35
1 Measurement of single elec tron spectrum in sqrt(s)=2 00GeV p-p collisions at RH IC-PHENIX 外外 外 外外外外 外外外外外 2004/11/02

Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

  • Upload
    hollie

  • View
    511

  • Download
    0

Embed Size (px)

DESCRIPTION

Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX. 外川 学 京都大学 理研コロキ 2004/11/02. CDF hep-ex/0408020. 動機. -> pQCD で記述される。. 単電子測定による重クォーク生成機構と破砕関数の理解 RHIC エネルギーでの pp 衝突における重クォーク生成のほとんどはグルーオンの融合過程によって生成。 - PowerPoint PPT Presentation

Citation preview

Page 1: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

1

Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisio

ns at RHIC-PHENIX

外川 学 京都大学

理研コロキ 2004/11/02

Page 2: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

2

CDF hep-ex/0408020

動機• 単電子測定による重クォーク生成機構と破砕関数の理解

– RHIC エネルギーでの pp 衝突における重クォーク生成のほとんどはグルーオンの融合過程によって生成。

– しかしながら Tevatron における D,B 中間子や、 STAR における D 中間子の生成断面積が理論予測を上回るなど、未だ理解されていない。

-> pQCD で記述される。

-> PHENIX では低いバックグラウンド状態で D や B 中間子 からの崩壊粒子である単電子を測定可能。

PHENIX

PYTHIA (single electron)

ISR

NLO pQCD (M. Mangano et al., NPB405(1993)507)

PHENIX: PRL 88(2002)192303

Page 3: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

3

Determination of gluon polarization

ALLgg →QQ ∝

Δg(x1)

g(x1)⋅

Δg(x2)

g(x2)⋅ ˆ a LL

gg →QQ

ggQQ(main : gluon fusion ~90%)

M.Karliner and R.Robinett. Phys. Lett. B324 (1994)

cos

aLLgg →QQ LO analyzing power

ˆ s

2M=1.1

1.5 2

5low pT

higher mass

・生成過程が主にグルーオン融合-> グルーオン偏極のため の良いプローブ

・ charm 、 beauty の ALL の値が違う。-> 質量の違いから ( 右図 )

・分けるためには、、、- VTX detector- 他崩壊粒子等との相関

Page 4: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

4

PHENIX detector

single electron

電磁カロリメーター

運動量測定系( ドリフト、パッドチェンバー )

• 電子はセントラルアームで測定。– 運動量測定系– 電磁カロリメーター (EMCal)– RICH (Ring Imaging CHerenkov )   5GeV/c 以下のパイ中間子

や他の荷電ハドロンと電子を分離可能

• 中間ラピディティ領域を覆う -> 高い pT の物理に特化

||<0.35, 0<<

RICH

Page 5: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

5

PHENIX における重心系エネルギー200GeV の pp 衝突で生成される電子

• 起源 :– Non-photonic

• ほとんどが重クォークを含んだ中間子からくる (D,B)

– Photonic ( 右図 )0, 等によるダリッツ崩壊• Photon conversion :

– 検出器までの物質量による– 今回使用するデータ中では

ビームパイプ、空気、シリコン検出器がある

Photonic electron spectrum for RUN3 pp by R.Averbeck

cocktail subtraction methodconverter subtraction method

0 の寄与がほとんど+( 少しの

• non-photonic 起源の電子を取り出す方法

Page 6: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

6pT pT

pT

Converter subtraction method• P : photonic 起源の電子の収量• N : non-photonic 起源の電子の収量• A : non-converter data における電子の収量• C : converter data における電子の収量• Rsim =  photonic 起源の converter data における電子の収量  photonic 起源の non-converter data における電子の収量    (PHENIX において photonic は 0が大部分 )

  no converter data : A = P + N converter data : C = Rsim * P + N P = ( C – A ) / ( Rsim – 1)

N = ( Rsim * A – C ) / ( Rsim – 1)

• コンバーター thin : 1.7%X0

** All parameter have pT dependence.

Page 7: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

7

光コンバーター• 光コンバーターは 1.7% の放射長を持つ真鍮の板で出来て

いる。ビームパイプに巻いてあり、半径は約 4 cm 。

写真 : 田原さん

Page 8: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

8

Cut parameters•物質量の均一性のためのカット

-アクセプタンス内にある他の検出器により物質量が変わってしまう領域ができる。      ( 物質量の均一性が保証できるとこだけ使う )

•電子同定のためのカット : –EMCal(とチェンバー系)より

– エネルギー (EMCal) と 運動量 ( チェンバー ) の比 : ~ 1 @ 電子– チェンバーと EMCal での位置の差分 : 電子に合わせる – EMCal で起こるシャワー分布を見る : 電子、光子を同定

–RICH より– photo-electron の数 : 5GeV/c 以下の荷電ハドロンは放出しない .

