597

Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Embed Size (px)

DESCRIPTION

Es con mucha satisfacción que los autores ponen ahora a dispo­sición de sus estudiantes y del público interesado, el Volumen II dela obra Mecánica de Suelos, a la que han venido dedicando su entu­siasmo en estos últimos años. Comprenden que entre la aparición deeste libro y el anterior ha pasado un lapso inconveniente y se excusanpor ello, exhibiendo como única disculpa las muchas ocupaciones quelos acosan; ojalá que el Tercer Volumen, que ahora comienzan, dedi­cado a Flujo de Agua en Suelos, pueda estar a disposición de loslectores con más oportunidad.La a cogida que el estudiantado y los técnicos de México y Amé­rica Latina han brindado al Tomo I ha sobrepasado con mucho lasmodestas esperanzas de los autores, los ha colmado de satisfacción ylos ha convencido de la necesidad de aplicarse a su tarea con reno­vado esfuerzo. Desde aquí quieren expresar público testimonio deagradecimiento a todos los lectores que han dado tan grata bienve­nida a su trabajo y muy especialmente a los que, yendo más allá,les han comunicado su impresión personalo sus críticas orientadoras,tan necesarias en una obra como la presente, especialmente por estarincompleta y expuesta a la reiteración de defectos.También quieren los autores expresar su reconocimiento a la Fa­cultad de Ingeniería de la Universidad Nacional Autónoma de Méxi­co y a la Secretaría de Obras Públicas por el estímulo que les hanbrindado en la elaboración de este segundo tomo.Han colaborado con la obra el señor Humberto Cabrera, quienhizo los dibujos y la señora Sahadi Rucoz que volvió a realizar todoel ingrato trabajo de mecanografía. A ambos, los autores expresansu gratitud por su empeño, dedicación y entusiasmo.El señor Ing. Ignacio Avilez Espejel tuvo a su cargo la delicadatarea de editar estas páginas y, es de agradecer el cariño que pusoen ella.El señor Ing. Javier Barros Sierra, ex Director de la Facultadde Ingeniería, ex Secretario de Obras Públicas, actualmente Rec­tor de la Universidad Nacional Autónoma de México, ha accedidobondadosamente a escribir un Prólogo a este libro. Es para susautores un motivo muy especial de orgullo y reconocimiento que sualta personalidad honre estas páginas.

Citation preview

Page 1: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 2: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 3: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 4: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

www.freelibros.org

Page 5: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 6: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 7: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Mecánica de Suelos

Page 8: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Ing. José A. Cuevasprecursor de la Mecánica de Suelos en México

Page 9: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Dr. Nabor Carrillo Floresrelevante investigador de la escuela de Mecánica de Suelos

Page 10: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 11: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MecánicadeSuelos

T O M O I I

Teoría y Aplicaciones de la Mecánica de Suelos

EULALIO JUAREZ BADILLO

ALFONSO RICO RODRIGUEZ

E D I T O R I A LM E X I C O

L I M U S A 1 9 7 3

Page 12: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

© 1967, Revista INGENIERIA

EULALIO JUAREZ BADILLO

Doctor en Ingeniería. Profesor de la División de Estudios Superiores de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México*

ALFONSO RICO RODRIGUEZ

Maestro en Ingeniería. Profesor de la División Profesional y de Estudios Superiores de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México. Profesor de-la Universidad Iberoamericana

Todos los derechos reservados:© 1973, EDITORIAL LIMUSA, S. A. Arcos de Belén Núm. 75, México 1, D. F. Miembro de la Cámara Nacional de la Industria Editorial, Registro Núm. 121

Primera reimpresión: 1973 Im prm en Mixico(971)

Page 13: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

PROLOGO DE LOS AUTORES

Es con mucha satisfacción que los autores ponen ahora a dispo­sición de sus estudiantes y del público interesado, el Volumen II de la obra Mecánica de Suelos, a la que han venido dedicando su entu­siasmo en estos últimos años. Comprenden que entre la aparición de este libro y el anterior ha pasado un lapso inconveniente y se excusan por ello, exhibiendo como única disculpa las muchas ocupaciones que los acosan; ojalá que el Tercer Volumen, que ahora comienzan, dedi­cado a Flujo de Agua en Suelos, pueda estar a disposición de los lectores con más oportunidad.

La a cogida que el estudiantado y los técnicos de México y Amé­rica Latina han brindado al Tomo I ha sobrepasado con mucho las modestas esperanzas de los autores, los ha colmado de satisfacción y los ha convencido de la necesidad de aplicarse a su tarea con reno­vado esfuerzo. Desde aquí quieren expresar público testimonio de agradecimiento a todos los lectores que han dado tan grata bienve­nida a su trabajo y muy especialmente a los que, yendo más allá, les han comunicado su impresión personal o sus críticas orientadoras, tan necesarias en una obra como la presente, especialmente por estar incompleta y expuesta a la reiteración de defectos.

También quieren los autores expresar su reconocimiento a la Fa­cultad de Ingeniería de la Universidad Nacional Autónoma de Méxi­co y a la Secretaría de Obras Públicas por el estímulo que les han brindado en la elaboración de este segundo tomo.

Han colaborado con la obra el señor Humberto Cabrera, quien hizo los dibujos y la señora Sahadi Rucoz que volvió a realizar todo el ingrato trabajo de mecanografía. A ambos, los autores expresan su gratitud por su empeño, dedicación y entusiasmo.

El señor Ing. Ignacio Avilez Espejel tuvo a su cargo la delicada tarea de editar estas páginas y, es de agradecer el cariño que puso en ella.

El señor Ing. Javier Barros Sierra, ex Director de la Facultad de Ingeniería, ex Secretario de Obras Públicas, actualmente Rec­tor de la Universidad Nacional Autónoma de México, ha accedido bondadosamente a escribir un Prólogo a este libro. Es para sus autores un motivo muy especial de orgullo y reconocimiento que su alta personalidad honre estas páginas.

México, D. F„ noviembre de 1967

Page 14: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 15: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

PROLOGO

Continuando el esfuerzo que les condujo en 1963 a la publi­cación del primer volumen de esta obra, los dos jóvenes ingenieros, profesores e investigadores Eulalio Juárez Badillo y Alfonso Rico Rodríguez presentan ahora la segunda parte de su libro, que recoge las aplicaciones prácticas más importantes de la teoría, desarrollada en el primer tomo.

Con este nuevo volumen se completa el programa actual de la materia en la Facultad de Ingeniería de la Universidad Nacional y se cubren ciertos aspectos esenciales del contenido de la asigna­tura en el nivel de la maestría.

La obra, primera del género en nuestro país y una de las muy pocas escritas originalmente en castellano, ha tenido tan amplia cuan­to justa acogida (del Tomo I ha salido ya la segunda edición) debido, seguramente, no sólo a la ventaja del idioma sino también a algunas cualidades relevantes, entre las que cabe citar una expo­sición de carácter general y no especializada y una presentación certeramente didáctica. Puede decirse, extendiendo la célebre frase del pensador español, que la claridad no sólo es cortesía de filósofos sino también de sabios. Y estos dos maestros han tenido en alta consideración a los estudiantes que, cada día en mayor número, han de enfrentarse con su libro. No hay duda de que ellos, con sus bien probadas capacidad y perseverancia y con su plausible entusias­mo, habrán de completar en breve su tratado con el tercer y último volumen, relativo al flujo de agua en suelos.

Es de elemental justicia señalar que los autores, en un rasgo que tos honra mucho, han cedido los productos de la venta de los tres volúmenes a la Facultad de Ingeniería, en la que ambos hicieron los estudios de ingeniería civil y Alfonso Rico; muy brillante alum­no mío por cierto, alcanzó después con alta distinción y, curiosamente, sin que al principio creyera tener especial vocación para tal espe­cialidad, la maestría en mecánica de suetos.

Al comienzo del libro los autores presentan las imágenes del Ing. José A. Cuevas y del Dr. Nabor Carrillo Flores. De esta mane­ra, implícitamente dedican su trabajo a dos de los hombres que más han tenido que ver con el nacimiento y el desarrollo de la Mecánica de Suelos en México. José A. Cuevas fue sin duda el más destacado de los precursores de esta disciplina y el hombre que con su labor estableció los fundamentos para que pudiera hablarse de

Page 16: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

xii PROLOGO

una Escuela Mexicana de Mecánica de Suelos; a esta tarea dedicó durante muchos y difíciles años su singular intuición y su incansable esfuerzo. Nabor Carrillo, al dedicar aíl naciente campo sus brillantes dotes 11 su destacado talento, contribuyó quizá en mayor medida que ningún otro a darle a esa Escuela reconocimiento nacional y estatura internacional. Es justo y conveniente que la presencia de estos hombres, ambos ya desaparecidos de entre nosotros, preceda un trabajo como el que ahora ve la luz.

No me resta sino decir, como observador más o menos cercano de la incansable labor de los señores Juárez Badillo y Rico, que merecen, junto con la más cordial felicitación, el agradecimiento de la Universidad y el de los estudiosos de la mecánica de los suelos.

Ciudad Universitaria, D. F., septiembre de 1967

Javier Barros Sierra*Rector de la Universidad Nacional Autónoma de MéxicoExdirector de la Facultad de Ingeniería de la U.N.A.M.Exsecretario de Obras Públicas del Poder Ejecutivo

Mexicano.

Page 17: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO I

ACCION DE LA HELADA EN LOS SUELOS

1-1. IntroducciónEn este capítulo se tratarán someramente los problemas que

derivan de la congelación del agua libre contenida en el suelo, por efecto climático, naciendo especial énfasis en lo que se refiere a cambios volumétricos y variaciones de propiedades mecánicas.1

Si la temperatura del agua libre llega a un valor igual a su punto de conqelación, el agua se toma sólida y su volumen aumenta. Tanto el punto de congelación, como el coeficiente de expansión volumétrica del agua dependen de la presión actuante sobre ésta. A la presión atmosférica, el punto de congelación corresponde a una temperatura de 0°C, en tanto que bajo una presión de 600 atmósferas el agua se congela a —5°C y a 1100 atmósferas a —10°C. Los coeficientes de expansión volumétrica son 0.09 a 1 atmósfera, 0.102 a 600 y 0.112 a 1100.

Cuando el agua se congela en masas de grava o arena limpias hay pues, un aumento de volumen; sin embargo, esta expansión no necesariamente es de un 10% del volumen inicial de vacíos, como correspondería al caso normal de agua congelada, puesto que el agua puede drenarse durante la congelación. Si en una masa de arena se encuentran capas gruesas de hielo o lentes grandes de esta substancia, podrá decirse que el hielo se formó por congelación in sita de una masa de agua previamente existente. Sin embargo, si el agua está homogéneamente incorporada a la masa de suelo, como es general, la congelación afecta al conjunto de dicha masa, sin que el agua forme capas o lentes aislados de hielo.

En limos saturados o arenas limosas en igual condición, el efecto de la congelación depende mucho del gradiente con el que se abate la temperatura. Un enfriamiento rápido provoca la congelación in sita, como en el caso de la arena y la grava, pero si el descenso de la temperatura es gradual, la mayor parte del agua se agrupa en pequeñas capitas de hielo paralelas a la superficie expuesta al en- friamiento. Resulta así una alternación de capas de suelo helado y estratos de hielo.

En condiciones naturales, en suelos limosos expuestos a fuertes cambios de clima, pueden formarse capas de hielo de varios centí­metros de espesor. La formación de masas de hielo limpio indica una

12—Mecánica de Suelo» n

Page 18: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

emigración del agua de los vacíos hacia el centro de congelamiento; el agua puede proceder del suelo en congelamiento o puede ser absor­bida de un manto acuífero, situado bajo la zona de congelación. En la fig. 1-1 se muestran tales posibilidades en un espécimen de suelo fino. El espécimen A descansa sobre una base sólida e impermeable, en tanto que los B y C tienen su parte inferior sumergida en agua. En los tres casos, la temperatura de los extremos superiores se mantiene bajo el punto de congelación del agua. En A el agua que forma los estratos finos de hieío procede de la masa de la parte, inferior del espécimen, mientras que en el B, el agua procede de la fuente inferior. Terzaghi llama al caso A un sistema cerrado, por no variar en él el contenido total de agua de la masa de suelo; en contraposición, el caso B sería un sistema abierto. El caso C, aunque pudiera creerse abierto, es cerrado en realidad, por efecto de la capa de grava fina existente.

2 CAPITULO I

mil 11 lll'TMl. gangas .

H2 ? _~TExpansión

Consolidado

F IS . I-I. Casos de formación de hielo en suelos finos, según Terzaghi1

En el espécimen A el agua que forma los lentes de hielo proviene, como se dijo, de la parte inferior; este flujo ascendente del agua durante el proceso de congelación induce un proceso de consolida­ción en la parte inferior de la muestra, análogo al que se tiene cuando el agua asciende por capilaridad hacia una superficie de evaporación. El proceso probablemente prosigue hasta que el contenido de agua en la parte inferior se reduce al correspondiente al límite de con­tracción, siempre y cuando la temperatura en la superficie de enfria­miento sea lo suficientemente baja. El incremento total de volumen asociado a un sistema cerrado, tal como el espécimen A, tiene como limite el incremento volumétrico por congelación del agua contenida en la masa. Por lo general, oscila entre el 3% y el 5% del volumen total.

Page 19: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En los sistemas abiertos, representados por el espécimen B, el desarrollo inicial de los lentes de hielo también es debido al agua procedente de los niveles inferiores de la masa de suelo, por lo que, en un principio, esa zona se consolida. Sin embargo, según este proceso progresa, aumenta la cantidad de agua que se extrae de la fuente de agua libre, hasta que, finalmente, la cantidad de agua que toma la muestra por la parte inferior iguala a la que fluye hacia la zona de congelamiento, manteniéndose constante, de ahí en adelan­te, el contenido de agua en la parte inferior de la muestra.

La experiencia obtenida en regiones en que prevalecen muy bajas temperaturas durante largos períodos de tiempo, demuestra que el espesor total de las lentes de hielo formadas en el suelo natural, trabajando como sistema abierto, puede alcanzar varios metros.

