29
POWER ENGINEERING INSTITUTE Leonid Belyaev Viktor Bespalov Alexander Matveev Department Nuclear and Thermal Power Plants Tomsk Polytechnic University MASTER PROGRAMME «Computer Technologies for Design of Thermal and Nuclear Power Plants»

MASTER PROGRAMME «Computer Technologies for …ecdeast.tpu.ru/files/presentation/spb2012/TPU_Programme_SPB_2012.… · ... economic impact of issues ... Geothermal Power Plants,

Embed Size (px)

Citation preview

POWER  ENGINEERING  INSTITUTE  

Leonid Belyaev Viktor Bespalov

Alexander Matveev Department Nuclear and Thermal Power Plants

Tomsk Polytechnic University  

MASTER PROGRAMME «Computer Technologies

for Design of Thermal and Nuclear Power Plants»

POWER  ENGINEERING  INSTITUTE  

Master  Programmes  

Major  «Heat  and  Power  Engineering»  §  Heat and Mass Transfer Processes and Installations  

§  Thermal Physics in Heat and Power Engineering  

§  Water and Fuel Power Engineering  

§  Heat and Electric Power Generation Technology

§  Computer Technologies for Design of Thermal and Nuclear Power Plants

POWER  ENGINEERING  INSTITUTE  

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

 PROGRAMME  CONCEPT        

ü  The   programme   prepares   its   graduates   for   development   of   new  equipment  for  Thermal  and  Nuclear  Power  Plants  (TPP  and  NPP)  

ü  It  focuses  on  advanced  studies  in  natural  and  engineering  sciences,  computer  and  informaIon  technologies  

ü  The  graduates  gain  experience  in  usage  of  modern  soJ-­‐  and  hardware  tools   for   design   equipment   of   power   energe;c   and   for   opera;on  of  TPP  and  NPP  

ü  The   graduates   are   prepared   for   research,   simula;on   of   strength  proper;es  and  technological  processes  of  heat  transfer,  development  and   implementa;on   of   new   technologies   of   conver;ng   the   natural  energy  into  electricity    

POWER  ENGINEERING  INSTITUTE  

 PROGRAMME  OBJECTIVES    

 The  programme  prepares  graduates  for:    

ü  Research  and  problem  solving   in  development  and  op;miza;on  of  techniques   and   equipment   for   TPP   and  NPP   using   computer-­‐aided  technologies    

ü  Engineering  design  of  TPP  and  NPP  machinery  and  equipment  taking  into   account   the   requirements   and   standards   of   process  engineering,  environment  protec;on  and  safety  regula;ons  

ü  Independent  life-­‐long  learning  and  professional  development    

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

POWER  ENGINEERING  INSTITUTE  

Code Programme  Learning  Outcomes

Professional        Learning  Outcomes R1 use   in-­‐depth   knowledge   of   natural   sciences,   mathemaIcs   and  

engineering  in  TPP  and  NPP  design    

R2 idenIfy   and   solve   problems   of   engineering   analysis   related   to   TPP   and  NPP  equipment  and  machinery  development  using  the  system  analysis    

R3 apply   computer  and   informaIon   technologies   in  design  of  TPP  and  NPP  and  development  of  thermal  and  mechanical  equipment  

R4 conduct   theoreIcal   and   experimental   research   of   thermodynamic,   heat  and  mass  transfer  processes  in  thermal  and  power  equipment,  interpret,  present  and  give  pracIcal  recommendaIons  for  results  implementaIon  

R5 develop   mathemaIcal   models   of   engineering   processes,   calculate  strength   properIes   of   complex   systems   using  modern   tools   and   design  databases  for  TPP  and  NPP    