Page 9: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

9

データ収集状況• ERT (Emcal Rich Trigger)によるデータ収集

– 電磁カロリメーターでのエネルギー損失とRICHのヒットを要求。高エネルギーの電子を収集するためのトリガー。– 本実験での電磁カロリメーターの閾値 : 400MeV,800MeV

• 本実験(2003年に行われた陽子衝突実験 : RUN3)– Q/Aの後、全統計 : 320nb-1

– 今回の解析では “converter subtraction method”により、• ERT400 30nb-1 • ERT400 with thin converter run 47nb-1

 とを比較。

2002年 (RUN2) と比べて統計 : ~20 nb-1 (15倍 )

アクセプタンス改善 : 2~3倍

Page 10: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

10

アクセプタンス• アクセプタンス計算には、測定時の検出器条件を再現するよ

う調整された GEANT シミュレーションにより求める。• 4M 電子事象を生成 (2M e+ and 2M e-) • 0<pt<10(GeV):flat, |eta|<0.6, 0<phi<2pi の領域でシミュレー

• このアクセプタンスには電 子同定の補正も入っている。€

Acceptance =output(eID & phi & Fiducial)

input

Generated and analyzed at RSCC and CCJ (RIKEN machine)

Red : positronBlue : electron

Page 11: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

11

Rsim : converter/non-converter ratio ( シミュレー

ション )

pT range (8 sets): (50M pi0 for each)

0.5-, 1.0-, 1.5-, 2.0-, 2.5-, 3.0-, 4.0-, 5.0-

|eta|<0.5, 0<phi<2pi, |zvtx|<30cm

• Rsim : photonic 成分のコンバーター有無での比。• PHENIX での photonic 起源はのののののの

– のののののの GEANT シミュレーション

• Rsim は pT に対してほぼ一定であり、 1.98 +- 0.03

Generated and analyzed at RSCC and CCJ (RIKEN machine)

pT

Rsim

Page 12: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

12

Systematic error estimation• Systematic uncertainties in Rsim (ratio of the converter/non-converter yield for pure photo

nic component)– Conversion itself --- 10% (1.97 ± 0.03) – Acceptance difference between converter/non-converter run -– eID efficiency difference <1 % Total : (Added by squared) 10%

• Systematic uncertainties in Acceptance && eID– Acceptance 10% ( acceptance agreement between the data and sim)– Momentum smearing <10% (this correction was not applied) – eID 2% (1/3 of total efficiency loss of 7%)– Total 14.2 %

• Systematic uncertainties in luminosity– Trigger bias 3% (fBBC=0.75)– Cross section error 12% (BBC=20.5 mb)

• RUN2 : 21.8mb RUN3 : 19mb (studied value : temporary) so, now we use simple average.

– Total 12.4% • Note: In the acceptance calculation, the momentum smearing correction was not applied.

The correction is estimated as ~ 10% at the highest pT (4-5 GeV/c) and much smaller in the lower pT bins. In the systematic uncertainty, the maximum value of this (not applied) correction was taken as the systematic error and added in squares in the acceptance&&eID errors.

• VM decay contribution …very small and ignored• Kaon decay contribution…should be a few % of the photonic component. Ignored in this an

alysis.• The total systematic error is determiend by adding the errors from Rsim and the errors in t

he acceptance,the eID efficiency and the cross section error in squares (18.8%).

Page 13: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

13

Photonic 起源の電子スペクトラム

Diff (data/line)

RUN3 photonic spectrum (calculation)

得られたデータ点は計算ラインと一致。

Systematic error band

N = ( Rsim * A – C ) / ( Rsim – 1)

P = ( C – A ) / ( Rsim – 1)

Electron yield

nonPhotonicspectrum

Green : with converterMagenta : without converter

pT

pT

Page 14: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

14

non-photonic 起源の電子スペクトラム

PHENIX work in progress

RUN3 data (converter subtraction method)RUN2 data (cocktail subtraction method)

pythia sumpythia charmpythia bottom

Pythia parameters <kT>=1.5 <mc>=1.25 K-factor=3.5

SPS and FNAL (charm)ISR (single e) を再現

P = ( C – A ) / ( Rsim – 1)

N = ( Rsim * A – C ) / ( Rsim – 1)

Photonicspectrum

Electron yieldGreen : with converterMagenta : without converter

pT

Page 15: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

15

まとめ (1)• RHIC pp 衝突実験における D,B 中間子の生成断面積を測定

するために、その崩壊粒子である単電子の測定を行った。• Converter subtraction method によって得られた Photonic

起源の電子スペクトラムは計算によるものと良く一致している。

• Non-photonic 起源の電子スペクトラムは cocktail subtraction method を用いた RUN2 pp で得られたデータと良く一致している。