Un sistema abierto puede convertirse en cerrado sin más que insertar entre la superficie de congelamiento y el nivel freático una capa de gravilla, tal como se simboliza en el espécimen C de la fig.1-1. El agua no puede subir por capilaridad a través del suelo grueso y, por lo tanto, de tal estrato hacia arriba, la masa se comporta como un sistema cerrado.

Se ha encontrado que los lentes de hielo no se desarrollan a menos que, en añadidura a la existencia de las condiciones climáticas apropiadas, exista en el suelo cierto porcentaje mínimo de partículas finas. También afectan en cierta forma a la formación y desarrollo de tales lentes, el grado de uniformidad de las partículas, el peso específico del suelo y el tipo de estratificación. La forma cuantitativa enNque cada factor afecta a los fenómenos en estudio, no está aún dilucidada por completo.

En general, se dice que un suelo es susceptible a la acción de la helada cuando en él pueden desarrollarse lentes apreciables de hielo puro.

1-2. Efectos de la helada

Cuando el agua se congela en un vacío del suelo bajo una presión moderada actúa como una cuña, separando las partículas sólidas y aumentando el volumen de los vacíos. Cuando la congelación ocurre en un suelo no susceptible a la helada, como la grava o la arena, o en un sistema cerrado, el aumento de volumen, según se indicó, tiene como límite un 10% del volumen inicial de los vacíos, por lo que en un suelo de superficie horizontal, la elevación de dicha super­ficie no podrá ser mayor que

h = 0.1 n H (1-1)Donde n es la porosidad media del suelo y H el espesor de suelo

en que se deja sentir el efecto de congelación. Por otra parte, en un

MECANICA DE SUELOS (II) 3

Page 20: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

sistema abierto constituido por suelo susceptible a la helada, la expansión por congelación puede llegar a ser mucho mayor que el limite indicado por la expresión 1-1. La presión que ejerce el suelo congelado al expanderse aún no está determinada con exactitud, pero es, desde luego, de gran magnitud y teóricamente puede llegar a valores de un orden extraordinario, que exceden en mucho a las car­gas usuales sobrepuestas. Así, cualquier estructura situada sobre el suelo, se eleva juntamente con él.

Por otra parte, durante el deshielo que ocurre al iniciarse la primavera, la zona congelada de suelo se funde, proceso que, general­mente, dura algunas semanas y va acompañado de asentamientos del subsuelo. La magnitud de este asentamiento en un suelo dado depende, fundamentalmente, de si se han formado o no en ese suelo lentes de'hielo puro durante la época de congelación. En el caso de suelos no susceptibles a la helada, en que el congelamiento no formó lentes de hielo, el asentamiento está acotado por la expresión 1-1; sin embargo, el valor real de tal asentamiento no puede exceder el aumento de volumen causado por el proceso previo de congelación. En suelos susceptibles a la helada, en los que el congelamiento haya formado lentes de hielo, al fundirse éste se tiene el efecto adicional del colapso de las bóvedas de las cavidades antes llenas de hielo, por lo que el asentamiento puede aumentar en forma notable; los asenta­mientos diferenciales asociados a este fenómeno son frecuente fuente de problemas para estructuras suprayacientes, específicamente para caminos, aeropistas, etc.

En el caso de suelos que formen taludes o laderas, la acción de la helada produce en esencia un movimiento de las partículas hacia el pie del talud. Si el material no es susceptible a la helada, las partículas de suelo colocadas en la superficie del talud se desplazan normalmente a dicha superficie, durante el proceso de congelación; durante el deshielo esas partículas descienden verticalmente, con un desplazamiento neto resultante hacia el pie del talud en la dirección de su superficie. Si los suelos son susceptibles, en especial si son limosos, la mayor parte del desplazamiento de las partículas ocurre durante la licuación posterior de los lentes de hielo formados en el período de congelación, paralelamente a la superficie del talud; esta licuación hace que el suelo colocado sobre los lentes de hielo se desintegre y fluya prácticamente como un líquido viscoso; este fe­nómeno se conoce con el nombre de solifluxión.

En el caso de muros de retención, la congelación del agua libre en el suelo detrás de la estructura, produce un aumento de presión sobre ellos, el cual es, desde luego, mucho mayor en suelos suscep­tibles a la helada. Este aumento de presión, reiterado frecuentemente a través del tiempo, puede terminar por producir el colapso de la estructura. Si los muros son de concreto reforzado, la falla puede

4 CAPITULO I

Page 21: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

llegar a presentarse por esfuerzo cortante en la sección entre el muro propiamente dicho y su losa de cimentación.

En los suelos susceptibles a la helada, el espesor de los lentes de hielo formados depende de varios factores, entre los que pueden enumerarse el grado de susceptibilidad del suelo, la facilidad del drenaje (tanto para absorber, como para ceder agua), la intensidad del frío y duración del mismo, especialmente este último factor.

Las soluciones que se han adoptado para evitar la acción nociva del congelamiento de las capas superficiales del terreno por efecto climático pueden agruparse en tres tipos diferentes:

a) Substitución de los suelos susceptibles a la helada por otros no susceptibles, hasta la profundidad necesaria para llegar a niveles más abajo que la penetración del efecto climático exterior.

b) Drenaje adecuado para abatir el nivel freático a una profun­didad mayor que la altura máxima de ascensión capilar del suelo.

c) Conversión del sistema abierto existente en cerrado. Esto se logra excavando hasta la profundidad de congelación y colocando a ese nivel una capa de material grueso, no capilar. Posteriormente volverá a rellenarse la excavación con el material original.

Lo anterior ha sido aplicado principalmente a caminos y aero- pistas.

Además de los cambios volumétricos anotados en los párrafos an­teriores, la fase del deshiélo en los suelos produce una disminución de la resistencia al esfuerzo cortante de los mismos y consecuente­mente, una disminución de su capacidad de carga. Esto es fácilmente explicable tomando en cuenta lo expuesto en el Capitulo X II del Volumen I de esta obra, pues al fundirse el hielo y tratar el suelo de comprimirse, el agua experimentará presiones en exceso de la hidrostática, que sólo se disipan cuando el agua haya sido totalmente drenada, lo cual sucede normalmente en periodos de dos o tres meses, a no ser que se hayan tomado precauciones especiales en lo referente al drenaje.

1-3. Clasificación de suelos de acuerdo con su susceptibilidad a la helada

Según A. Casagrande2, un suelo puede considerarse como no susceptible a la helada si posee menos de un 3% de partículas me­nores de 0.02 mm. El intervalo crítico en el cual el material empieza a mostrarse susceptible está entre 3% y 10% de contenido de aque­llas partículas, dependiendo de sus características granulométricas.

Los suelos susceptibles a la acción de las heladas pueden clasifi­carse como se muestra en la Tabla 1-1, ampliamente usada por los técnicos de todo el mundo. En esa tabla los suelos aparecen agrupa­dos en orden creciente de susceptibilidad.

MECANICA DE SUELOS (II) 5

Page 22: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

6 CAPITULO I

TABLA 1-1

GRUPO TIPO DE SUELO

Fi Gravas con 3% a 20% de partículas menores que 0.02 mm.

f 2 Arenas con 3% a 15% de partículas menores que 0.02 mm.

F 3—a Gravas con más del 20% de partículas menores que 0.02 mm.

F ,~ b Arenas (excepto las finas limosas), con más del 15% de partículas menores de 0.02 mm.

F t—c Arcillas (excepto finamente estratificadas) con lp > 12

F*~a Todos los limos inorgánicos, incluyendo los arenososF t—b Arenas finas limosas con más del 15% de partícu­

las menores de 0.02 mm.F t—c Arcillas con 7p < 12F t~ d Arcillas finamente estratificadas

Los suelos más peligrosos desde el punto de vista de la acción de la congelación son aquellos en que se combine la granulometría más fina, con la mayor permeabilidad; por ejemplo, las arcillas fina­mente estratificadas con muy delgadas capitas de arena, son los suelos más peligrosos; también los limos, las arenas limosas y las arcillas relativamente poco plásticas.

En general, se recomienda no usar los suelos F t cuando se tema una acción climática intensa. Especialmente resultan contraindicados en caminos y aeropistas.

1-4. Indice de congelación

La profundidad de la zona de congelación de un suelo depende, según se dijo, tanto de la duración, como del valor de las tempera­turas que el ambiente alcance bajo el punto de congelación. Para tomar en cuenta ambos factores en la profundidad de penetración de una helada, se ha creado el concepto de Indice de congelación. (Ic).

Para los efectos que siguen, se entenderá por un número de grados-día (°C-día) la diferencia entre la temperatura media diaria y la temperatura de congelación del agua. Expresando la tempera­tura en grados centígrados, la temperatura de congelación del agua es 0‘ C y el número de grados-aías coincide con la temperatura media diaria.

Page 23: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Si se dibuja para un invierno una gráfica acumulativa de grados- día contra el tiempo, expresado en días, se obtiene una curva del tipo de la mostrada en la fig. 1-2.

MECANICA DE SUELOS (II) 7

En dicha gráfica el índice de congelación puede calcularse como el número de grados-dia entre los puntos máximo y mínimo de la curva. El índice de congelación está, así, ligado a un invierno dado.

El índice normal de congelación se define como el promedio de los índices de congelación de un lugar, a lo largo de un lapso de tiempo prolongado, usualmente diez o más años.

La aplicación principal de estos conceptos ha sido hecha en la construcción de caminos y aeropistas, en donde se tienen curvas ex­perimentales sobre los espesores mínimos de material no suscepti­ble, que deben colocarse para proteger al suelo situado bajo la subrasante de los efectos de la congelación. Es normal dar estos espesores de protección en términos del índice normal de congela­ción de las regiones de que se trate, correspondiendo, como es obvio, los mayores espesores de capas protectoras a los mayores índices.

Page 24: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

8 CAPITULO I

REFERENCIAS

1. Terzaghi, K. — Pe-rmafrnx¡ — Harvard Soil Mecbanics Serles N* 3 7 — Univer­sidad de Harvard— 1952.

2. Casagrande, A. — Notas de clase no publicadas, reproducido en Transactions of the American Society of Civil Kngineers. — 1948.

J

BIBLIOGRAFIA

Freezinaand thawing o í soÜa as factocs in the destruction oí road pavements — S. Taber — Public Roads Wash. — 1930.

Soil íreezing and frost heaving — G. Beskow — Swedish Geological Society, 2bch year tiook N" 3. Senes C N ' 375 — Trad. al inglés por J. Osterberg — 1947.

Soil Mechanics fo t road engineers — Road Research Laboratory D. S. I. R. — Her majesty’s stationery office — London— 1961.

Ingeniería de Carreteras— L. I. Hewes y C. H. Oglesby— (Trad. O. M. Bece- rril) — Ed. Continental — México, D. F .— 1959.

Page 25: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO II

DISTRIBUCION DE ESFUERZOS EN LA MASA DEL SUELO

H-l. Introducción

En este capítulo se trata el problema de importancia fundamen­tal en Mecánica de Suelos, de la distribución de los esfuerzos apli­cados en la superficie de una masa de suelo a todos los puntos de esa masa. En realidad puede decirse que tal problema no ha sido satisfactoriamente resuelto en suelos. Las soluciones que actualmente se aplican, basadas en la Teoría de la Elasticidad, adolecen de los defectos prácticos acarreados por las fuertes hipótesis impuestas por las necesidades de la resolución matemática tan frecuentes, in­fortunadamente, en aquella disciplina. Sin embargo, hasta hoy, la Mecánica de Suelos no ha sido capaz de desarrollar sus propias soluciones más adaptadas a sus realidades, por lo cual resulta im­prescindible recurrir aún a las teorías elásticas. Los resultados que se obtengan en las aplicaciones prácticas deberán siempre de verse con el debido criterio y, no pocas veces, ajustarse con la experiencia. El hecho real concreto es, empero, que de la aplicación de las Teo­rías en uso, el ingeniero civil actual logra, en la inmensa mayoría de los casos prácticos, una estimación suficientemente aproximada de los fenómenos reales en que está interesado, de manera que le es posible trabajar sus proyectos y materiales con factores de seguridad, por ejemplo, que no desmerecen nunca y frecuentemente aventajan a los empleados en otras ramas de la ingeniería. Sería infantil creer, por otra parte, que de la aplicación de las teorías expuestas ade­lante puedan calcularse los asentamientos de una estructura, por ejemplo, con profética seguridad; los cálculos proporcionarán al inge­niero, en el mejor de los casos (y también en el más frecuente), el orden de magnitud de tales asentamientos, pero, normalmente, de un modo suficientemente aproximado como para poder normar el criterio del proyectista, de modo que éste pueda combatir los efectos nocivos con eficacia práctica. Podría decirse que, desde el punto de vista de la Mecánica de Suelos, existen dos problemas en la aplicación de las teorías elásticas y de la teoría de la consolidación unidimensional al cálculo de asentamientos: uno, el teórico, dista de estar resuelto y exige, aún mucho del esfuerzo de los investigadores; otro, el práctico, relativamente resuelto, pero susceptible de mejoramiento, pues hoy

9

Page 26: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

IÜ CAPITULO II

los proyectos relativos a suelos pueden tratarse con razonable segu­ridad y economía.

II-2. El problema de Boussinesq

Los esfuerzos que una sola carga vertical concentrada actuante en la superficie horizontal de un medio semiinfinito, homogéneo, isó­tropo y linealmente elástico, induce en los puntos de cualquier vertical trazada en el medio, fueron calculados por vez primera por Boussinesq *.

En la fig. 11-1, P representa la carga concentrada actuante según la vertical: (x, y, z) son las coor­denadas del punto en que se calcu­lan los esfuerzos, referidas a un sistema cartesiano ortogonal cuyo origen coincide con el punto de aplicación de P.

Si r es la distancia radial de A' a 0 y i)/ el ángulo entre el vector posición de A (R ) y el eje Z, los esfuerzos en el punto A pueden escribirse

FIG . I l-I . E sfuerzos p ro v o c a d o s en un p u n to d e una m asa d e suelo

p o r una c a rg a c o n c e n tra d a

3 P eos11 _ 3 P z“2 it z;' 2 Te /?•’• (2- 1)

a, 2 n ;

tte ~ - (1-2 p)

3 cos:í »|; sen- <J> •*— (l-2p ) - C'OS ^ - 11 + eos iJ/J

2 tzz* eos3 vj; eos2 4< 1 + eos

3 PXrc = eos4 di sen J/2 n r

( 2-2 )

(2-3)

(2-4)

En el Anexo Il-a se presenta la deducción de las anteriores expresiones, por métodos familiares en Teoría de Elasticidad.