POWER  ENGINEERING  INSTITUTE  

Code Programme  Learning  Outcomes

 Personal        Learning  Outcomes R6 use  scienIfic  knowledge  and  creaIvity,  analyze,  synthesize  and  criIcally  

evaluate  data    

R7 demonstrate   knowledge   of   foreign   language   at   the   level   allowing   to  communicate   effecIvely   with   the   internaIonal   engineering   community,  work   out   documentaIon,   present   and   defend   outcomes   of   innovaIve  engineering  acIvity  

R8 funcIon  effecIvely  as  an  individual  and  as  a  member  and  leader  of  a  team  that   may   be   composed   of   different   disciplines   and   levels,   take  responsibility   for   the   results   and   follow   the   corporate   culture   of  organizaIon  

R9 demonstrate   in-­‐depth   knowledge   of   social,   ethical,   cultural   and  sustainable  development  issues  of  innovaIve  engineering  acIvity  

R10 engage  in  independent  learning  and  conInuous  professional  development    

POWER  ENGINEERING  INSTITUTE  

Module   Credits   R1   R2   R3   R4   R5   R6   R7   R8   R9   R10  

General  cycle  

Philosophical  and  methodological  problems  of  science  and  technology  

3   1                   1           1      

Professional  Foreign  Language   4                           3   1          

Economy  and  ProducIon  Control   2   1   1                                  

MathemaIcal  Modeling   2       1           1                      

Data-­‐driven  design   3   1               2                      

ALLOCATION  OF  LEARNING  OUTCOMES  

POWER  ENGINEERING  INSTITUTE  

Module   Credits   R1   R2   R3   R4   R5   R6   R7   R8   R9   R10  

PROFESSIONAL  CYCLE  

Modern  Challenges  of  Thermal  Power  Engineering  and  Thermal  Technologies  

3   1           1                       1  

Problems  of  energy  and  resource  saving  in  heat  power  engineering,  heat  engineering  and  heat  technology    

3   2           1                          

Ecological  Safety   3   2           1                          Principles  of  effecIve  process  management  in  heat  power  engineering,  heat  engineering  and  heat  technology  

3   1               2                      

Computer  design  of  industry’s  equipment   6           4   1   1                      

The  Use  of  Computer  Systems  in  Solving  Applied  Problems   4   1       2       1                      

POWER  ENGINEERING  INSTITUTE  

Module   Credits   R1   R2   R3   R4   R5   R6   R7   R8   R9   R10  

PROFESSIONAL  CYCLE  

SimulaIon  of  complex  systems   4   2   1           1                      TPP   and   NPP   Heat   Exchangers  and  Compressors   4   1   2           1                      

Technological  systems  and  of  TPP  and  NPP   4   2   1           1                      

Reliability  and  OperaIon  Modes  of  TPP   4   2   2                                  

Design  of  Thermal  Power  Units  and  Subsystems   4   1   2   1                              

Technology  of  TPP  and  NPP  Design  OrganizaIon   3   2   1                                  

Research  Project   16   1   2   2   5   2       1   1   1   1  Design  PracIce   4   2       1                   1          Research  PracIce   17   2   2   2   5   1       1   1   1   2  Master’s  Thesis   24       1   5   3   3   3   3   1   3   2  

POWER  ENGINEERING  INSTITUTE  

Details

Learning outcomes: M1 (R1): Knowledge and understanding of HPP and NPP typical layouts of steam turbine and gas turbine plants design methods M2 (R3): Experience in using the current technical regulations, standards, requirements and rules in design activity M3 (R1): Knowledge of design developing organization structure, procedure for issuing assignments to related specialists, list of assignment issuance, schedule of assignment issuing M4 (R8): ability to work in teams solving issues related to creation of new and/or reconstruction of the existing energy facilities

Compliance of module learning outcomes to the Programme learning outcomes

Design Practice

Programme  LO R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Credits 2 1   1

