Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut für Plasmaphysik, Euratom-IPP

  • View
    221

  • Download
    3

Embed Size (px)

Citation preview

  • Slide 1
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut fr Plasmaphysik, Euratom-IPP Association, Wendelsteinstra e 1, D-17491 Greifswald, Germany
  • Slide 2
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Computational physics Why numerical methods? Complexity of equations Example Simulation of experiments To test validity of theory To gain an idea of experimental performance
  • Slide 3
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Computational physics
  • Slide 4
  • The Computational Stellarator W7-X Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Plasma Wendelstein 7-X
  • Slide 9
  • slow drift of guiding center Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 10
  • Optimized stellarator
  • Slide 11
  • Plasma in a computational model 10 Variables: densities, velocities, temperatures 10 billion grid points 100 million time steps 100 FL oating P oint OP erations /sec / timestep / gridpoint or 1 billion teraflop/sec Cray T3E with 784 PE (ca. 75 gigaflop) or 500 years computing NOT VERY REALISTIC Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 12
  • Plasma: Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 13
  • Particle aspect of plasma dominates Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 14
  • Plasma is treated as one fluid with infinite conductivity Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 15
  • Slide 16
  • MHD is basis for all equilibrium calculations
  • Slide 17
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 18
  • Existence in 3D ? Theoretical ? Experimental ? Accessible only by computational models but not before 1975 thus Optimization started with IBM360/91 W7-AS Design 1978 Max-Planck-Institut fr Plasmaphysik, EURATOM Association MHD, equilibrium
  • Slide 19
  • p constant on (nested) surfaces labelled by s Poloidal and toroidal fluxes are invariant functions, together with m(s) the mass distribution Stationary states of plasma energy (fixed boundary) MHD force balance r and z periodic functions ( Fourier series) Hybrid finite elements in s, (artificial) Time-like iteration Max-Planck-Institut fr Plasmaphysik, EURATOM Association Equilibria, VMEC
  • Slide 20
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 21
  • NESTOR / NESCOIL codes Iterative combination of VMEC & NESCOIL allows free-boundary computations NEMEC Max-Planck-Institut fr Plasmaphysik, EURATOM Association Vacuum fields - free-boundary - coils Boundary Value Problems, Greens Function Last closed magnetic surface (lcms) defines completely interior plasma properties Search for external current distributions (i.e. coils) producing a vacuum field B with boundary conditions on the lcms (n exterior normal)
  • Slide 22
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association VMEC
  • Slide 23
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Plasma configuration given calculate coils to produce it
  • Slide 24
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Coils 1-50
  • Slide 25
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Is a given plasma configuration stable against small pertubations? Find ways to prevent instabilities
  • Slide 26
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Tokamak operation limited by MHD instabilities
  • Slide 27
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 28
  • Necessary to design equilibrium with good confinement properties
  • Slide 29
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 30
  • Slide 31
  • Speedup of equilibrium codes due to Peak speed of cpu: 10 fold IBM 360/91 Cray-1S 1980 (same parameters) 12 fold Cray-1S YMP-464(4cpus) 1988 16 fold Cray-1S J916 (16) 1992 28 fold Cray-1S SX4(2) 1996 500 fold Cray-1S T3E-600(784) 1998 New Codes: 24 fold BETA MOMCON/FIT 1980 (same equilibrium) 50 fold MOMCON VMEC 1985 30 fold VMEC VMEC2 1989 Better algorithms gave a speedup of around 30.000 ! New hardware ``only`` 5.000... Max-Planck-Institut fr Plasmaphysik, EURATOM Association Computational Remarks
  • Slide 32
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Turbulence suppression
  • Slide 33
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Turbulence suppression
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Gyrokinetic turbulence simulations
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Plasma-edge physics
  • Slide 45
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Length scales sputtered and backscattered species and fluxes Plasma-wall interaction Molecular dynamics Binary collision approximation Kinetic Monte Carlo Kinetic model Fluid model impinging particle and energy fluxes
  • Slide 46
  • Carbon deposition in divertor regions of JET and ASDEX UPGRADE JET ASDEX UPGRADE ASDEX UPGRADE Achim von Keudell (IPP, Garching) V. Rohde (IPP, Garching) Paul Coad (JET) Major topics: tritium codeposition chemical erosion Max-Planck-Institut fr Plasmaphysik, EURATOM Association Diffusion in graphite