En la práctica de la Mecánica de Suelos la expresión 2-1 es, con mucho, la más usada de las anteriores y su aplicación al cálculo de asentamientos es de fundamental importancia. A este respecto se hace necesario recalcar que las expresiones arriba escritas, en par-

Page 27: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 11

ticular la 2-1, se han obtenido suponiendo que el material en cuyo seno se producen los esfuerzos que se miden es homogéneo, isótropo, linealmente elástico y semiinfinito, limitado por una sola frontera plana. Es evidente que el suelo no es homogéneo, pues sus propieda­des mecánicas no son las mismas en todos los puntos de su masa; ni isótropo, pues en un punto dado esas propiedades varían, en general, en las distintas direcciones del espado; ni linealmente elástico, pues, las relaciones esfuerzo-deformación de los suelos no son las que corresponden a ese comportamiento. Por último, tampoco es semiin­finita ninguna masa de suelo.

De hecho no debe dejar de mencionarse que la aplicación más frecuente en Mecánica de Suelos de las fórmulas de Boussinesq estriba en el cálculo de asentamientos de los suelos sujetos a conso­lidación, vale decir de arcillas y suelos compresibles, en los que algunas de las hipótesis teóricas, la elasticidad perfecta, por ejemplo, distan de satisfacerse en forma muy especial, aún dentro de los suelos en general.

Para la aplicación práctica de la fórmula 2-1 es conveniente expresarla como sigue (fig. II -l) .

3 P z3 3 P2 tt (r- + z- ) 5/2

que puede escribirse en forma adimensional

1 -V*(Tí P

de donde

1 + (t ) =<Tz = A - Po

(2-5)

( 2 -6 )

con

(2 7:

En el Anexo Il-b se presenta una tabla de valores de P0 en función de la relación r/z. Así, para encontrar el valor de un esfuerzo normal vertical, at, con la ayuda de la tabla, basta medir la distancia r del punto de aplicación de la carga al punto de la superficie (A') exactamente arriba del punto de la masa en que se mide el esfuerzo

Page 28: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

(A ) y dividir ese valor de r, entre la z correspondiente al plano en que se calcula el esfuerzo (distancia entre el plano de aplicación de la carga y el plano en que se sitúa al punto en que se calcula el esfuerzo). Con el valor de esta relación, r/z, se selecciona el valor de P0 correspondiente y se calcula el esfuerzo aplicando la ec. 2-6.

n-3. Extensión de la fórmula de Boussinesq a otras condiciones de carga comunes

12 CAPITULO II

La carga única concentrada cuyo efecto se ha analizado en la sección II-2, aunque de acción común en la práctica, no constituye el único caso que es necesario estudiar. Otras condiciones de carga

muy comunes se pre­sentan a continuación en. forma concisa, sin entrar, en general, a los detalles matemáti­cos de la obtención de las fórmulas que se in­cluyen.

En la figura II-2 aparece una carga li­neal, uniformemente distribuida en la lon­gitud y, de p unida­des de carga, por uni­dad de longitud. El valor de o* en un pun­to de la masa bajo 0 puede obtenerse fácil-

FIG . 11-2. Distribución de esfuerzos con carga lineal de mente integrando la longitud finita expresión 2-1 a lo lar­

go de la línea de car­ga, resultando

<r* = yz3 12it (x2 + z2) V* 2 + y2 + z ( — LVx2 + y2

+y2 + z2 x°- + z2

( 2-8 )

La anterior expresión 2-8 puede ponerse en forma adimensional, introduciendo los parámetros

Page 29: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En función de tales parámetros, la ec. 2-8 resultaz_ _ l___________ n_____________ / 1 2 \

" p 2tc (m2 + 1) Vm2 + n2 + 1 Vm* + n2 + 1 m2 + l j(2-9)

lo cual puede expresarse comoa ,.- ~ = Po (2-10)

En donde p0 es el segundo miembro de la expresión 2-9.El valor de p0 fue tabulado para diferentes valores de m y n por

R. E. Fadum2 y en el Anexo II-c aparecen las gráficas que responden a tal tabulación debidas al mismo investigador.

Así, para encontrar el valor de un esfuerzo tr*, en cualquier punto A debido a una carga lineal de longitud finita, utilizando la gráfica del Anexo II-c, basta medir las distancias x y y, tal como se definen en la fig. II-2 y dividir estas distancias entre la profundidad z para obtener los valores de m y n, respectivamente; con ellos, la gráfica proporciona directamente el valor de influencia correspondiente, p0. El esfuerzo a¡ se determina con la ecuación:

MECANICA DE SUELOS (II) 13

Si se desea calcu­lar el valor de a j bajo un punto 0', diferente de 0, podrá conside­rarse que la carga li­neal tiene la longitud 9 + y' Y proceder a calcular así el a"\ des­pués habrá de calcu­larse el esfuerzo co­rrespondiente a una longitud y' (cr*'"). El Hz deseado será, evi­dentemente_ / — - // _

Car — <T« fJzSi se usa la gráfica

propuesta, el sistema coordenado ortogonal de referencia debe es­cogerse de modo que el eje Y sea paralelo a la carga lineal y el X normal a ella, por SU F|S n.3 D}sfr¡hue}¿„ J , „finnt* bafr una tapcrfícia extremo. rectangular un'formamnnt• cargada

<y. = T P o ( 2- 11)

Page 30: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Un caso de condición de carga aún más interesante en la práctica que el anterior es el que corresponde a la fig. II-3, en la que se analiza la influencia en la masa del continuo homogéneo, elástico e isótropo de una superficie rectangular uniformemente cargada, con w unidades de carga por unidad de área.

El esfuerzo az bajo una esquina de la superficie cargada y a una profundidad z. puede obtenerse por integración de la ec. 2-1 en toda el área rectangular, obteniéndose la expresión

ff. = W ( 2xü2 (x '' + r + z-)u" . IT + y- + 2 z24 t:Vz'-(.xl‘ + y- + z-) + x2 y- x2 + y- + z~

14 CAPITULO II

4 anq tg ^ Z \ .,) (2-12)z - ( x - + y + z2) x2 y 1 ' 7■)

Adoptando los parámetros m y ti, tales que m — - y n = (ahoraintercambiables), la ec. 2-12 puede escribirse adimensionalmente como

ff* _ 1 (2 m n(m2 + n2 4- 1)1/2 m2 + n* + 2w 4 ttV (m" + n’ + 1 ) + m"ri- nv + r + 1 "**

. 2 m n (m2 + n2 + 1) ,/2\ . _ , , 4

Si al segundo miembro de esta ecuación se le llama w0, puede tabularse su valor en función de distintos m y n. Esta labor fuetambién realizada por Fadum2 y en el Anexo Il-d se muestra unagráfica con los resultados de la tabulación.

Para encontrar el valor de <r~ en un punto A bajo una esquina de la superficie rectangular uniformemente cargada se procede a calcular las distancias x y y (fig. II-3), con las que pueden obtenerse los va­lores d e m v n para diferentes profundidades z a lo largo de la ver­tical. Con la gráfica del Anexo Il-d puede calcularse ahora w0 y aplicar la ecuación

ffz — w • w0 (2-14)

Así se tiene el valor de ffz, correspondiente a cada profundidad z.Debe notarse que el sistema coordenado base respecto al cual se

calculó el gráfico del Anexo Il-d es tal que su origen coincide pre­cisamente con la esquina del área rectangular uniformemente carga­da. Si se desean calcular los esfuerzos bajo otro punto, tal como el A! de la fig. 11-3, podrá procederse haciendo substracciones y adi­ciones convenientes al área cargada. Por ejemplo, en el caso del punto A’, podría calcularse el cr/ correspondiente al área hipotética BO’FD ; después los ai" y az,y substractivos correspondientes a las áreas BO'HO y CO'FE, debiendo notarse que al hacer estas subs­

Page 31: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 15

tracciones, el área CO'HG se restó del total inicial dos veces, por lo que será necesario calcular el esfuerzo cr*' por ella producido y to­marlo como aditivo una vez. El esfuerzo cr'~ deseado será

Un caso especial de gran importancia práctica es el que corres­ponde al cálculo de esfuerzos a lo largo de una normal por el centro de un área circular uniformemente cargada (tv — presión uniforme). El caso aparece en la fig. 11-4.

El esfuerzo <r~ en cualquier punto de la vertical bajada por el centro del círculo cargado puede obtenerse también integrando la ec. 2-1 a toda el área circular. El proceso se realiza a continuación con referencia a la fig. II-4, para ilustración de los casos análogos que se han venido mencionando.

Definiendo un A A como se muestra en la figura citada se tiene

Esa carga, según la expresión 2-1 produce a una profundidad z, en un punto como el A, un esfuerzo vertical A<r2.

A A = pApAO

En esa área obrará una carga AP

AP = wpApAO

3AP Acr* = —2tz (x2 + y2 + z2)*'2Entonces:

ya que x2 + y2 = p2Agrupando

AoV~ 2-x Z* (p2 + z2) 5/2 ApA0A

El esfuerzo <r2 correspondiente a toda el área resultará de llevar a la expresión anterior al límite y de aplicar la definición usual de in­tegral de superficie.

FIG . 11-4. Distribución del esfuerzo boj o el centro de una superficie circular uniformemente car­

gada

Page 32: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

16 CAPITULO II

<Tz = JÍ3wz3

2 tz

3wz3

( p2 + 2 2 )5 /2dpdQ Í

2TT fT

* (p* + z*yn dp =

[2u] r j L i 1 T = ^ f 1 1 . 1L 2 3 (p2 + z2)3/2 Jo l_z3 (r* +2tc L“ " J L 2 3 (p2 +

De donde, finalmente

3/2

donde

Lo anterior puede escribirse aún

(Tz — u> ■ W 0

* 1tv0 “ 11 +

m

a/2

(2-15)

(2-16)

(2-17)

Los valores de w0 pueden tabularse en función de los correspon­dientes de r/z. En el Anexo Il-e se presenta la tabulación en cues­tión. Encontrando w0, el valor de <rz resulta simplemente de la aplicación de la fórmula 2-16.

En muchos casos se han de cimentar estructuras sobre suelos compresibles que contienen finos estratos de arena o limo alternados con otros de arcilla (arcillas finamente estratificadas). El Dr. A. Casagrande hizo notar que, en estos suelos, las láminas de arena o limo actúan como refuerzos del conjunto que restringen la defor­mación horizontal de la arcilla. H. M. Westergaard8 obtuvo una solución de este problema para el caso extremo en que las deforma­ciones horizontales fueran nulas. De acuerdo con esta solución el esfuerzo vertical debido a la acción de una sola carga vertical con­centrada superficial, actuante sobre un medio semiinfinito, que se comporte según la ley de Hooke, pero que tenga totalmente restrin­gida su deformación horizontal, está dado por

donde2iz (jc2 -I- y2 + K 2z*) 3/2

I 1 2 p,K - y ] 2 ( ¡ - ü r

(2 -1 8 )

(2 -1 9 )

Page 33: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Siendo p, la relación de Poisson para el material arcilloso blando.Análogamente al caso de las soluciones obtenidas a partir de la

de Boussinesq, se cuenta en la actual literatura con ecuaciones y gráficas que permiten extender la solución de Westergaard a otras condiciones de carga, análogas a las vistas; sin embargo, estos grá­ficos se omiten en esta obra por considerarse que son pocos los casos prácticos que ameritan su aplicación.

MECANICA DE SUELOS (II) 17

H-4. Algunas otras condiciones de carga con interés práctico

A continuación se mencionan algunos trabajos tendientes a resol­ver el problema de transmisión de esfuerzos al continuo semiinfinito, homogéneo, isótropo y linealmente elástico, provocados por cargas superficiales obedientes a diferentes leyes de distribución de interés práctico.

a) Carga lineal de longitud infinita

Si en la expresión 2-8, correspondiente a la influencia de una carga lineal de longitud finita, y, esta magnitud crece hasta ser mucho mayor que las x y z que intervengan en el caso, su valor podrá considerarse como ( + oo ) y, en tal situación el valor cr, tiene por limite

P z 3°* (2-20> ■re (x:2 + z ) 2

Que corresponde al esfuerzo en un punto situado en el plano normal a la línea de carga, trazado por su extremo, extendiéndose la línea infinitamente desde el punto origen de coordenadas, en la dirección del eje Y, hacia ( + oo), (carga semiinfinita).

Si la línea de Carga se extiende también infinitamente en el sen­tido ( — oo) (carga infinita) el esfuerzo crz. a la profundidad z, en un plano normal a la línea trazada por el origen de coordenadas, es simplemente el doble del dado por la ec. 2-20.

b) Area circular uniformemente cargada

Este caso ya ha sido tratado en el párrafo precedente, pero únicamente para encontrar los esfuerzos verticales a lo largo de una normal al área trazada por su centro. L. Jürgenson* presenta una solución más general, que permite calcular los esfuerzos verticales y los cortantes máximos en cualquier punto del medio semiinfinito. En la fig. II-5 aparece una gráfica en que se vacía la solución antes mencionada.

3— Mecánica de Suelos II

Page 34: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

18 CAPITULO II

FIG. 11-5. Distribución de esfuerzos verticales y cortantes misimos bajo un área circu­lar uniformemente cargada

c) Carga rectangular de longitud infinitaEste caso, fig. II-6, ha sido resuelto por Terzaghi y Carothers4,

quienes dieron las fórmulas que proporcionan los distintos esfuer­zos.

Estas fórmulas son

o-* = — [a + sen a eos 2p] <xx = — [a — sen a eos 2¡S]% Ttt*» = — sen a sen 2(3 (2-21)%

Los esfuerzos principales y el cortante máximo están dados por

ffi = — (a + sen a) = — (a — sen a)ir

Tmfa = — sen a (2-22)u

Page 35: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 19

F IS . 11-6. Distribución de esfuerzos bajo una carga rectangular de longitud infinita

Page 36: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La dirección en que actúa el esfuerzo principal mayor, crlt es la de la bisectriz del ángulo a.