• 生成断面積は高い pT 領域で、 sqrt(s)=130GeV 以下を良く再現する tuned pythia よりも、少し大きく見えている。– 現在使っている統計は全体の 1/10 。– 今後の解析で高統計による pT依存等を見ていく。

Page 16: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

16

Future plan• RUN3 での全統計を用いた解析

– 他にも thick converter のデータも有る -> 解析確認

• 更なる高い pt 領域測定のためのイベント解析の研究 . – 厳しめのカット :  n1>=4, npe1>=7, fabs(emcsdphi_e)<2, fabs(emcsdz_e)<2 等 ( 下図 )

• 次にはじまる RUN では 最大 50倍の統計量をと る予定。

– 5~10 pb-1

– 高い pt での単電子 は B 中間子からが主 ?

• 2008( 予定 ) に入れる  VTX で charm 、 bottom の分離可能。 

stat. 200 nb-1

No back ground estimationNot apply parameter tune well

thinthick

material

e yield

Page 17: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

17

ALL of single electron

• 現在のセットアップでは c,b 起源の分離が困難– VTX によってお互いの比率がわかる。 (次ページ )– お互いがバックグラウンド

NLO ALL of charm single electron

Page 18: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

18

Displaced vertex ( For Heavy production )• The gap btw decay point and collision can be

evaluated with DCA.

– Distance of Closest Approach.

• DCA of D and B meson are different.

– We can separate them.

Black : charged particles from collision pointBlue : electron from D or B

For example cut

Vladimir L. Rykov

meson Life-time(m)

D± 315

D0 124

B± 496

B0 464 DCA (m)

Azimuthal angleStudied by tuned pythia

DCA

Page 19: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

19

How to separate D and B

Red : Dalitz+ConversionGreen : CharmBlue : Beauty

No DCA cut eall(no DCA cut) = eDalitz + eD + eB

With DCA cut eall(DCA cut) = Rdalitz(pT) eDalitz + RD (pT) eD + RB (pT) eB

RXXX is electron ratio of “no DCA cut” to “DCA cut” for xxx. (can be estimated by simulation)

error estimationALL

Dalitz can be evaluated by pi0

ALL

c ( b ) =σ

ALLc ( b )+BG

2 + r2σALL

BG2

1− r

Low pT : Determine c firstHigh pT : Determine b first

Fraction of electron source

pT

no DCA cut With DCA cut

0.02

-0.02

Green : CharmBlue : Beauty

s = 200GeV

320pb−1

pp

Page 20: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

20

まとめ (2) ALL of single-e• 結構 320pb-1 でも大変そう。 ( チャームを見て )• しかしながら、、、

– 期待通りの性能がでれば測定可能– NLOで小さくなるので、グルーオンのみ関与の LO vs. NLO

NLO calculation

Page 21: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

21

Backup

Page 22: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

22

Compared with pythia (RUN2 pp)Non-photonic invariant crossection is compared with PYTHIA charm and bottom expectation

PYTHIA tuned to data at lower s and extrapolated to RHIC energy PRL88(2002)192303 underpredicts data at pT>1.5 GeV/c

PHENIX Preliminarypp @ 200 GeV

<kT>=1.5<mc>=1.25K-factor=3.5Q2 scale = 4

Charm production at SPS and FNALSingle electron data ISR

-> 再現

Page 23: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

23

Parameter tune (real data)

pt>1GeV/cSigma ~ 1.06 Sigma ~ 1.16

pt>1GeV/cSigma ~ 1.06

emacsdphi_e emacsdz_e

depThese pictures are after paramet

er tune of EWG_Electron ndst. For looking tuning parameters, a

pply eID cut excepting itself. And these are good agreement with sigma ~ 1.

These parameters were tuned by Yuji Tsuchimoto.

Page 24: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

24

Acceptance differences between real and sim

This picture is phi distribution comparing the real (black) to the simulation data (red : looking pi0 simulation result of pt > 0.5 GeV/c).

Both of histograms have pt cut (more than 0.5GeV/c) and fiducial cut. From this picture, these simulations are good agreement with the data.

Statistics are same, weighted mean of this ratio is 1.008

Page 25: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

25

RICH cut efficiency (correction for simulation data)Since RICH response of PISA is difficult, so not tuned well now, The eID efficienc

y between real and simulation data is different.

Next 2 figures show RICH responses (n1 and chi2/n0) of real and simulation data and estimate the difference of remaining event by these cut.