Module    LO М1,  М3       М2   M4  

POWER  ENGINEERING  INSTITUTE  

Details

Learning outcomes: M1 (R1): Knowledge of patent and literature references for investigated theme M2 (R1): Knowledge of requirements to the research and technical documentation preparation Знание правил и технических требований, учитывающих особенности конструирования и изготовления оборудования ТЭС и АЭС, проектирования, сооружения, монтажа и эксплуатации электростанций M3 (R4): ability to analyze and process experimental data of heat and mass transfer, thermophysical and thermal-hydraulic testing of Thermal and Nuclear Power Plants equipment; M4 (R3): ability to apply software products and information technologies related to heat power engineering, in investigations of Thermal and Nuclear Power Plants equipment; M5 (R4): ability to interpret the data and draw the conclusions;

Research Practice

POWER  ENGINEERING  INSTITUTE  

Details

Learning outcomes: M6 (R4): ability to compare the results of Thermal and Nuclear Power Plants equipment research with national and foreign analogues; M7 (R4): experience in use of modern software packages in conducting research; M8 (R7): use of foreign literature in conducting research; M9 (R10): experience of independent work in solving heat and mass transfer, thermophysical and thermal-hydraulic problem in thermal power engineering; M10 (R3) experience in use of current technical standards, norms and regulations; M11 (R2): ability to analyze the cost efficiency of Thermal and Nuclear Power Plants equipment design; M12 (R4): experience in making full descriptions of the research, presenting the results of the work in the form of reports, abstracts, articles accomplished in accordance with the requirements;

Research Practice

POWER  ENGINEERING  INSTITUTE  

Details

Learning outcomes: M13 (R8): ability to work as a member and/or leader and to be responsible for outcomes M14 (R9): knowledge and understanding of social, ethic and cultural issues of innovative engineering, competence in sustainable development issues М15 (R10): ability to acquire new knowledge and engage into independent life-long learning

Programme  LO R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Credits 2 3 3 3 2 -­‐ -­‐ 1 1 1

Module  LO М1,  М2 М11

М4,  М10

М3,  M5,  M6,  M7,  M12

М4,  М7 -­‐ -­‐

М5,  М7

М6,  М7 М6

Compliance of module learning outcomes to the Program learning outcomes

Research Practice

POWER  ENGINEERING  INSTITUTE  

Topics of the thesis in engineering design include modernization, reverse engineering, enhancement of safety standards in analogues, prototypes of the Russian and foreign TPP and NPP power units as well as innovative projects.

Main part of the thesis is performed in the following sequence: analysis of innovations, design problem setting, search for innovative options, engineering calculations, equipment layout, process design, organizational design, ergonomic design, technical and economic evaluation of engineering solutions, prediction of the effect from the implementation of a given solution, project evaluation and analysis.

Details

Master Thesis

POWER  ENGINEERING  INSTITUTE  

Details Master Thesis

Learning Outcomes: M1 (R6): ability to analyze the current state of nuclear power engineering and traditional thermal power engineering and set independently engineering tasks of Thermal and Nuclear Power Plants design; M2 (R2): ability to solve engineering tasks, to integrate knowledge from different fields of study, to make decisions in complex engineering tasks involving high degree of uncertainty and lack of information basing on the acquired knowledge and criteria; M3 (R3): experience in use of applied software and information resources used to get new information Thermal and Nuclear Power Plants design; M4 (R5): experience in modeling and design of Power Engineering processes and objects, professional presenting and preparing of the design project and documentation;

POWER  ENGINEERING  INSTITUTE  

Details Master Thesis

Learning Outcomes: M5 (R9): understanding of social, ecological, economic impact of issues related Thermal and Nuclear Power Plants design, maintenance and accident forecasting; M6 (R6): оценка эффективности систем безопасности и радиационной обстановки инженерно-технических мероприятий гражданской обороны и предупреждения чрезвычайных ситуаций M7 (R5): ability to use the Thermal and Nuclear Power Plants equipment modeling methods; M8 (R3): ability to evaluate the results of Thermal and Nuclear Power Plants design; M9 (R10): experience of independent work in solving heat and mass transfer, thermophysical and thermal-hydraulic problem in thermal power engineering; M10 (R4): ability to choose appropriate research methods, conduct experiments, interpret the data and draw conclusions;

