Mathématiques - ed.gov.nl.ca .MATHÉMATIQUES 8e ANNÉE - PROGRAMME D’ÉTUDES 2017 3 LES PROCECESSUS

  • View
    216

  • Download
    0

Embed Size (px)

Text of Mathématiques - ed.gov.nl.ca .MATHÉMATIQUES 8e ANNÉE - PROGRAMME D’ÉTUDES 2017 3 LES...

  • Programme dtudes 2017

    Mathmatiques 8e anne

    du

    catio

    n

    Dv

    elop

    pem

    ent d

    e la

    pet

    ite e

    nfan

    ceet

  • MATHMATIQUES 8e ANNE - PROGRAMME DTUDES 2017 i

    TABLE DES MATIRES

    Table des matiresRemerciements ..................................................................................................................... iii

    Introduction .............................................................................................................................1Objet du prsent document ....................................................................................................1 Philosophie concernant les lves et lapprentissage des mathmatiques ............................1Domaine affectif ......................................................................................................................2Des buts pour les lves .........................................................................................................2

    Cadre conceptuel des mathmatiques M-9 ...............................................................3Les processus mathmatiques ................................................................................................3La nature des mathmatiques .................................................................................................7Rsultats dapprentissage transdisciplinaires ........................................................................10Les domaines ........................................................................................................................ 11Les rsultats dapprentissage et les indicateurs de rendement ............................................12Sommaire ..............................................................................................................................12

    Mesure et valuation .........................................................................................................13But de lvaluation .................................................................................................................13Stratgies dvaluation ..........................................................................................................15

    Orientation pdagogique .................................................................................................17Planification de lenseignement .............................................................................................17Squence denseignement ....................................................................................................17Temps denseignement par module ......................................................................................17Ressources ............................................................................................................................18

    Rsultats dapprentissage gnraux et spcifiques ............................................18

    Rsultats dapprentissage et indicateurs de rendementModule 1 - Les racine carres et le thorme de Pythagore .................................................19Module 2 - Les nombres entiers ............................................................................................43Module 3 - Les oprations sur les fractions ...........................................................................67Module 4 - Les prismes et les cylindres .............................................................................. 101Module 5 - Les pourcentages, les rapports et les taux .......................................................121Module 6 - Les quations linaires et leur reprsentation graphique ..................................151Module 7 - Lanalyse de donnes et la probabilit ...............................................................173Module 8 - La gomtrie .....................................................................................................193

    Annexe Rsultats dapprentissage et indicateurs de rendement, par domaine ...............................213

    Rfrences ...........................................................................................................................223

  • MATHMATIQUES 8e ANNE - PROGRAMME DTUDES 2017 ii

    TABLE DES MATIRES

  • MATHMATIQUES 8e ANNE - PROGRAMME DTUDES 2017 iii

    REMERCIEMENTS

    RemerciementsLe ministre de lducation t du Dveloppement de la petite enfance tient remercier le Protocole de lOuest et du Nord canadiens (PONC), pour sa collaboration. Le Cadre commun des programmes dtudes de mathmatiques M-9 (mai 2006) et le Cadre commun des programmes dtudes de mathmatiques 10-12 (janvier 2008) ont t reproduits ou adapts sous autorisation. Tous droits rservs.

    Ce document est une traduction et une adaptation du document Mathematics Grade 8, Department of Education, Curriculum Guide, 2015

    Le ministre de lducation t du Dveloppement de la petite enfance dsire aussi remercier le bureau des services en franais qui a fourni les services de traduction ainsi que le Programme des langues officielles en ducation du Patrimoine canadien qui a fourni de laide financire la ralisation de ce projet.

    Enfin, nous remercions le comit du programme provincial de mathmatiques, 8e anne, le ministre de lducation de lAlberta, le ministre de lducation du Nouveau-Brunswick, ainsi que les enseignants et les conseillers pdagogiques qui ont contribu llaboration de ce programme dtudes.

    Tous les efforts ont t dploys pour reconnatre les diverses sources ayant contribu la rdaction du prsent document.

    NOTER : Dans le prsent document, le masculin est utilis titre picne.