This difference should correct acceptance calculation.

n1 chi2/n0 with n1 cut

Real : 0.984Sim : 0.961Ratio : 0.976

Real : 0.857Sim : 0.817Ratio : 0.954

Total difference : 0.931 +- 0.056 % -> correction for acceptance.

pt > 0.7 GeV pt > 0.7 GeV

Page 26: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

26

Acceptance difference (no-converter run vs. converter run)

ERT400

ERT400 thin

For checking the DC acceptance, looking charged particle ratio. chi2/ndf < 1 Stability is good. Systematic error is less than stat. error

Page 27: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

27

eID efficiency difference

Looking electron number / event vs. run#This fraction should be eID cut stability.

Stability is :ERT400 : less than stat. errorERT400 thin conv. : adjust chi2/ndf to 1 :

systematic error is 0.63% -> <1%

Page 28: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

28

Acceptance calculation• Acceptance is calculated from the single electron PISA simulation with run3 setting.• Total 4M electrons (2M e+ and 2M e-) are simulated (pt is flat in 0~10GeV/c).• I calculated the acceptance correction factor as following formula,

– Acc = (abs(bbcz)<20 && eID && phi cut && Fiducial cut)/(abs(bbcz)<20) (it should include eID efficiency.)

• Right picture shows Acceptance as a function of pt. And red and blue are for positron and electron respectively. Difference of electron and positron is from fiducial and phi cut. Left picture shows alpha vs. phi scattering plot nowa fiducial and phi cut . Minus charged particles are alpha > 0 and plus charged particles are alpha < 0 in PHENIX. From this picture, our fiducial and phi cut is very asymmetric for charged particles.

F = ([0]+[1]*x)*tanh([2]*x+[3])

e-

e+

alpha vs. phi (simulation)

Page 29: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

29

Phi cut

NORTH SOUTH

NORTH

SOUTHNORTH

SOUTH

NORTH SOUTH

ERT400/ERT800

ERT400Thick/ERT800

ERT400Thin/ERT800

ERT800Thick/ERT800

ERT400Thin/ERT400Thin converter period

ERT400Thick/ERT400Thick converter period

ERT800Thick/ERT800Thick converter period

ratio is defined as : N of electron / all evts in coverter period N of electron / all evts in non converter period

DC,PC and eID stability are also checked as function of phi,and NORTH or SOUTH

For Check DC and PC,

this ratio should be ~1. (flat)

For Check eID cut,

(2 period are same EMCal threshold)This ratio should be flat.

ratio defined as : N of charged particles / all evts in one period N of charged particles / all evts in other period

Page 30: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

30

ERT trigger efficiency correction

• I analyzed EWG_Electron ndst.

• The ERT trigger data was corrected by the trigger efficiency determined by Xie Wei. The efficiency function is determined for each of the EMCAL sector from a trigger simulation tuned to the real data.

• The trigger efficiency function used in the analysis is show in the right figures.

W0

W1

W2

W3

E0

E1

E2

E3

momentum momentum

momentum momentum

momentum momentum

momentum momentum

efficiency

efficiency

efficiency

efficiency

efficiency

efficiency

efficiency

efficiency

Page 31: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

31

Detector Spec.

EMCal

ΔE =8.1

E+ 2.4(%)

Δx =5.9

E+1.4(mm)

RICH Rejection factor : 104 for separate track

Page 32: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

32

Photonic 起源の電子スペクトラム• The photonic component P(pT) of the electron is determined from the converter ru

n yield C(pT) and the no-converter yield A(pT) as• P(pT) = (C(pT)-A(pT))/(Rsim(pT)-1) Ed3/dp3 = (1/Nevt)(1/2)(1/pT)(1/ΔpT)P(pT)(1/)/eff(pT) Ed3/dp3 = Ed3/dp3 / fBBC * BBC fBBC=0.75 : BBC= 20.5m

b

• Non-photonic electron yield N(pT)is determined asN(pT) = (Rsim(pT)*A(pT)-C(pT))/(Rsim(pT)-1)

• The acceptance and other corrections are applied in the same ways for the photonic component. And this spectrum is already subtracted Ke3 component.

Page 33: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

33

Compared with pythiaData / pythia (sum)

今回得られたデータ点でのフィット (black)

Black : this analysisRed : estimate using all statistics at RUN3

Page 34: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

34

Acceptance

• Eta 0.7• Phi 0.5 -> 0.35

• Fiducial 0.7 -> 0.25• Phi 0.6 -> 0.15

Page 35: Measurement of single electron spectrum in sqrt(s)=200GeV p-p collisions at RHIC-PHENIX

35

work in progress

PYTHIA (best fit)