POWER  ENGINEERING  INSTITUTE  

Details Master Thesis

Learning Outcomes: M11 (R5): ability to design mathematical models of Thermal and Nuclear Power Plants equipment M12 (R3): experience of mathematical (computer-aided) modeling and object optimizing of Thermal and Nuclear Power Plants equipment, including standard and specific software packages M13 (R6): the experience of evaluation of project cost efficiency М14 (R3): experience in use of current technical standards, norms and regulations; M15 (R3): experience in Thermal and Nuclear Power Plants equipment maintenance; М16 (R4): ability to use standard and specific software packages in conducting analytic and experimental investigations М17 (R7): use of foreign literature in conducting research

POWER  ENGINEERING  INSTITUTE  

Details Master Thesis

Learning Outcomes: M18 (R7): to communicate effectively; knowledge of professional terminology, skills of presenting information and making presentations as well as experience in presenting and defending independently performed projects M19 (R8): ability to work individually and as a member and/or leader and to be responsible for outcomes M20 (R4): ability to interpret the data and analyze them and make the conclusions based on the of literature available; M21 (R10): ability to acquire new knowledge and engage into independent life-long learning M22 (R9): knowledge and understanding of social, ethic and cultural issues of innovative engineering practice; М23 (R9): competence in sustainable development issues M24 (R7): experience in independent evaluation and defense of project’s results; making the presentations

POWER  ENGINEERING  INSTITUTE  

Details Master Thesis

Programme  LO R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Credits 1 4 -­‐ 4 2 4 1 2

Module  LO М2 М3,  M8,  M12,  M14,  

M15,

M10,M16,M20

М4,  M7,  M11

М1,  M6,  M13

М17,M18,M24

М19 М5,  M22,M23

M9, M21

Compliance of the Module Learning Outcomes with the Program Learning Outcomes

POWER  ENGINEERING  INSTITUTE  

Assessment of Learning Outcomes

Module Learning Outcomes

On-going assessment: accomplishment of tasks, projects, labs, etc).

Final assessment: exam, credit test

Programme Learning Outcomes:

•  Projects / Practice / Research Work Reports

•  Master Thesis (Attestation Commission includes about 60 % of industry

representatives)

Industry is involved in development and improvement of LO

POWER  ENGINEERING  INSTITUTE  

a)  Forms

lectures, practical classes, labs, projects, seminars,

practices, independent student work, workshops with

representatives of Russian and foreign companies.

b)   Methods

IT-tools, teamwork, case-study, group discussions,

prelimenrary independent work, feedback

Teaching methods

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

POWER  ENGINEERING  INSTITUTE  

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

NX Academic Bundle (UGACAD200)

X 8 Redefines Productivity

Siemens   PLM   SoGware’s   driving   mission   is   to   work  collabora;vely   with   companies   to   deliver   open  solu;ons   that   help   them   turn   more   ideas   into  successful   products.   These   open   solu;ons   enable  companies   to   transform   their   process   of   innova;on  and  maximize   the  value  derived   from   their  products  throughout  their  en;re  lifecycle.  

Purchased Software

Modules: «Computer design of industry’s equipment» «Design of Thermal Power Units and Subsystems»

POWER  ENGINEERING  INSTITUTE  

Рurchased books

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

1.  Rolf Kehlhofer, Bert Rukes, Frank Hannemann, Franz Stirnimann. Combined-Cycle Gas & Steam Turbine Power Plants, 3rd Edition. Publication Date: March 20, 2009. ISBN-10: 1593701683. ISBN-13: 978-1593701680. Edition: 3. P. 430. (≅75$)