El esfuerzo Tmt*. actúa, naturalmente, a 45° respecto a la ante­rior dirección.

En la fig. II-7 aparece una gráfica que da los valores de ov y de iz. en los distintos puntos del medio semiinfinito.

d) Carga triangular de longitud infinita, (triángulo isósceles)La solución para este caso fue propuesta por Carothers4 y se

refiere a la fig, II-8,

20 CAPITULO II

F IS . 11-8. Distribución do osfuunot bajo una carga triangular da longitud infi­nita (triángulo ¡táscalas)

Las expresiones son:

f f z = j ai + a2 + (ai — a2)

= í r [ ai + az + y (ai — (L*) ~ T ln ’t t ] (2 -2 3 )

= — -j-{ ai — a2)u bEn la fig. II-9 aparece la solución gráfica de las ecuaciones

anteriores para los valores de o* y íx.Este caso reviste importancia práctica especial por su aplicación

a presas de tierra.

Page 37: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA D E SUELOS (II) 21

F IS . 11-9. Distribución de estuarios verticales y cortantet máximos bajo yna carga triangular de longitud infinita (triángulo ¡tásceles)

c) Carga triangular de longitud infinita ( triángulo escaleno)

También Carothers4 dio la solución general para este caso, con las fórmulas

* = - í [ t - + £ ± Í = £ » - t ^ - t , * ^ I « j - 2 4 >

Que pueden interpretarse en la fig. II -10.Las expresiones anteriores son susceptibles de tabulación sencilla

en cualquier caso práctico.

Page 38: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

22 CAPITULO II

FIG . 11-10. Distribución de esfuerzos bajo una carga triangular de longitud infi­nita (triángulo escaleno)

f) Carga triangular de longitud finita (triángulo rectángulo)Este importante caso práctico fue resuelto por Hamilton Gray6,

quien dio para los esfuerzos fórmulas que se incluyen a continuaciónBajo el punto O ( fig. II-l 1).

— p° •k (z v d + B2 + z2 z_____B \ L2 + z2 V X2 +

. B BL \T a° 9 " w n n w m ( 2 - 2 5 )

y bajo el jjunto Q

9 t ~ 2n B ( v ¿ 2 + z2 (B2 + z2) V ^ 2 + L2 + z2) *2' 26^

El mismo investigador arriba citado proporciona soluciones grá­ficas de esas ecuaciones. En las figs. 11-11 y 11-12 se muestran las curvas correspondientes.

Es de notar que, con la ayuda de estas gráficas puede encon­trarse el valor de cz bajo cualquier punto del área rectangular suje­ta a la carga triangular; para éllo será necesario usar dichas gráficas reiteradamente, haciendo las adiciones y substracciones que sean pertinentes para poder poner al punto cualquiera o bien en la con­dición de O o en la de Q. Para resolver estos problemas pueden usarse cualesquiera de las distribuciones de carga ya vistas y que convengan en cada caso.

Page 39: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 23

FIG . II-11. Etfunnot verticales Inducido* bajo ni punto 0, por una carga trkmgular dn longitud finita (triángulo rectángulo)

Lo anterior implica la hipótesis de que el principio de la super­posición de causas y efectos es aplicable a los problemas de la naturaleza tratada.

Si se suman las ordenadas de cualquier curva de "n” en la fig*11-11 con las correspondientes de la fig. 11-12, los resultados repre­sentan las ordenadas provenientes del diagrama de Fadum para una carga uniformemente distribuida sobre el área rectangular.

Page 40: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

VA

LO

RE

S

DE

24 CAPITULO II

V A L O R E S DE m

FIG . 11-12. Esfuerzos verticales inducidos bajo Q por una carga triangular da longitud finita (triángulo rectángulo)

g) Carga trapecial de longitud infinitaEl problema, resuelto también por Carothers4 tiene, según la fig.

11-13, las siguientes soluciones

Page 41: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 25

i ZFl©. 11-13. Distribución de esfuerzos bajo una carga trapecial de longitud infi­

nita (trapecio rectángulo)

Desde luego, todas estas ecuaciones son fácilmente tabulables para el trabajo en un problema práctico, pero para mayor facilidad, en la fig. 11-14 se incluye una solución gráfica dada por J. O. Os- terberg para los puntos indicados.

El presente caso es de muy especial importancia práctica por permitir el cálculo de los esfuerzos inducidos por un terraplén. Para resolver este problema bajo el centro del terraplén bastará multi­plicar por dos el valor de cz obtenido para cada profundidad z, con la gráfica presentada. Si se desean calcular los esfuerzos bajo el centro del extremo final de un terraplén supuesto semiinfinito en longitud, bastará aplicar la mitad del valor de rsz obtenido para el terraplén completo de longitud infinita.

h) Plano semiinfinito uniformemente cargadoEl problema resuelto por Carothers4 se esquematiza en la fig.

11-15. Los esfuerzos actuantes pueden calcularse con las fórmulas

* = ■ £ [ ) + ? ]

( » >

t«* = — sen2 S %

Page 42: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

26

*-h 0 .4 0

OZUJO- i 0 .3 0

UJoc/> °*20UJ QC O<>

CAPITULO II

0 .5 0

a/zF IG . 11-14. G ráfica da valoras da influencia para al cálculo da esfuenos varticalas

debido a la sobrecarga impuesta por una carga trapecial de longitud infinita (según J . O . Osterbarg)

Los esfuerzos principales en los distintos puntos del continuo de suelo están dados por

cri = — f (3 + sen (i]TU

cx3 = — [0 — sen 0] (2-29)

ptai*. = — sen 0 TZ

Page 43: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 27

cargado

FIG . 11-16. Distribución de esfuerzos bajo un plano semiinfinito, uniformemente cargado, con talud

i) Plano semiinfinito, uniformemente cargado, con taludLa solución a este problema también es debida a Carothers4 y

responde a las siguientes ecuaciones, relacionadas con la fig. 11-16

(2-30)

0* = — *

[ » ♦

* ' = i \ [p +

t - f - -'•xa —----75

z— a b

Page 44: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

28 CAPITULO II

FIG. 11- 17. D hfribuciin do m fm nos bajo bu plano infinito uniformomonto car­gado con taja trapecial no cargada do longitud infinita

j ) Plano infinito uniformemente cargado con faja trapecial descar­gada de longitud infinitaLos esfuerzos en cualquier punto de la masa de suelo en este caso

pueden resolverse con las siguientes ecuaciones, debidas a Garo- thers4, fig. 11-17.

0V = A £(0 + 0i) — j- (a + ai) + - j - (a — ai)J

= A ["(P + fc) - A ( a + a i) + J L ( « _ « , ) +ti L a a a fi r i J

t» = A J jA (a — ai>J (2-31)

n-5. La carta de NewmarkNewmark6 desarrolló en 1942 un método gráfico sencillo que

permite obtener rápidamente los esfuerzos verticales (o*) trans­mitidos a un medio semiinfinito, homogéneo, isótropo y elástico por cualquier condición de carga uniformemente repartida sobre la superficie del medio. Esta carta es especialmente útil cuando se tie­nen varias áreas cargadas, aplicando cada una de ellas, diferentes presiones a la superficie del medio.

El método se basa en la ec. 2-15 correspondiente al esfuerzo ver­tical bajo el centro de un área circular utíiformemente cargada. Esta ecuación puede escribirse

Page 45: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

« = !-(. I V /2w \ 1 + (t / z Y )

Si en esta ecuación se da a crz/w el valor 0.1 se encuentra que r/z resulta ser 0.27; es decir, que si se tiene un círculo cargado de radio r = 0.27z. donde z es la profundidad de un punto A bajo el centro del círculo, el esfuerzo en dicho punto A será

— 0.1 wSi este círculo de r = 0.27 z se divide en un número de segmentos

iguales (fig. 11-18), cada uno de ellos contribuirá al esfuerzo <r, total en la misma proporción. Si el número es 20 como es usual en las cartas de Newmark, cada segmento cooperará para el esfuerzo c* con 0.1w/20 = 0.005 w. El valor de 0.005 es el valor de influencia corres, pondiente a cada uno de los segmentos circulares considerados.

Si ahora se toma a jw = 0.2, resulta tjz — 0.40; es decir, para el mismo punto A a la profundidad z, se requiere ahora un círculo carga­do de r = 0.40 z, para que el esfuerzo <r* sea igual a 0.2 w.

MECANICA DE SUELOS (II) 29

Concéntrico con el anterior puede dibujarse otro círculo (fig. II- 18) con dicho r = 0.40 z. Como el primer circulo producía en A un

Page 46: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

cTu = 0.1 w, se sigue que la corona circular ahora agregada produce otro cr* = 0.1 w (de modo que el nuevo círculo total genera <TZ = 0.2 w) . Así, si los radios que dividían el primer círculo se prolongan has­ta el segundo, se tendrá la corona subdividida en áreas cuya influen­cia es la misma que la de los segmentos originales. (0.005 w ).

De esta manera puede seguirse dando a ae/w valores de 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 obteniendo así los radios de círculos concéntri­cos en función de la z del punto A, que den los esfuerzos 0.3 w, 0.4 w, etc. en el punto A. Prolongando los radios vectores ya usados se tendrá a las nuevas coronas circulares añadidas subdivididas en áreas cuya influencia es igualmente de 0.005 w sobre el esfuerzo en A.

Para z/w = 1 .0 resulta que el radio del círculo correspondiente es ya infinito, para cualquier z diferente de cero, por lo que las áreas que se generan por prolongación de los radios vectores fuera del círculo en que z/w — 0.9, aun siendo infinitas, tienen la misma influencia sobre A que las restantes dibujadas.

En el Anexo Il-f se presenta una carta de Newmark construida para el valor de z que se indica.

Para encontrar el valor de cr* en puntos con diferentes profundi­dades que el A puede precederse en forma similar, construyendo otras cartas de Newmark, con base en otros valores de z. Debe notarse sin embargo, que el valor de depende sólo del valor de la relación r/z, por lo que una sola carta de Newmark puede usarse para deter­minar los <Tz a distintas profuiididades, a lo largo de la vertical por el centro de los círculos concéntricos, con tal de considerar que la z usada para la construcción de la carta representa las distintas pro­fundidades a que se desea calcular los esfuerzos, si bien a diferentes escalas.

Puesto de otra forma, en la práctica se puede hacer funcionar la carta de Newmark de dos maneras distintas.

a) Usando varias cartas de Newmark. Por ejemplo, si las z usa­das para la construcción de las cartas son 1 cm, 2 cm, 5 cm, 10 cm y 20 cm y se tiene un área cargada, cuya influencia se desea deter­minar, representada a escala 100, las cartas proporcionarían los <sz producidos por tal área a profundidades de 1 m, 2 m, 5 m, 10 m y 20 m, que son las z utilizadas a escala 100.

b) Usando una sola carta de Newmark, para lo cual será preciso disponer de varias plantillas del área cargada cuya influencia se es­tudia, dibujadas a escalas diferentes. Así, por ejemplo, si la carta de que se dispone fue construida con base en una z de 10 cm, y se desea conocer el o» que se produce a las profundidades de 2 m, 5 m, 10 m y 20 m, deberán construirse las plantillas a escalas tales que esas profundidades queden representadas por la z = 10 cm; es decir, a escalas: 20, 50, 100 y 200.

La plantilla del área cargada, dibujada en papel transparente, se coloca en tal forma que el centro de 1? carta coincida con el punto

30 CAPITULO II

Page 47: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

bajo el cual quieran calcularse los cr*. A continuación se contarán los elementos de área de la carta cubiertos por dicha área cargada, aproximando convenientemente las fracciones de elemento. El número así obtenido, multiplicado por el valor de influencia común de los elementos (en el desarrollo anterior 0.005) da el valor de influencia total, que multiplicado por la w que se tenga da el o# deseado.

Posiblemente la máxima utilidad del método de Newmark apa­rezca cuando se tiene una zona con diversas áreas cargadas unifor­memente, pero con cargas de distintas intensidades, pues en este caso los métodos antes vistos requerirían muchos cálculos, mientras que la carta de Newmark funciona sin mayor dificultad.

n-6. Estudios sobre sistemas no homogéneosBurmister12,13,14 estudió el problema de la distribución de esfuer­

zos y desplazamientos en un sistema no homogéneo formado por dos capas, cada una de ellas homogénea, isótropa y linealmente elástica. La primera capa es infinita horizontalmente, pero'tiene espesor finito, h. La segunda capa, subyacente a la anterior, es semiinfinita. Se supone que entre las dos capas existe un contacto continuo, siendo la frontera plana entre ellas perfectamente rugosa. E\ y E 2 son los módulos de elasticidad de las dos capas; se estudió el caso de interés práctico, con aplicación al diseño de pavimentos, en el cual E x» E t.

Coeficiente de influencia del esfuerzo vertical, (Tz/P

MECANICA DE SUELOS (II) 31

FIG . I I-19. Curvas de influencia de esfuenos verticales transmitidos en un sistema de dos capas elásticas (según Burmister)

Page 48: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En la fig. 11-19 se muestran las curvas de influencia de la carga superficial, supuesta circular y uniformemente distribuida, en lo refe­rente a los esfuerzos verticales bajo el centro del área cargada, supo­niendo que el radio del circulo de carga es igual al espesor de la primera capa. Las curvas mostradas se refieren a distintas relaciones E i/ E 2 en materiales cuya relación de Poisson se fijó en el valor 0.5 para ambas capas.

Puede notarse que en la frontera y para el caso E 1/E 2 = 1, que corresponde al problema de Boussinesq ya tratado, el esfuerzo verti­cal es el 70% de la presión aplicada en la superficie, en tanto que

32 CAPITULO II

FIG . 11-20. Comparación do la distribución do otfnonos verticales on un modio homo­géneo y on un sistema do dos capas

Page 49: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

si E J E 2 se considera de 100, dicho valor se reduce a sólo un 10% de la presión superficial.

En la fig. 11-20 se muestra una comparación de las distribucio­nes del esfuerzo vertical en un medio homogéneo en el sistema de dos capas para el caso en que E JE ? — 10, p = 0.5 y t/h = 1. La figura se complementa con la 11-19, en el sentido de que muestra los esfuerzos en cualquier punto de la masa del medio y no sólo en la vertical.