  • MATHMATIQUES 8e ANNE - PROGRAMME DTUDES 2017 iv

    REMERCIEMENTS

  • MATHMATIQUES 8e ANNE - PROGRAMME DTUDES 2017 1

    INTRODUCTION

    Objet du prsent document

    INTRODUCTION

    Les programmes dtudes de mathmatiques de la province de Terre-Neuve-et-Labrador ont t tablis partir du Cadre commun des programmes dtudes de mathmatiques M-9, Protocole de lOuest et du Nord canadien, janvier 2008. Ces programmes incorporent le cadre conceptuel des mathmatiques de la maternelle la 9e anne, ainsi que les rsultats dapprentissage gnraux et spcifiques et les indicateurs de rendement tablis dans le cadre commun des programmes dtudes. Ils incluent aussi des stratgies denseignement et dapprentissage, des suggestions de stratgies dvaluation et font la correspondance entre le programme et la ressource autorise et le matriel recommand.

    Le prsent cours, Mathmatique 8e anne, a t mis en oeuvre en 2010.

    Le programme dtudes prsente des attentes leves pour les lves.

    Philosophie concernant les lves et lapprentissage des mathmatiques

    Les lves sont des apprenants curieux et actifs ayant tous des intrts, des habilets et des besoins qui leur sont propres. Chacun arrive lcole avec son propre bagage de connaissances, de vcu et dacquis. Un lment cl de la russite du dveloppement de la numratie est ltablissement de liens entre ces acquis et ce vcu.

    Les lves apprennent quand ils peuvent attribuer une signification ce quils font; et chacun dentre eux doit construire son propre sens des mathmatiques. Cest en allant du plus simple au plus complexe ou du plus concret au plus abstrait que les lves ont le plus de possibilits de dvelopper leur comprhension des mathmatiques. Il existe de nombreuses approches pdagogiques et matriel de manipulation destines aux enseignants qui ont composer avec les multiples modes dapprentissage et cultures de leurs lves ainsi quavec leurs stades de dveloppement respectifs. Ces approches concourent au dveloppement de concepts mathmatiques valides et transfrables: quels que soient leurs niveaux, tous les lves bnficieront dun enseignement appuy par une varit de matriaux, doutils et de contextes pour dvelopper leurs conceptions personnelles des nouvelles notions de mathmatiques qui leur sont proposes. La discussion entre lves peut engendrer des liens essentiels entre des reprsentations concrtes, images et symboliques des mathmatiques.

    Le milieu dapprentissage offert aux lves devrait mettre en valeur et respecter leur vcu et tous leurs modes de pense, quels quils soient. Ainsi, tout lve devrait se sentir en mesure de prendre des risques intellectuels en posant des questions et en formulant des hypothses. Lexploration de situations de rsolution de problmes est essentielle au dveloppement de stratgies personnelles et de littratie mathmatique. Les lves doivent se rendre compte quil est tout fait acceptable de rsoudre des problmes de diffrentes faons et darriver diverses solutions.

    La comprhension mathmatique se construit partir des expriences personnelles et des connaissances antrieures de chacun des lves.

  • MATHMATIQUES 8e ANNE - PROGRAMME DTUDES 2017 2

    INTRODUCTION

    Domaine affectif

    Pour russir, les lves doivent apprendre se fixer des objectifs ralisables et sautovaluer lorsquils sefforcent de les raliser.

    Il est important que les lves dveloppent une attitude positive envers les matires qui leur sont enseignes, car cela aura un effet profond et marquant sur lensemble de leurs apprentissages. Les environnements qui offrent des chances de succs et favorisent le sentiment dappartenance ainsi que la prise de risques contribuent au maintien de lattitude positive des lves et de leur confiance en eux-mmes. Les lves qui feront preuve dune attitude positive envers les mathmatiques seront vraisemblablement motivs et disposs apprendre, participer des activits, persvrer pour que leurs problmes ne demeurent pas irrsolus, et sengager dans des pratiques rflexives.

    Les enseignants, les lves et les parents doivent comprendre la relation qui existe entre les domaines affectif et intellectuel; et ils doivent seffo