2.  Kam W. Li. Power Plant System Design. Publication Date: February 22, 1985. ISBN-10: 0471888478. ISBN-13: 978-0471888475. Edition: 1. P. 656. (≅145$)

3.  Ronald DiPippo. Geothermal Power Plants, Second Edition: Principles, Applications, Case Studies and Environmental Impact. Publication Date: January 2, 2008. ISBN-10: 0750686200. ISBN-13: 978-0750686204. Edition: 2. P. 520. (≅110$)

4.  Yogesh Jaluria. Design and Optimization of Thermal Systems, Second Edition (Dekker Mechanical Engineering). Publication Date: December 13, 2007. ISBN-10: 0849337534. ISBN-13: 978-0849337536. Edition: 2. P. 752. (≅200$).

5.  Ali Keyhani. Design of Smart Power Grid Renewable Energy Systems. Publication Date: August 2, 2011. ISBN-10: 0470627611. ISBN-13: 978-0470627617. Edition: 1. P. 592. (≅110$).

6.  Murari Singh, George Lucas. Blade Design and Analysis for Steam Turbines. Publication Date: March 24, 2011. ISBN-10: 0071635742. ISBN-13: 978-0071635745. Edition: 1. P. 384. (≅80$).

7.  Alexander Leyzerovich. Wet-Steam Turbines for Nuclear Power Plants. Publication Date: April 1, 2005. ISBN-10: 1593700326. ISBN-13: 978-1593700324. P. 413. (≅130$).

8.  Meherwan P. Boyce Fellow American Society of Mechanical Engineers (ASME USA) and Fellow The Institute of Diesel and Gas Turbine Engineers (IDGTE U.K.). Gas Turbine Engineering Handbook, Fourth Edition. Publication Date: December 26, 2011. ISBN-10: 0123838428. ISBN-13: 978-0123838421. Edition: 4. P. 1000. (≅110$).

POWER  ENGINEERING  INSTITUTE  

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

9. Heinz P. Bloch. Steam Turbines: Design, Application, and Re-Rating. Publication Date: September 8, 2008. ISBN-10: 007150821X. ISBN-13: 978-0071508216. Edition: 2. P. 414. (≅50$).

10. Gilberto Francisco Martha de Souza (Editor). Thermal Power Plant Performance Analysis (Springer Series in Reliability Engineering). - Springer; 2012 edition (January 4, 2012).- 295 p. (≅155$)

11. Drbal L.F., Boston P.G., Westra K.L., Erickson R.B. Power Plant Engineering. – Berlin: Springer, 1995. – 880 p. (≅363$)

12. Saravanamuttoo H.I.H., Rogers G.F.C., Cohen H., Straznicky P.V. Gas Turbine Theory. – England: Prentice Hall, 2008. – 592 p. (≅134$)

13. Boyce M.P. Gas Turbine Engineering Handbook. – Elsevier, 2006. – 939 p. (≅110$) 14. Versreeg H., Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume

Method (Second Edition). – England: Prentice Hall. – 2007. (≅92$) 15. Smits A.J., Lim T.T. Flow visualization: Techniques and Examples. – London: Imperial College Press,

2000. – 398 p. (≅140$) 16. Jaluria Y., Torrance K.E. Computational Heat Transfer (Second Edition). – New York: Taylor & Francis,

2002 – 545 p. (≅196$) 17. Jaluria Y. Design and Optimization of Thermal Systems (Second Edition). – New York: CRC Press,

2002 – 723 p. (≅189$) 18. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S. Introduction to Heat Transfer.– John Wiley &

Sons, 2006. P. 912. (≅170$). 19. Jack Holman. Heat Transfer. – Mcgraw-Hill, 2009. P. 752. (≅170$).

Рurchased books

POWER  ENGINEERING  INSTITUTE  

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

20. Yunus Cengel and Afshin Ghajar. Heat and Mass Transfer: Fundamentals and Applications + EES DVD for Heat and Mass Transfer. – 2010. P. 928. (≅170$).