Según el análisis teórico efectuado por Burmister, el desplaza­miento vertical elástico en la superficie del sistema está dado por la expresión

A = 1.5 (2-32)donde

A = desplazamiento vertical en la superficie del sistema F — factor adimensional de desplazamiento, que depende de la

relación E JE ? y de la relación h/r p = presión uniforme en el área circular r = radio del círculo cargado

E 2 = Módulo de Elasticidad de la segunda capa, semiinfinita.

En la fig. 11-21 aparece una gráfica que da los valores de F para diferentes relaciones de las que tal factor depende.

Para el uso de esa gráfica es preciso determinar primeramente los valores numéricos de E x y E 2, lo cual se logra por medio de prue­bas de placa. En el caso de que la placa transmisora de las cargas sea idealmente rígida, la ec. 2-32 se modifica a la forma

'A = 1 .1 8 F | r (2-33)

Si se coloca una placa rígida sobre el material que va a constituir la segunda capa y se transmite presión, la fórmula 2-33 permite el cálculo de E 2 pues en tal caso F — 1, por tratarse de un sistema homogéneo de una sola capa. Efectuando la prueba de placa ahora en la superficie del sistema de dos capas, la expresión 2-33, nueva­mente usada, permitirá el cálculo de i7 y la gráfica de la fig. 11-20 proporcionará la correspondiente relación E JE ?, de la cual puede deducirse el valor de É?. Con los valores de E x y E?, así determi­nados, pueden calcularse con las fórmulas anteriores y la gráfi­ca 11-20 los desplazamientos verticales bajo el centro de cualquier área circular cargada aplicada en la superficie del sistema de dos capas.

Los resultados de Burmister se han aplicado sobre todo al diseño de pavimentos, fungiendo el pavimento como primera capa más rí-

MECANICA DE SUELOS (II) 33

4—Mecánica de Suelos II

Page 50: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

34 CAPITULO II

- ........r... . .4• Corga circular, p.uniforroomonto

• i = í i .

h! primara capa d« Modulo do

1 Elasticidad E,

i

Frontero porfoctamonto r u g o s a j Segunda capa.sem í-infinita, de

j Modulo de Elasticidad E ¿

R e la c ió n de P o ísso n * en om bas c a p a s .

FIG . 11-21. Factores de deformaciin para un sistema de dos capas

gida. Sin embargo, hasta hoy, los métodos analíticos emanados de estas teorías son menos confiables que otros más empíricos, pero de resultados más comprobados. Debe observarse que desde el punto de vista de transmisión de esfuerzos, las teorías de Burmister rinden resultados que hacen aparecer los obtenidos con la solución básica de Boussinesq como conservadores (por ejemplo, véase ref. 14).

Recientemente18 se han desarrollado algunos estudios en conexión con medios semiinfinitos no lineales y no homogéneos; es decir, con materiales que al ser sometidos a compresión simple muestran reía-

Page 51: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

( f k

MECANICA D E SUELOS (II) 35

FIG. 11-22. Relación elástica no lineal entre esfuerzo y deformación en estado monoaxial de esfuerzos

ciones esfuerzo-deformación del tipo indicado en la fig. 11-22, que matemáticamente pueden expresarse

e = ( j J n > 1 (2-34)

Donde k es una constante característica del material. En el caso en que n = 1 la ec. 2-34 representará la ley de Hooke y k coincide con el módulo de elasticidad del medio.

Las conclusiones que parecen desprenderse de estos estudios son que en los suelos reales, que indudablemente se acercarán más en su comportamiento al tipo de deformación elástica sugerido, los es­fuerzos verticales bajo la carga concentrada son menores que los de­terminados haciendo uso de la teoría clásica de Boussinesq y que los desplazamientos verticales de los puntos bajo la carga ocurren en forma mucho más concentrada en la cercanía de la superficie que lo que se desprende de la mencionada teoría clásica. Es muy intere­sante hacer notar que los estudios comentados parecen justificar la conocida regla empírica, ya mencionada en el Volumen I de esta obra, en el sentido de que, para el cálculo de asentamientos, es sufi­ciente considerar las deformaciones del suelo hasta una profundidad comprendida entre una y media y dos veces el ancho del cimiento.

Es oportuno, finalmente, hacer notar que en Mecánica de Suelos, a pesar de las meritorias tendencias señaladas, el problema de distribu­ción de esfuerzos en la masa del suelo dista de poder ser considerado como resuelto y es mucho aún lo que en estas direcciones ha de investigarse.

Page 52: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

36 CAPITULO II

ANEXO H-a

El problema de Boussinesq

Desde el punto de vista de la Teoría de la Elasticidad, el pro­blema de Boussinesq es un caso particular del problema de Mindlin,7 en el cual se supone la existencia de un sólido que ocupa la región del espacio z > 0, en cuyo interior obra una carga concentrada P, aplicada en el punto z = c, r = 0 (fig. II-a .l). Se trata de calcular el estado de esfuerzos en un punto cualquiera A de la masa.

El problema de Boussinesq es una particularización del anterior, resultado de hacer c = 0, con lo que la carga concentrada queda aplicada en la frontera del medio semiinfinito, homogéneo, isótropo y linealmente elástico.

La solución del problema puede lograrse por varios caminos, de­pendiendo de la herramienta mate­mática utilizada. En la ref. 8 se presenta un tratamiento elegante y expedito, basado en la aplicación de la transformación de Hankel; una solución muy general con he­rramienta tensorial podrá verse en la ref. 9. En la ref. 10 se desarrolla un tratamiento matemático más simple, pero más laborioso. El tra­tamiento que aquí se presenta está basado fundamentalmente en la ref. 11.

La carga concentrada produce en el medio un estado de esfuerzos y desplazamientos que evidentemente es simétrico respecto al eje de aplicación de la carga.

Las ecuaciones de Navier o de la deformación, que expresan las condiciones de equilibrio en función de las componentes del vectordesplazamiento v (vlt v2, u3), son

FIG. II-a .l. £/ p ro b le m a d e M in d lin

Page 53: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En donde p es el módulo de Poisson, G el módulo de rigidezr _ E

2 ( 1 + ( i )

F (F i, F 2, Fa) las fuerzas de masa y (xu Xa. x¡) el sistema coordenado ortogonal de referencia.

Las ecs. 2-a.l tienen como variables únicamente a vlt v2 y v».Multiplicando las ecs. 2-a.l por los versores ilf i2, t3 respectiva­

mente y sumando,

W + V div. v + £ = 0 (2-a.2)

Ecuación que ha sido llamada fundamental de la Teoría de la Elasticidad.

Si se aplica a 2-a.2 el operador div:1 -* 1 -+

div. V 2u + - - div. V div. v + div. F — 0 (2-a.3)

Pero:

div. V 2 v — V z div. v — V 2e

y div. V div. = V a div. p = V 2e

Donde e es la deformación volumétrica o 1er- invariante del ten­sor deformación.

Substituyendo lo anterior en la ec. 2-a.3 y simplificando

" / - I p T V ’ E + b div- ^ = 0 (2'a,4)Se supondrá ahora la existencia dé una función <f>, potencial de

fuerza, armónica. En tal caso,

F — V<¡> y div. F — V V = 0por lo tanto, de la ec. 2-a.4 se sigue que, si <¡> existe

V 2£ — 0Si se aplica, bajo la hipótesis anterior, a la cc. 2-a.2 el operador

escalar V 2, se puede escribir

V 2V 2u + - ¡ 4 - V 2Vdiv. v + 4 V 2 F = 0[ l G

lo cual da

V 4u + -r4 — V 2V e + ¿ V 2F = 01-2 p G

MECANICA DE SUELOS (II) 37

Page 54: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

38 CAPITULO II

pero V 2Ve = V V 2e = 0; por lo tanto

pero esto esV 4u + - i V 2 F — 0

L r

V 4u + V 2V <f> — ode donde, si <¡> existe

V 4u = 0 (2-a.5)La ec. 2-a.5 se cumplirá sí y sólo si existe la mencionada función

potencial <¡>.Ahora bien, la ec. 2-a.5 puede ponerse

V 4V = V 4!>i ¿i + V 4V2 Í2 + V 4 V 3 h por lo que se tendrá que verificar

V 4Ui = 0V 4i>2 = 0 (2-a.6)V 4us — 0 .

De manera que si existe la función <¡> deben cumplirse las ecs. biarmónicas 2-a.6.

Se trata ahora de verificar si la siguiente ecuación que se propone como solución del problema verifica la ec. 2-a.2.

2G v = (c V 2 — V 2 div.) R (2-a.7)donde

c = constanteR — Rx (x3 x2 x5) ii + i ?2 (* i x 2 X a ) ¿2 -f Ra (xx x2 x3) i3 es el lla­

mado vector de Galerkin.La ec. 2-a.2 puede escribirse

2 G l V ’ + l - ^ 2 Í

Teniendo en cuenta las ecs. 2-a.7 y 2-a.8 puede ponerse

V 2 +

operando

2 G ( V 2 + T—* Vdi v. ) u + 2 F = 0 (2-a.8)1 — 2 p

(V 2 + r = A ^ V div.) (c V 2- V d iv .)f l + 2 F = 0 (2-a.9)

(cV 4 — V 2V div. + -j — V div. V 2 -

1 V div. V div) R + 2 F = 01 — 2p

Page 55: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

peroV 2V div. = V div. V 2 = V div. V div.

por lo cual

C V * R + ( - 1 + ^ V V di”. R + 2 F = 0

La constante c puede escogerse de modo que la ecuación anterior se reduzca a

c V 4fl + 2 F = 0

para lo cual será preciso que

- 1 + r ^ i - T ^ r = 0c = 2(1 — p) (2-a.lO)

y entonces

= — F ■ (2 -a .ll)1 - p

Si las fuerzas másicas son nulas, se tendrá:

V 4R = 0 (2-a,12)

y en tal caso, el vector Galerkin tendrá que ser una función vectorial Inarmónica.

Por lo tanto, el vector desplazamiento v satisface la ec. 2-a.2 cuando (ver ec. 2-a.7)

2 G v — [2(1 — p) V 2 — V div.] R (2-a.l3)

con la condición de que se cumpla la ec. 2-a.ll.

La ec. 2-a.l3, en forma desplegada, da lugar a

MECANICA DE SUELOS (II) 39

Page 56: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

40 CAPITULO II

En las ecs. 2-a.l4 habrá la condición

V 4, Ri = — t — — Fi 1 — tr

= _ _ i _ F 21 - [J.

(2-a.l5)

V 4/?s = — F 31 — ti

Las ecs. 2-a.l4 proporcionan las componentes del vector despla­zamiento v en términos del vector R, las que pueden relacionarse, según la Teoría de la Elasticidad, con las deformaciones unitarias correspondientes; éstas, a su vez, haciendo uso de la Ley de Hooke generalizada para un medio homogéneo, isótropo y linealmente elás­tico, pueden relacionarse con los esfuerzos producidos en un punto del medio. Asi, en definitiva, podrá llegarse a expresiones entre los esfuerzos y las componentes del vector R. El proceso matemático anterior es simple, aunque muy laborioso y podrá consultarse en detalle, en la mencionada ref. 11; aquí se pondrán únicamente los resultados obtenidos.

El triedro (x , y , z ) corresponde al (*i x2 x3) usado anteriormente. En el caso particular del problema de Boussinesq puede llegarse

a la solución, adoptando un vector Galerkin (R) de la forma

av = 2(1 — n )V 2^ | + (y. V )d i Iv.R

a, = 2 (1 - p) V* ^ + (p V 2 - g ) div. R (2-a. 16)

R = c [ ( l — 2 n )z ln (z + r) -(- 2 p r]t3 (2-a.l7)

Page 57: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 41

dondet- — x- + y- + z-

La expresión para o-,, dada en las ecs. 2-a,16 puede escribirsedR3 d3R3

siendo

<r,= [ 2 ( 1 - t r J + txjV2 9z ^

Rh = c ( l —2p)zlog (z + r) + 2qjir

Efectuando operaciones se tiene

= c [ - + (1 — 2 p) log (z + r) ] oz r

(2-a.l8)

V ’8# - = - < PS z r

= i z ¿ I + c (idz3 r v

Agrupando, resulta finalmente

ff* = —3cz3

r"(2-a.l9)

p

Fronterainfinito 0

- T n i j c' r

p T r "z

P

J

!/ ¡^ V , i1

/ 1

\

S ^ \ x

Considérese ahora el equilibrio interno en el seno del medio, (fig. II-a.2).

En un plano a la profundidad z — cte debe cumplirse la condi­ción: P = Sama de fuerzas verti­cales internas.

Considerando una superficie anular en dicho plano, se tendrá

d Fi = | ffzpdpdd

o sea

dFi = - ^ p d p \ y e =

3cz3 2-npdp

FIG . Il-a.2 Equilibrio en el Interior del semiespado elástico

Lo cual puede escribirse

dP> = ~ (p- £ £ )■ »

Page 58: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

42 CAPITULO II

Integrando la expresión anterior en el plano z — cíe

p . — .—• 3 C 7r 2 3 f ° ° 2p P = P

Integrando y despejando, se tiene:

c = - £ (2-a.20)Z7T

Llevando este valor a la ec. 2-a.l7 y operando este valor con el resultado obtenido en las ecs. 2-a.l6, se obtiene finalmente:

ffi - J 5 _ L f /, _ 0. . , r2tz + r ) - * 2lz + 2r)

]2tc r3 L U + r ) ¡z( r2 — 3x2) ? + 2¡xz

p 1 V, r2(z +' r) — y2{z + 2r)2k r3 L (z + rY

l “-> + 2 J

_ 3P z (2-a.21)

_ P xy r , , n z + 2r 3zl Tlí “ 2w r3 [ + r )2 r2]

_ 3PTír “ 1 ÍT

xz

_ 3P i/z2Twr “ 1 Í T “ F -

que es la solución originalmente propuesta por Boussinesq.

