a detector: 1436]

data taking runs: - September 2009 - June 2010 - October 2010

Single shot picture

Page 11: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Generally speaking, the beam is stable… unless it moves!

Antiproton.wmv

Quantitative information:• profiling, compared to a GafChromic film • Intensity, compared to a calibrated ionization chamber (UNIDOS, by PTW)

Page 12: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Profiling the beam[PRELIMINARY RESULTS:• FWHM calculation checked, • errors on the GAF still being evaluated]

With a GafChromic Film, integrating the spills over a full

run…and PROJECTING

With the MIMO, overlaying the 120 events in run #37 events to mimic the Gaf

FWHM = 7.64 ± 0.05 mm FWHM = 7.11 ± 0.05 mm

Page 13: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

More on the analysis..Step 1: Preparation of the reference beam image.

Find a proper observable, possibly independent from quarter-to-quarter gain variation:

A plot of the mean values of every pixel, averaged over all of the spills in the run

Page 14: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Step 2: check the x & y projections

2 remarks:

projections look pretty smooth, implying the normalized quantity is not so bad

deviations from the gaussian are significant…(qualitative and quantitative analysis)

Page 15: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Step 3: move from projections to slices:

X slicesY slices

FWHMx = f(y) [and the other way round)

i.e.

being F & G the marginal distributions

Page 16: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Step 4: estimate the “width” as the mean FWHM over the central 9 slices

Vs.

Page 17: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Monitoring the intensity fluctuations

MIMO Vs

UNIDOS*

*The PTW UNIDOS is a high performance secondary standard and reference class dosemeter / electrometer

Page 18: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

HIT [Heidelberg Ion-Beam Therapy Center]: Quality control of pencil Carbon Ions & proton beamshttp://www.klinikum.uni-heidelberg.de/index.php?id=113005&L=en

The f

aci

lity b

uild

ing

The accelerator complex[patients treated since 2008]

The b

eam

para

mete

rs

Interested in high granularity (in time & space) because they do feature “intensity-controlled raster-scan technique”

Page 19: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

beam time characteristics:- duty cycle 50%- spill duration 5 s- FWHM ~f(particle, intensity, energy)

acquisition modality: - free run imaging modality:

radiation damage: - relevant but not dramatic

[Total exposure time so far ~ 3h; about 1’-2’ per run at a specified nrj,

intensity]

data taking runs: - May 2010 - October 2010

Data taking conditions & qualitative information

Signal − Pedestal[ ]i

∑i

, i∈ROI

I = 7x107 particles/s, C ionsTime development of the beam

Page 20: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Quantitative information (C ions)

Intensity Scan

Energy Scan

Page 21: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Playing back the data

Carbon5.wmv

Page 22: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Imaging the LARN Tandem beams at Namur (B)

Main interests:

- The MIMO as a real-time, high granularity “digital” alumina screen, to optimize the set-up

- QC of the beam in terms of homogeneity

- quick measurement of the absolute intensity (particle counting!)

Page 23: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

beam time characteristics:- continuous beams!- any ion (!) with an energy in MeV/amu range- intensities [103;108] p/cm2/s range

acquisition modality: - free run; MIMOin vacuum

radiation damage: - may really be dramatic![Total exposure time so far ~ 60h; p, , C ion beams]

imaging modality:- standard: signal - pede- differential: (i,j,n) = signal (i,j,n) - signal(i,j,n-1)- based on < 2(i,j,N) >- digital with a pixel dependent threshold

data taking runs: - July 2008, April 2009 + series of short runs since April 2010 performed by the people at LARN - next extensive run planned for end of May 2011

Data taking conditions & qualitative information

Page 24: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Beam profile with different imaging modalities[protons, E = 1.2 MeV, I = 6 x 105 p/cm2/s]

Signal - pede: + easy & classic - critical wrt pedestal variations

Delta: + robust against pedestal variations - failing as pile-up is approaching

Delta2 : + applicable also for high intensities - emphasizes local differences

Counting with pixel dependent thresholds:+ quite robust against detector degradation- failing as pile-up approaches

Page 25: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Real-time profiling

Image of a tilted beam

Flat beam

2 frames

10 frames

20 frames

Page 26: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Preliminary measurements on the intensity

Proton beam, 5 Gy/m = 2 x 106 p/cm2/s

Still working on the absolute particle counting, since it is a tough business…

Page 27: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Intensity by counting, with a pixel dependent threshold based on a common pre-set spurious hit level

DATA SETA page from my logbook

-Scan runs 1,2,4,5• #3 excluded because of a significant beam instability• #6 & 7 excluded here because they require an overlap of several events to achieve the required sensitivity+ ion source flickering

- rely on the unfired pixels to reduce the pile-up effects

Page 28: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Linearity, up to 8.8 x 106 particles/cm2/s

• protons, 1.2 MeV energy; • MIMO clocked at 2.5 MHz• differential mode• pixel dependent threshold at 5% spurious hit level

-p0 ≠ 0, we are still cutting off a few pixels which were actually hit- as usual, a trade off between sensitivity and purity has to be searched for..- clocking at 25 MHz, we can use the MIMO in counting mode till ~ 108 particles/cm2/s

Page 29: Massimo Caccia, P.I. Universita’ dell’Insubria [UINS]   Como (Italy) & INFN- Sezione di Milano

Conclusions

The MIMOTERA appears to be an interesting device for RT beam profilometry at high granularity in space & time

radiation hardness is a certainly a concern, especially at Tandem beams [but so far we did not manage to kill a single detector…]

more tests are on the way, to quantify its lifetime in beam hours

other facilities showed some interests (Krakow, ITEP Moscow) and tests are planned