21. Conjugate Problems in Convective Heat Transfer by A. Sh Dorfman (Aug 26, 2009) P. 456. (≅145$). 22. Gas Turbine Heat Transfer and Cooling Technology by Je-Chin Han, Sandip Dutta and Srinath Ekkad

(Mar 22, 2001) P. 662. (≅200$). 23. Donatello Annaratone. Engineering Heat Transfer. Publication Date: December 17, 2009. ISBN-10:

3642039316. ISBN-13: 978-3642039317. Edition: 1st Edition.. P. 342. (≅170$). 24. T. W. Fraser Russell, Anne S. Robinson and Norman J. Wagner. Mass and Heat Transfer: Analysis of

Mass Contactors and Heat Exchangers (Cambridge Series in Chemical Engineering). Publication Date: February 11, 2008. ISBN-10: 0521886708. ISBN-13: 978-0521886703. Edition: 1. P. 402. (≅90$).

25. Ian Hore-Lacy, Stephen Tarlton, Brigita Praznik. Nuclear Energy in the 21st Century: World Nuclear University Primer. Publication Date: March 1, 2010. ISBN-10: 0955078415. ISBN-13: 978-0955078415. Edition: 2nd Revised edition. P. 140. (≅35$).

26. James P. Argyriou. Nuclear Power Plants: Design and Safety Considerations (Nuclear Materials and Disaster Research). Publication Date: December 30, 2011. ISBN-10: 1614709521. ISBN-13: 978-1614709527. P. 97. (≅50$).

27. G.F. Hewitt, John G. Collier.Introduction to Nuclear Power (Series in Chemical and Mechanical Engineering). Publication Date: June 1, 2000. ISBN-10: 1560324546. ISBN-13: 978-1560324546. Edition: 2. P. 304. (≅170$).

Рurchased books

POWER  ENGINEERING  INSTITUTE  

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

28. Peter G. Hessler. Power Plant Construction Management: A Survival Guide. Publication Date: October 5, 2005. ISBN-10: 1593700296. ISBN-13: 978-1593700294. P. 345. (≅80$).

29. Mike Tooley BA Advanced Technological and Higher National Certificates Kingston University. Design Engineering Manual. Publication Date: November 30, 2009. ISBN-10: 1856178382. ISBN-13: 978-1856178389. Edition: 1. P. 736. (≅130$).

30. Peter Gevorkian. Large-Scale Solar Power System Design (GreenSource): An Engineering Guide for Grid-Connected Solar Power Generation (McGraw-Hill's Greensource). Publication Date: April 22, 2011 | ISBN-10: 0071763279 | ISBN-13: 978-0071763271 | Edition: 1. P. 704. (≅90$).

31. Yogesh Jaluria. Design and Optimization of Thermal Systems, Second Edition (Dekker Mechanical Engineering). Publication Date: December 13, 2007. ISBN-10: 0849337534. ISBN-13: 978-0849337536. Edition: 2. P. 752. (≅200$).

32. David Ullman. The Mechanical Design Process (Mcgraw-Hill Series in Mechanical Engineering). Publication Date: February 2, 2009. ISBN-10: 0072975741. ISBN-13: 978-0072975741. Edition: 4. P. 448. (≅120$).

≅4380 $

Рurchased books

POWER  ENGINEERING  INSTITUTE  

Bachelor or Specialist degree in Power Engineering Multi-disciplinary examination Competition

Conditions for admission to the program

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

POWER  ENGINEERING  INSTITUTE  

Programme Status

Computer  Technologies    for  Design  of  Thermal  and  Nuclear  Power  Plants  

•  Approved by University Academic Council (June

1, 2012)

•  Launched since September 1, 2012

•  Plan to enroll 10 students

•  25 applications by July 1, 2012

POWER  ENGINEERING  INSTITUTE  

Thank  you  for  ALen;on