Page 59: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA D E SUELOS (II) 43

ANEXO n-b

Valores de influencia para el caso de carga concentradaSolución de Boussinesq

« . = £ ■ p.

r/z Pe r/z Pe r/z P.________r/z

0.00 — 0.47751 — 0.47732 — 0.47703 — 0.47644 — 0.47565 — 0.47456 — 0.47327 — 0.47178 — 0.46999 — 0.4679

0.10 — 0.46571 — 0.46332 — 0.46073 — 0.45794 — 0.45485 — 0.45166 — 0.44827 — 0.44468 — 0.44099 — 0.4370

0.20 — 0.43291 — 0.42862 — 0.42423 — 0.41974 — 0.41515 — 0.41036 — 0.40547 — 0.40048 — 0.39549 — 0.3902

0.30 — 0.38491 — 0.37962 — 0.37423 — 0.36874 — 0.36325 - 0.35776 — 0.35217 - 0.34658 — 0.34089 — 0.3351

0.40 — 0.32941 — 0.32382 — 0.31813 — 031244 — 030685 — 0.30116 — 0.29557 — 0.28998 — 0.28439 — 0.2788

0.50 — 0.27331 — 0.26792 — 0.26253 — 0.25714 — 0.25185 — 0.24666 — 0.24147 — 0.23638 — 0.23139 — 0.2263

0.60 — 0.22141 — 0.21652 — 0.21173 — 0.20704 — 0.20245 — 0.19786 — 0.19347 — 0.18898 — 0.18469 — 0.1804

0.70 — 0.17621 — 0.17212 — 0.16813 — 0.16414 — 0.16035 — 0.15656 — 0.15277 — 0.14918 — 0.14559 — 0.1420

0.80 — 0.13861 — 0.13532 — 0.13203 — 0.12884 — 0.12575 — 0.12266 — 0.11967 — 0.11668 — 0.11389 — 0.1110

0.90 — 0.10831 — 0.10572 — 0.10313 — 0.10054 — 0.09815 — 0.09566 — 0.09337 — 0.09108 — 0.08879 — 0.0865

1.00 — 0.08441 — 0.08232 — 0.08033 — 0.07834 — 0.07645 — 0.07446 — 0.07277 — 0.07098 — 0.06919 — 0.0674

1.10 — 0.06581 — 0.06412 — 0.06263 — 0.06104 — 0.05955 — 0.05816 — 0.05677 — 0.05538 — 0.05399 — 0.0526

1.20 — 0.05131 — 0.05012 — 0.04893 — 0.04774 — 0.04665 — 0.04546 — 0.04437 — 0.04338 — 0.04229 — 0.0412

1.30 — 0.04021 — 0.03932 — 0.03843 - 0.03744 — 0.03655 — 0.03576 — 0.03487 — 0.03408 — 0.03329 — 0.0324

1.40 — 0.03171 — 0.03092 — 0.03023 — 0.02954 — 0.02885 — 0.02826 — 0.02757 — 0.02698 — 0.02639 — 0.0257

1.50 — 0.02511 — 0.02452 — 0.02403 — 0.02344 — 0.02295 — 0.02246 — 0.02197 — 0.02148 — 0.02099 — 0.0204

Page 60: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

44 CAPITULO II

r/z P» r/z Po r/z Po r/z P .

1.60 — 0.0200 2.10 — 0.0070 2.60 — 0.0029 3.10 — 0.00131 — 0.0195 1 — 0.0069 1 — 0.0028 1 — 0.00132 — 0.0191 2 — 0.0068 2 — 0.0028 2 — 0.00133 — 0.0187 3 — 0.0066 3 — 0.0027 3 — 0.00124 — 0.0183 4 — 0.0065 4 — 0.0027 4 — 0.00125 — 0.0179 5 — 0.0064 5 — 0.0026 5 — 0.00126 — 0.0175 6 — 0.0063 6 — 0.0026 6 — 0.00127 — 0.0171 7 — 0.0062 7 — 0.0025 7 — 0.00128 — 0.0167 8 — 0.0060 8 — 0.0025 8 — 0.00129 - 0.0163 9 — 0.0059 9 — 0.0025 9 — 0.0011

1.70 — 0.0160 2.20 — 0.0058 2.70 - 0.0024 3.20 — 0.00111 — 0.0157 1 — 0.0057 1 — 0.0024 1 — 0.00112 — 0.0153 2 — 0.0056 2 — 0.0023 2 — 0.00113 — 0.0150 3 — 0.0055 3 — 0.0023 3 — 0.00114 — 0.0147 4 — 0.0054 4 — 0.0023 4 — 0.00115 — 0.0144 5 — 0.0053 5 — 0.0022 5 — 0.00116 — 0.0141 6 — 0.0052 6 — 0.0022 6 — 0.00107 — 0.0138 7 — 0.0051 7 — 0.0022 7 — 0.00108 — 0.0135 8 — 0.0050 8 — 0.0021 8 — 0.00109 — 0.0132 9 — 0.0049 9 — 0.0021 9 — 0.0010

1.80 — 0.0129 2.30 — 0.0048 2.80 — 0.0021 3.30 — 0.00101 — 0.0126 1 — 0.0047 1 — 0.0020 1 — 0.00092 — 0.0124 2 — 0.0047 2 — 0.0020 2 — 0.00093 — 0.0121 3 - 0.0046 3 — 0.0020 3 — 0.00094 — 0.0119 4 — 0.0045 4 — 0.0019 4 — 0.00095 — 0.0116 5 — 0.0044 5 — 0.0019 5 — 0.00096 — 0.0114 6 — 0.0043 6 — 0.0019 6 — 0.00097 — 0.0112 7 — 0.0043 7 — 0.0019 7 — 0.00098 - 0.0109 8 — 0.0042 8 — 0.0018 8 — 0.00099 — 0.0107 9 — 0.0041 9 — 0.0018 9 — 0.0009

1.90 — 0.0105 2.40 — 0.0040 2.90 — 0.0018 3.40 — 0.00091 — 0.0103 1 — 0.0040 1 — 0.0017 1 — 0.00082 — 0.0101 2 — 0.0039 2 — 0.0017 2 — 0.00083 — 0.0099 3 — 0.0038 3 — 0.0017 3 — 0.00084 — 0.0097 4 — 0.0038 4 — 0.0017 4 — 0.00085 — 0.0095 5 — 0.0037 5 — 0.0016 5 — 0.00086 — 0.0093 6 — 0.0036 6 — 0.0016 6 — 0.00087 — 0.0091 7 — 0.0036 7 — 0.0016 7 — 0.00088 — 0.0089 8 — 0.0035 8 — 0.0016 8 — 0.00089 — 0.0087 9 — 0.0034 9 — 0.0015 9 — 0.0008

2.00 — 0.0085 2.50 — 0.0034 3.00 — 0.0015 3.501 — 0.0084 1 — 0.0033 1 — 0.0015 a — 0.00072 — 0.0082 2 — 0.0033 2 — 0.0015 3.613 - 0.0081 3 — 0.0032 3 — 0.0014 'X 6.14 — 0.0079 4 — 0.0032 4 — 0.0014 a a nnn£5 — 0.0078 5 — 0.0031 5 — 0.0014 a — u.uUvO

"X 746 — 0.0076 6 — 0.0031 6 — 0.00147 — 0.0075 7 — 0.0030 7 — 0.0014 3.758 - 0.0073 8 — 0.0030 8 — 0.0013 a — 0.00059 — 0.0072 9 — 0.0029 9 - 0.0013 3.90

Page 61: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 62: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ANEXO I I - d. A r e a r e c t a n g u l a r u n i f o r m e m e n t e c a r g a d a . ( C a s o d e B o u s s i n e s o ) .

Page 63: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 64: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 45

r/z Po r/z Po r/z P» r/z Po

3.91 a — 0.0004

4.12

4.13 a — 0.0003

4.43

4.44 a - 0.0002

4.90

4.91 a — 0.0001

6.15

ANEXO H-e

Valores de influencia para área circular uniformemente cargada

Solución de Boussinesq

<7, — W Wo

r/z w„ r/z w. r/z w0 r/z w0

.00 — 0.00000 1— 0.00015 2 — 0.000603 — 0.001354 — 0.002405 - 0.003746 - 0.00538 7-0.00731 8 — 0.00952 9-0.01203

.30 — 0.12126 1-0.128592 — 0.136053 — 0.143634-0.151335-0.159156 — 0.167067 — 0.175078 — 0.18317 9-0.19134

.60 - 0.36949 1— 0.377812 — 0.386093 — 0.394314 — 0.402475 — 0.410586 — 0.418637 — 0.426628 - 0.43454 9-0 .44240

.90 - 0.58934 1 -0.59542 2-0.60142 3 — 0.607344-0.613175-0.618926 — 0.624597 — 0.630188 — 0.635689 — 0.64110

.10-0.01481 1-0.01788 2 — 0.021223 - 0.024834 - 0.028705 — 0.032836 — 0.03721 7-0.04184 8 - 0.04670 9-0.05181

.40 — 0.19959 1 — 0.20790 2-0.21627 3 — 0.22469 4-0.233155 — 0.241656 — 0.250177 — 0.258728 — 0.267299 — 0.27587

.70 - 0.450181— 0.457892-0.46553 3 — 0.473104-0.480595-0.488006 — 0.495337 — 0.502598-0.509769-0.51685

1.00-0.646451— 0.6517!2 - 0.656903 — 0.662004 - 0.66703 5-0.671986 — 0.676867 — 0.681688-0.686399-0.69104

.20 — 0.05713 1— 0.062682 — 0.068443 - 0.074414 - 0.080575 - 0.086926 — 0.093467-0.100178-0.107049-0.11408

.50-0.284461— 0.293042 — 0.301623 — 0.31019 4-0.318755 - 0.327286 — 0.335797 — 0.344278 — 0.352729 — 0.36112

.80 — 0.52386 1— 0.530792 — 0.537633 — 0.544394-0.551065-0.557666-0.564167 — 0.570588 — 0.576929 — 0.58317

1.10 - 0.69562 1— 0.700132 — 0.704573 - 0.708944-0.713245-0.717476-0.72163 7 — 0.72573 8-0.72976 9 — 0.73373

Page 65: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

46 CAPITULO II

r /z IVe

1.20 — 0.73763 1— 0.741472 — 0.745253 — 0.748964 — 0.752625 — 0.756226 — 0.759767 — 0.763248 — 0.766669 — 0.77003

1.30 — 0.77334 1— 0.776602 — 0.779813 — 0.782964 — 0.786065 — 0.789116 — 0.792117 — 0.795078 — 0.797979 — 0.80083

1.40 — 0.80364 1— 0.806402 — 0.809123 — 0.811794 — 0.814425 — 0.817016 — 0.819557 — 0.822068 — 0.824529 — 0.82694

1.50 — 0.82932 1— 0.831672 — 0.833973 — 0.836244 — 0.838475 — 0.84067

r /z w0

1.56 — 0.842837 — 0.844958 — 0.847049 — 0.84910

1.60 — 0.85112 1— 0.853122 — 0.856073 — 0.857004 — 0.858905 — 0.860776 — 0.862607 — 0.864418 — 0.866199 — 0.86794

1.70 — 0.86966 1— 0.871362 — 0.873023 — 0.874674 — 0.876285 — 0.877876 — 0.879447 — 0.880988 — 0.882509 — 0.88399

1.80 — 0.88546 1— 0.886912 — 0.888333 — 0.889744 — 0.891125 — 0.892486 — 0.893827 — 0.895148 — 0.896439 — 0.89771

1.90 — 0.89897

r /z iVo

1.91— 0.900212 — 0.901433 — 0.902634 — 0.903825 — 0.904986 — 0.906137 — 0.907268 — 0.908389 — 0.90948

2.00 — 0.910562 — 0.912674 — 0.914726 — 0.916728 — 0.91865

2.10 — 0.92053 .15 — 0.92499 .20 — 0.92914 .25 — 0.93301 .30 — 0.93661 .35 — 0.93997 .40 — 0.94310 .45 — 0.94603 .50 — 0.94877 .55 — 0.95134 .60 — 0.95374 .65 — 0.95599 .70 — 0.95810 .75 — 0.96009 .80 — 0.96195 .85 — 0.96371 .90 — 0.96536 .95 — 0.96691

3.00 — 0.96838 .10 — 0.97106 .20 — 0.97346 .30 — 0.97561

3.40 — 0.97753 .50 — 0.97927 .60 — 0.98083 .70 — 0.98224 .80 — 0.98352 .90 — 0.98468

4.00 — 0.98573 .20 — 0.98757 .40 — 0.98911 .60 — 0.99041 .80 — 0.99152

5.00 — 0.99246 .20 — 0.99327 .40 — 0.99396 .60 — 0.99457 .80 — 0.99510

6.00 — 0.99556 .50 — 0.99648

7.00 — 0.99717 .50 — 0.99769

8.00 — 0.998099.00 — 0.99865

10.00 — 0.9990112.00 — 0.9994314.00 — 0.9996416.00 — 0.9997618.00 — 0.9998320.00 — 0.9998825.00 — 0.9999430.00 — 0.9999640.00 — 0.9999850.00 — 0.99999 100.00— 1.00000oo — 1.00000

Page 66: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ANEXO n-fMECANICA DE SUELOS (II) 47

FIG. Il-f. Caria de Nevmark

R EFER EN CIAS

1. Boussinesq, J. — Application des potenciéis á Vetude de f equilibre et da mouve- ment des solides élastiques — Paris— 1885.

2. Fadum. R. E. — Influence valúes for vertical stresses in a semi-infinite, elas- tic solid due to surface loads — Universidad de Harvard. Escuela de Gra­duados— 1941.

3. Westergaard, H. M. — A problem of Elasticity suggested bu a problem in Soil Mechamos. Soft material reinforced by numeróos strong horizontal sheets — Contributions to the Mechantes of Solids — Stephen Timoshenko, 60th. Anniversary volume — 1938.

Page 67: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

4. Jürgenson, L. — The application o í tbeoríes■ o f Etasticity and Plasticity to foundation problems — Contributions to Soil Mechanics — Boston Society of Civil Engineers — 1925-1940.

5. Gray, H. — Charts facilítate Determination o f stresses under loaded arcas — Civil Engineering — Junio 1948.

6. Newmark, N. M. — Influence chatis for the computation o f stresses in elas- tic foundations — Boletín N* 45. Vol. 44 — Universidad de Illinois — 1942.

7. Mindlin, R. D . — Contribution au probleme d"equilibre d’élasticité d’un solide indefiné limité par un plan — "Comptes Rendus” — 201-536-537 — 1935.