  • Slide 47
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Diffusion in graphite Internal Structure of Graphite Granule sizes ~ microns Void sizes ~ 0.1 microns Crystallite sizes ~ 50-100 ngstroms Micro-void sizes ~ 5-10 ngstroms Multi-scale problem in space (1cm to ngstroms) and time (pico-seconds to seconds)
  • Slide 48
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Multi-scale ansatz Mikroscales MC Mesoscales KMC Macroscales KMC and Monte Carlo Diffusion (MCD)
  • Slide 49
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Molecular dynamics HCParcas code Developed by Kai Nordlund, Accelarator laboratory, University of Helsinki - Hydrogen in perfect crystal graphite 960 atoms - Brenner potential, Nordlund range interaction - Berendsen thermostat, 150K to 900K for 100ps - Periodic boundary conditions
  • Slide 50
  • Equilibration of pressure with time Max-Planck-Institut fr Plasmaphysik, EURATOM Association Time variation of pressure
  • Slide 51
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Molecular dynamics Simulation at 150K, 900K 150K 900K
  • Slide 52
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Molecular dynamics results two diffusion channels no diffusion across graphene layers (150K 900K) Lvy flights?
  • Slide 53
  • Non-Arrhenius temperature dependence Max-Planck-Institut fr Plasmaphysik, EURATOM Association Molecular dynamic results
  • Slide 54
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Kinetic Monte Carlo basic idea 0 = jump attempt frequency (s -1 ) E m = migration energy (eV) T = trapped species temperature (K) Assumptions: - Poisson process (assigns real time to the jumps) - jumps are not correlated
  • Slide 55
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association KMC results for transgranular diffusion - strong dependence on void sizes and not on void fraction - saturated H (Tanabe) 0 ~10 5 s -1 and step sizes ~1 (QM?)
  • Slide 56
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Multiscale model Activation energies: trapping-detrapping 2.7 eV desorption 1.9 eV surface diffusion 0.9 eV, jump attempt frequency, jump step length for entering the surface for a solute H atom 2.7 eV 0 ~10 13 s -1 ~35 porous graphite structure
  • Slide 57
  • desorption starts between 900 K and 1200 K Max-Planck-Institut fr Plasmaphysik, EURATOM Association Multiscale model - results
  • Slide 58
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Multiscale model 900 K, 0.1 ms
  • Slide 59
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Multiscale model 1500 K, 0.001 ms
  • Slide 60
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association Multiscale model diffusion types adsorption- desorption 1.9 eV surface diffusion 0.9 eV
  • Slide 61
  • Applications: Low temperature plasmas (methane, RF discharges) Complex plasmas (plasma crystals) Parasitic plasmas in the divertor (radiative ionization) Max-Planck-Institut fr Plasmaphysik, EURATOM Association PIC(Particle-in-cell)-method Principle:
  • Slide 62
  • n e ~ 10 9 -10 10 cm -3 n n ~ 10 15 -10 16 cm -3 f RF = 13.56 MHz potential n e = 10 10 cm -3, n H 2 = 9.210 14 cm -3, n CH 4 = 710 14 cm -3, p = 0.085 Torr (11 Pa) Model system for chemical sputtering: methane plasma (2DX3DV PICMCC multispecies) Collaboration with IEP5, Bochum University (Ivonne Mller) Max-Planck-Institut fr Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge
  • Slide 63
  • CH 4 + ion energy distribution electron and CH 4 + ion density Electrons reach electrode only during sheaths collapse Energetic ions at the wall due to acceleration in the sheath Max-Planck-Institut fr Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge
  • Slide 64
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge electron velocity distributionelectron-impact ionization rate Energetic electrons oscillate between sheaths Ionization spread over the bulk
  • Slide 65
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association PIC simulation: RF capacitive discharge electron energy probability function Figure from V.A. Godyak, et al., Phys. Rev. Lett., 65 (1990) 996. Bi-maxwellian distribution due to stochastic heating
  • Slide 66
  • Lower electrode Negative charge due to higher electron mobility Levitation in strong sheath electric field Max-Planck-Institut fr Plasmaphysik, EURATOM Association Dusty (complex) plasmas
  • Slide 67
  • Max-Planck-Institut fr Plasmaphysik, EURATOM Association PIC simulation: Plasma crystal - full 3D! Quasi - ordered 3D structure Top view
  • Slide 68
  • Complex multi-scale physics requires complex computational tools Max-Planck-Institut fr Plasmaphysik, EURATOM Association
  • Slide 69
  • Thanks!! Ralf Kleiber, Ulrich Schwenn, Volodja Kornilov, Stefan Sorge Mathias Borchardt, Jrg Riemann, Alex Runov, Xavier Bonnin Konstantin Matyash, Neil McTaggart, Manoj Warrier, Francesco Taccogna Andrea Pulss, Andreas Mutzke, Henry Leyh And many contributions from colleagues all over the world