8. Sneddon, I. N. — Fourier Transfotms — Me Graw-Hill Book Co. — 1951.9. Green, A. E. y Zema, W . — Theoretical Elasticity — Oxford University

Press— 1954.10. Timoshenko, S. y Goodier, J. N .— Theory o f Etasticity — McGraw-Hill

Book Co. — 1951.11. Westergaard, H. M. — Theory o f Elasticity and Plasticity — John Wiley

and Sons— 1952.12. Burmister, D. M. — The Theory o f stresses and displacements in layered

systems and application to the design o[ airport runways — Proc. Highway Research Board— 1943.

13. Burmister, D. M. — The General Theory o f stresses and displacements in layered soil systems — Journal of Applied Physics — Vol. 16— 1945.

14. Burmister, D. F. — Evaluation o f Pavement systems o f the W ASHD Road test by layered systems methods — Highway Research Board— Bulletin 177— 1958.

15. Hruban, K .— The basic probtem o f a non-linear and non-homogeneous half space — Non homogeneity in Elasticity and Plasticity •— Olszak Editor — Per- gamon Press — 1959.

48 CAPITULO II

BIBLIOGRAFIA

J/T heoretical Soil Mechanics — K. Terzaghi-— John W iley and Sons — 1956.J Soils Mechanics, Foundations and Earth Structures — G. P. Tschebotarioff — / McGraw-Hill Book Co. — 1957.

J Fundamentáis o f Soil Mechanics — D. W . Taylor — John Wiley and Sons — / 1956.' Mecánica de Suelos — J. A. Jiménez Salas — Ed. Dossat— 1954.J Traité de Mecanique des Sois — J. Caquot y J. Kerissel — Gauthier-Villars—

1956.''Theory o f Elasticity — S. Timoshenko y J. N. Goodier — McGraw-Hill Book Co.

— 1951.Theoretical Elasticity — A. E. Green y W . Zema — Oxford University Press —

1954Theory o f Elasticity and Plasticity — H. M. Westergaard — Harvard University

Press y John W iley and Sons—'1952 Fourier Transforma — I. N. Sneddon-— McGraw-Hill Book C o.— 1951

Page 68: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO III

ANALISIS DE ASENTAMIENTOS

m -1. Introducción

En el Capítulo X, correspondiente al Volumen I de esta obra, se discutieron los conceptos fundamentalés relativos a la magnitud y evolución de los asentamientos que tienen lugar en un estrato de suelo compresible, sujeto a cargas. Implícitamente se supuso allí que el incremento de presión aplicado al estrato (Ap) era uniforme en todo el espesor del mismo. Por otra parte, en el Capítulo II se ha tratado lo relativo a la transmisión de esfuerzos al interior de la masa de suelo, provocados por cargas impuestas en la frontera del estrato considerado. En el presente capítulo se discutirá el como tomar en cuenta, para fines de cálculo, la no uniformidad del incremento de presión transmitido al estrato compresible.

Además de tratar el cálculo de asentamientos en suelos plásticos compresibles, se incluye en el capítulo también una discusión de los métodos de cálculo de asentamientos en suelos arenosos finos y limosos, de estructura suelta, que son susceptibles de experimentar fuerte compresión volumétrica por efecto de carga combinada con una condición de saturación rápida. También se incluyen algunos comentarios sobre los métodos usados hasta hoy para el cálculo de asentamientos en los suelos friccionantes, en general.

m -2. Asentamientos en suelos plásticos compresibles

En el Capítulo X del Volumen I de esta obra se obtuvo la fórmula general que permite calcular el asentamiento por consoli­dación de un estrato de espesor H. Dicha fórmula es:

^ = T T 7 7 » <*■»>

En el caso en que los incrementos de presión (Ap) transmitidos al suelo varíen con la profundidad o en el que Ae/I + e0 varíe apre- ciablemente a lo largo del espesor del estrato, por ejemplo, por efecto de preconsolidación en parte de él, se hace necesario expresar la

49

5—Mecánica de Suelos II

Page 69: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

50 CAPITULO III

ec. 3-1 en forma diferencial y obtener el asentamiento total por un proceso de integración a lo largo del espesor del estrato.

Puede entonces escribirse:

A d z = Ae1 + e0

Lo cual, integrado da:A ^ = f A L_

Jo 1 + e0 d z

(3-2)

(3-3)

Considerando a la frontera superior del estrato compresible como origen de las z. La ec. 3-3 es la ecuación general para el cálculo del asentamiento total por consolidación primaria, supuesto un pro­ceso unidimensional de consolidación.

La ec. 3-3 sugiere un método simple de trabajo para valuar los asentamientos en un caso práctico dado (fig. III- l) .

Si se tienen pruebas de consoli­dación efectuadas sobre muestras inalteradas representativas de un estrato compresible a diferentes profundidades, se contará con una curva de compresibilidad para cada prueba, representativa del comportamiento del suelo a esa profundidad, (parte a de la fig.III- l) . Sobre esas gráficas podrá llevarse el valor de p0, presión actual efectiva del suelo a esa profundidad: con tal valor podrá obtenerse el correspondiente e0: a continuación, podrá llevarse, a par­tir de p0, el valor Ap, determinado según los métodos que se despren­den del Capítulo II y que repre­senta el nuevo esfuerzo efectivo que deberá aceptar la fase sólida del suelo cuando éste se haya consolidado totalmente bajo la nueva condición de cargas exterio­res, representada por la estructura cuyo asentamiento se calcula. La

ur ni. U ü J , Li •• j ordenada del valor p ~ p 0 + Ap FIG. III-l. Métodos para la obtención de . . \ r- i , - .la curva de influencia de los proporcionara la e final que, teori-

as en ta m ien io s camente, alcanzará el suelo a la

a = a h ■■ Curvo de inf luencto de o se n to m ie n to s

(bi

Page 70: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

profundidad de que se trate. Puede así determinarse Ae = e — e0 y, por lo tanto, Ae/1 + e„.

En la parte b de la fig. III-l se muestra la gráfica Ae/1 + e„ — z, que deberá trazarse una vez determinados sus puntos por el proce­dimiento anterior aplicado a las distintas profundidades.

Basta ver la fórmula 3-3 para notar que el área entre 0 y H bajo la gráfica anterior, llamada curva de influencia de los asenta­mientos. proporciona directamente el valor de AH.

En algunos casos especiales los asentamientos pueden calcularse con métodos que son simplificación del anterior. Por ejemplo, en el caso de un estrato compresible, homogéneo, de pequeño espesor, en que el coeficiente mv pueda considerarse constante para el inter­valo de presiones en que se trabaja, puede escribirse:

AH = f -7 —T“— dz — f mv. Ap.dz = mv [ Apdz (3-4)J 0 1 + e0 Jo Jo

La integral representa el área de incremento de presiones entre las profundidades 0 y H y puede calcularse gráficamente.

Si además Ap puede considerarse constante en el espesor tratado, la fórmula 3-4 se reduce simplemente a:

A// = mv Ap H (3-5)

La ec. 3-5 goza de una popularidad seguramente inmerecida,dadas sus limitaciones, no siempre tenidas en cuenta por los quela usan.

MECANICA DE SUELOS (II) 51

III-3. Método empírico para el trazado de la corva de compresibilidad

En algunas ocasiones no se tienen los datos pertinentes de con­solidación para poder proceder al trazado de la curva de compresi­bilidad. La causa más frecuente suele ser simplemente el no efectuar las pruebas de consolidación necesarias.

Él Dr. Terzaghi, a partir de investigaciones experimentales efec­tuadas por distintos investigadores y de otras propias, ha propuesto una correlación empírica que permite calcular el índice de compresi­bilidad Cc (ver párrafo X-3 del Volumen I de esta obra) a partir de las características de plasticidad del suelo. Como se discutió en el capítulo respectivo, la compresibilidad de los suelos aumenta con el límite líauido. De los resultados de los experimentos mencionados, Terzaghi propone la siguiente correlación para arcillas remoldeadas

Ce = 0.007 (LL - 10) (3-6)

Page 71: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Para arcillas inalteradas normalmente consolidadas, la ec. 3-6 se modifica de modo que el índice de compresibilidad Cc resulta alrede­dor de un 30% mayor:

Cc = 0.009 (LL — 10) (3-7)

Las ecs. 3-6 y 3-7 permiten trazar la curva de compresibilidad en el tramo virgen, de trazo recto en papel semilogarítmico, siempre que se conozca un punto de ella, que puede determinarse con la presión efectiva inicial actuante sobre una muestra dada y la relación de vacíos de la misma.

Debe notarse, sin embargo, que los investigadores reportan dis­crepancias del orden de ± 30% en las correlaciones anteriores y, a juicio de los autores, éstas podrían aún ser mayores, por lo cual de ningún modo debe pensarse que los métodos anteriores puedan subs­tituir hoy a los emanados de las pruebas de consolidación.

m -4. Asentamientos en suelos arenosos finos y limosos, sueltos

En la naturaleza es común encontrar depósitos eólicos cemen­tados o no, de estructura generalmente panaloide o simple, bastante suelta, constituidos por arenas muy finas o limos no plásticos. En muchos casos el cementante que actúa es el carbonato de calcio, siendo también frecuentes otros también solubles en agua; en otros casos, la simple tensión capilar del agua intersticial efectúa el mismo papel. El loess es un material típico de esta clase.

Es característico de estos suelos, el hecho de que al saturarse o alcanzar un alto grado de saturación entre en verdadero colapso su estructura, sobre todo bajo carga, con la consecuencia práctica de producirse un fuerte asentamiento brusco del estrato. Este fenómeno ocurre cuando el aguá de saturación disuelve el cementante existente o bien rompe la tensión capilar del agua intersticial previamente actuante. Es obvio que este hecho es grave para cualquier estructura sobreyaciente.

Aunque diversos especialistas han desarrollado métodos para es­timar estos asentamientos, es un hecho cierto que no existe una teoría general confiable que pueda aplicarse a estos fenómenos. El proce­dimiento más lógico para el cálculo de estos asentamientos es el tratar de duplicar en el laboratorio las condiciones de saturación que pue­dan llegar a presentarse en el campo. Así, podrán hacerse en labo­ratorio pruebas del tipo de la de consolidación, sobre muestras inalteradas del material, aplicando las cargas que actuarán en la obra y saturando por capilariaad la muestra en estas condiciones. Las mediciones efectuadas en esta prueba permitirán calcular la varia­ción de la relación de vacíos del material que haya tenido lugar y

52 CAPITULO III

Page 72: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

con ello poder hacer una estimación de los asentamientos en el campo. En los suelos predominantemente arenosos cabe mencionar que, compactando el material en el laboratorio de modo de obtener la e mínima, se puede llegar a calcular una cota superior del asen­tamiento que pudiera llegar a presentarse. En efecto, la e mínima, correspondiente al estado más compacto posible de esa formación en particular, comparada con la relación de vacíos natural, permitirá calcular el cambio en oquedad que pueda presentarse en el caso más desfavorable imaginable (por ejemplo, aquél en que, coexistiendo con las cargas permanentes actuantes, puedan presentarse otras de tipo transitorio, tales como vibraciones, sismos, etc. después de que el material se haya saturado). El procedimiento de cálculo, una vez obtenidos los valores Ae y e0, es totalmente similar' al empleado en el párrafo anterior para el análisis de la compresibilidad de arcillas; la fórmula a aplicar sería también la:

1 + e„

MECANICA D E SUELOS (II) 53

m-5. Cálculo de asentamientos por métodos elásticos

La Teoría de la Elasticidad permite resolver muchos problemas de deformación bajo muy diversas condiciones del medio elástico, siempre y cuando se hagan respecto a ese medio hipótesis de compor­tamiento, de tipo simplificatorio. Desgraciadamente, la naturaleza de tales hipótesis es tal que, salvo muy contados casos, las soluciones obtenidas para las diferentes condiciones bajo estudio tienen un valor muy discutible en su aplicación a los suelos. Sin embargo, la presentación de algunas soluciones específicas es útil, pues permiten, por lo menos, la valuación del orden de magnitud de los desplaza­mientos en algunos casos de interés que carecen de soluciones más apropiadas.

En el Anexo Ill-a se discute con mayor detalle algunas de las conclusiones a que puede llegarse usando la mencionada Teoría de la Elasticidad.

En primer lugar ha de mencionarse el hecho de que por ser los suelos no homogéneos y anisótropos, se apartan decisivamente de las hipótesis usualmente atribuidas al medio elástico. Sin embargo, el hecho más importante estriba en que los suelos no son elásticos y menos aún linealmente elásticos, como tendría que ser para caer en el campo de aplicabilidad de la mayoría de las soluciones teóricas. Lo que en los suelos pudiera considerarse módulo de elasticidad aumenta con la profundidad, al aumentar la sobrecarga impuesta; esto es particularmente importante en los suelos granulares. Por otra parte, la relación de Poisson es muy difícil de medir, aparte de que va­

Page 73: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ría con gran cantidad de factores y todo tiende a indicar que, en suelos, dicha relación no tiene el sentido específico que se le atri­buye en otros campos de la ingeniería y que, en el futuro, los con­ceptos E y p,, se substituirán por parámetros más representativos del comportamiento mecánico de los suelos.

En efecto, en relación a las citadas constantes elásticas pudiera decirse que, aún y cuando se aplique a los suelos el criterio, hoy tari extendido, de los esfuerzos efectivos, salvo en muy contadas excep­ciones, los valores de E y p, cambiarán constantemente, tanto con el nivel de esfuerzos aplicados al suelo, como con la velocidad de apli­cación de dichos esfuerzos, la historia previa de preconsolidación y de deformación y con otros factores de menor cuantía, de modo que se borra por completo la utilidad de tales parámetros, supuestos constantes, con mayor razón, en otros campos de la ingeniería.

Afortunadamente, sin embargo, pese a lo expuesto arriba, en muchos casos prácticos las distribuciones de esfuerzos que se obtienen mediante la aplicación de la Teoría de la Elasticidad, han resultado satisfactorias en sus confrontaciones con el experimento. (Por ejem­plo, véanse las experiencias de Plantema1.) Los desplazamientos, empero no resultan tan satisfactorios y, a menudo, se desvían defi­nitivamente de los observados, por lo que, en Mecánica de Suelos, a partir de distribuciones elásticas de esfuerzos, usadas frecuentemen­te, se prefiere desarrollar métodos propios para el cálculo de defor­maciones. El ejemplo clásico de tal proceder es el cálculo de asenta­mientos por consolidación en estratos de arcilla, con la Teoría de Terzaghi.

m -6. Cálcalo de expansiones

En muchos problemas prácticos, principalmente en lo que toca a aquellos casos en que el suelo es descargado, como en una exca­vación por ejemplo, es de interés poder determinar las expansiones que tienen lugar por la descarga efectuada. Esencialmente el pro­blema es parecido al del cálculo de asentamientos y, hasta cierto punto, con las ideas atrás expuestas se podría desarrollar un proce­dimiento similar para llegar a la meta propuesta. Sin embargo, la expansión presenta algunas peculiaridades dignas de señalarse y es conveniente discutir, con base en idealizaciones, algunos conceptos que no son evidentes, pero que pueden servir de base para analizar con buen criterio un caso real.

Considérese, primeramente, un suelo de superficie horizontal, arcilloso y homogéneo, antes de ser descargado.* Para facilidad de exposición se supone que el nivel freático coincide con la superficie del terreno. El estado de esfuerzos neutrales, efectivos y totales será el que se muestra con las líneas punteadas de la fig. III-2. Supóngase

54 CAPITULO III

Page 74: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 55

u P P

FIG . 111-2. Distribución de esfuerzos verticales bajo el fondo de una excavación deextensión infinita

ahora que se efectúa una excavación instantánea de profundidad h y de extensión infinita. La presión total removida será ym h y, con­secuentemente, el diagrama de presiones totales se reducirá en esa cantidad; como el estado de esfuerzos efectivos en la masa del suelo no puede cambiar instantáneamente, el agua que satura al suelo tomará la descarga, disminuyendo el diagrama de esfuerzos neutra­les también en la magnitud ym h . Como quiera que la presión original del agua a la profundidad h era y wh , la nueva presión a esa pro­fundidad, después de la excavación instantánea será:

y ,o h — y mh = — y 'm h

o sea que aparece en el agua una tensión igual a la presión efectiva a la profundidad h , que en este caso es el peso específico sumergido del suelo por dicha profundidad.

Debe notarse que, por ser la excavación de extensión infinita y por ser la nueva ley de presiones en el agua lineal y paralela a la original, esta nueva distribución de presión es hidrostática y, por lo tanto, de equilibrio, por lo que el agua no fluirá en ninguna direc­ción; por ello, el anterior estado de presiones neutrales, efectivas y totales se mantendrá en el tiempo y corresponderá tanto al momento inicial de la excavación, como a cualquier tiempo subsecuente. Las presiones efectivas, que se mantienen en el suelo, no permitirán, en este caso, ninguna expansión.

Al observar el diagrama de presiones en el agua después de la excavación (líneas llenas de la fig. III-2) se nota que el nivel al cual la presión neutral es nula (nivel freático) corresponde a la profundidad.

2U = — /> (3-8)Yw

Page 75: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Este abatimiento del nivel freático es, teóricamente, inmediato a la remoción del material excavado. Así, basta con excavar el sue­lo a la profundidad h (en extensión infinita) para lograr que el nivel freático se abata al valor h + z0 es decir, la profundidad z0 bajo el fondo de la excavación.

Supóngase ahora (fig. III-3) que en el subsuelo del caso anterior existiese un manto arenoso acuífero, en el que se mantenga la presión del agua. Si se realiza una excavación instantánea y de extensión infinita a la profundidad h, los diagramas de presiones inmediata­mente después de efectuada la excavación serán idénticos a los del análisis anterior, excepto en la zona del acuífero, en donde la presión neutral no cambia, pero la presión efectiva se verá disminuida en la magnitud f mh. Si d es la profundidad a que se localiza el acuífero, la nueva presión efectiva en la frontera superior de éste, inmediata­mente después de efectuada la excavación (t = 0) será:

;p = Y ’md — Y mh

56 CAPITULO III

FI& . 111-3. Distribución de esfuerzos verticales bajo e l fondo de una excavación de extensión infinita, con un manió acuífero

El valor mínimo a que puede llegar la presión efectiva en la arena es, evidentemente, cero. En este caso límite se tendrá la máxi­ma profundidad (h) a que puede llevarse la excavación, sin que la presión neutral en el acuífero (subpresión) levante el fondo, pro­vocando una falla. Esta profundidad será:

hCzit = — d (3-9)y TilEn la fig. III-3 se ha supuesto h < h C IÍt y en este caso, a partir

del instante de la excavación ( t = 0) se inicia un proceso de expan­

Page 76: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

sión tanto en el estrato arcilloso sobre el acuífero, como en la masa de arcilla subyacente; este proceso es producido por el flujo del agua que entra en la arcilla procedente del acuífero. Este proceso de ex­pansión aumenta las presiones neutrales en los estratos arcillosos, disminuyendo, correspondientemente, las presiones efectivas. En la fig. III-3 se han dibujado isócronas correspondientes a t = t, un instante intermedio del proceso; el estado final de las presiones en el estrato superior de arcilla dependerá de las condiciones de frontera en el fondo de la excavación; si se supone que toda el agua que aflora en el fondo de la excavación se drena conforme brota, el estado final estará dado por las lineas t — oo. En el estrato inferior, por ser semi-infinito, el proceso de expansión continuará indefinida­mente, si bien a velocidad decreciente y el estado final de presio­nes es el de las líneas t — oo, tal como se muestra en aquella zona en la misma fig. III-3.

El proceso de expansión analizado es sólo unidimensional y el flujo del agua es vertical. Por lo tanto, los datos obtenidos del tramo de descarga de una prueba de consolidación son, en principio, aplicables.

El bufamiento del fondo de la excavación en un tiempo t tiene, en un caso como el analizado arriba, dos componentes: el bufamien­to ocurrido en el estrato de arcilla de espesor finito que sobreyace al acuífero y el que corresponde a la masa semi-infinita situada debajo. En primer lugar se discutirá el proceso de expansión del estrato finito.

Un elemento de suelo a la profundidad z estará, antes de efectuar la descarga, sujeto a una presión efectiva p[ = y'mZ y pasará, al final de la expansión, a una presión p2, que puede determinarse como arriba se discutió. Si a una muestra representativa del suelo a esa profundidad z se le hace una prueba de consolidación, llegando a una carga máxima de pi y descargándola después a partir de ese valor hasta p2 como mínimo, en el tramo de descarga de la curva de com­presibilidad así obtenida podrá determinarse la variación Ae corres­pondiente al suelo en la descarga efectuada. Procediendo en forma análoga para otras profundidades se podrá dibujar la curva [Ae/ (1 -f- e0) ] — z, de influencia de los bufamientos, la cual cubre un área que, a la escala correspondiente, mide el bufamiento total del estrato finito. El bufamiento en el tiempo t podrá determinarse estu­diando la evolución de la expansión con el tiempo, en la misma forma en que previamente se estudió la del asentamiento primario (punto X - l l del Volumen I de esta obra).

Los conceptos av, mv y C„ de la Teoría Unidimensional de la Consolidación tienen sus correspondientes conceptos análogos a„„ mv, y C»s para la descarga, que pueden usarse en los mismos casos

MECANICA DE SUELOS (II) 57

Page 77: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

58 CAPITULO III

y en forma análoga a la discutida en el Volumen I de esta obra (Capítulo X ) y en este mismo capítulo.

En cuanto a la masa semi-infinita colocada bajo el acuífero, su bufamiento total será, teóricamente, infinito, por lo que sólo tiene sentido práctico calcular el bufamiento para un tiempo finito t. La expresión (10-d .l) del Anexo X-d del Volumen I de esta obra, permite efectuar ese cálculo, usando ahora el av„ correspondiente a la descarga del suelo.

Nótese que el punto clave para que la expansión pueda tener lugar está en el hecho de que el acuífero mantenga su presión neutral; si, por algún método artificial, esta presión se abate al valor ymh, (fig. III-3) el proceso de expansión no podrá tener lugar. Esto se puede realizar en la práctica por medio de pozos en que se bombee la cantidad adecuada de agua del acuífero; así se logrará convertir este caso en otro, análogo al primeramente tratado en esta sección, en que no existía ningún acuífero. En el Volumen III de esta obra se tratará detalladamente este método, hoy tan difundido en la práctica.

Si en el caso ahora analizado el acuífero fuese un sistema hidráu­licamente cerrado, es decir, que careciese de una fuente de agua (por ejemplo, el caso de una lente arenosa de extensión finita), la presión neutral en el estrato arenoso bajará instantáneamente al salir el agua y el proceso de expansión no se verificará (en realidad, por ser el agua incompresible teóricamente, bastará que salga cualquier cantidad de agua, por poca que sea, para aliviar la presión neutral en el estrato de arena); este caso se vuelve, así, similar al primero tratado en esta sección, en el que se tenia una masa de suelo arcilloso homogénea.

En las obras reales no se tienen, naturalmente, excavaciones de extensión infinita. Las ideas anteriores, sin embargo, constituyen la base del criterio para discutir las excavaciones finitas, más o me­nos idealizadas. En la fig. III-4 se muestra el caso de una excavación finita realizada en un medio arcilloso homogéneo; el nivel freático

se considera a una profundidad_ . J s . ______ EXCAVACION DE

EXTENSIÓN FINI IA.h0 a partir de la superficie. En

►— este caso, el efecto de la exca­po rodioi vación no será uniforme en todo

el manto en lo que a disminu­ción de presiones totales se re-

s * / \ fiere, sino que esta disminuciónf I ^ habrá de ser estimada en los di-

f \ ferentes puntos usando la Teo­ría de Boussinesq, por ejemplo.

Fimo pío funda En una primera aproximaciónFIG. II1-4. E sc u e la del flujo de aguo Podrá af™ r s e q u e lo que dis-

hacia una excavación de ex- minuye la presión neutral entensión finita cada punto de la masa será lo

Page 78: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

que disminuya la presión total (recuérdese el primero de los dos casos de excavación infinita arriba tratados); por ello, la presión neutral disminuirá más en las zonas centrales de la excavación y en los niveles próximos al fondo y estas disminuciones serán cada vez menores según se alcancen los bordes de la excavación (o fuera de ella) y según se profundice en la masa de arcilla homogénea. Esto da origen a un flujo de agua del exterior hacia el centro y de las zonas profundas hacia el fondo de la excavación (fig. III-4).

La masa de suelo bajo la excavación se expandirá, por lo tanto, más en el centro del fondo de ésta y la expansión irá disminuyendo hacia la periferia. Según ya se dijo, por lo general la permeabilidad es mayor en la dirección horizontal que en la vertical en depósitos naturales de arcilla, por lo que el flujo radial hacia la excavación influye más en la expansión que el vertical, proveniente de zonas profundas. Ha de hacerse notar en forma muy predominante que el simple hecho de efectuar la excavación en la masa arcillosa dismi­nuyó las presiones neutrales bajo ella y si se llama nivel freático al lugar geométrico de los puntos en que la presión neutral es nula (con origen de presión en la atmosférica), este nivel se habrá abati­do por sí mismo aún más abajo que el fondo de la excavación al efectuar ésta.

Si bajo el fondo de la excavación hay estratos permeables de

Sran extensión que funcionen como abastecimientos de agua, éstos arán que el proceso de expansión sea mucho más rápido (revísense

las ideas correspondientes al segundo caso discutido de excavación infinita). Para reducir a un mínimo la velocidad de expansión en el fondo de una excavación se ha recurrido en la práctica a lo que resulta obvio tras haber discutido los casos de excavación de exten­sión infinita; en primer lugar se han usado tablestacados más o menos profundos en los bordes de la excavación, lo cual impide el flujo radial y permite sólo el vertical, mucho más lento; en segundo lugar se ha recurrido al uso de pozos de bombeo y otros métodos (electrós- mosis, por ejemplo) para abatir las presiones neutrales en puntos específicos y en las zonas próximas a ellos, a fin de constituir una verdadera pantalla de depresión en torno a la excavación que inter­cepte el flujo horizontal. Como quiera que estas excavaciones nor­malmente son provisionales y se construyen para existir durante un tiempo relativamente breve, se logra así que en ese tiempo la expan­sión no alcance valores de consideración.

El hecho de que en suelos permeables, como las arenas y las gra­vas, se tenga que recurrir literalmente a abatir el nivel freático para poder efectuar una excavación en seco, ha hecho pensar frecuen­temente que esto debe lograrse también en arcillas, sin tomar en cuenta que, en estos materiales, el nivel freático baja por sí mismo cuando se excava.

MECANICA DE SUELOS (II) 59

Page 79: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Las excavaciones reales no son instantáneas, sino que se efectúan en un lapso de tiempo. Esto no invalida los razonamientos anteriores; lo que sucede es que los abatimientos de presión neutral ocurrirán según la descarga se efectúa.

ANEXO Ill a Métodos elásticos para el cálculo de asentamientos

Estos métodos tienen una aplicación m'uy limitada en la práctica de la Mecánica de Suelos, por los motivos expuestos en el cuerpo de este capítulo. Una de sus aplicaciones podría ser el cálculo de los asentamientos instantáneos que ocurren al actuar una carga en un suelo que pudiera considerarse homogéneo, elástico e isótropo. Entre estos suelos se cuentan por ejemplo algunas arcillas preconsolidadas o normalmente consolidadas cuando el espesor del estrato no es muy grande y también aquellos materiales arcillosos cementados que prác­ticamente no se consolidan, debido a la acción del cementante.

En materiales granulares estos métodos no son aplicables, por no cumplirse definitivamente las hipótesis aceptadas, sobre todo las referentes a las constantes elásticas. En arenas, lo que pudiera considerarse el módulo de elasticidad, aumenta con el confinamiento, es decir, con la profundidad, y crece también en las zonas centrales de las áreas cargadas, por efecto análogo. Análogamente, lo que pudiera considerarse la relación de Poisson varía con la compacidad de la arena y con la magnitud y el tipo de los esfuerzos aplicados, fundamentalmente.

III-a.l. Asentamiento elástico bajo una carga concentradaSi se tiene una carga vertical concentrada actuando en la fron­

tera de un medio elástico semi-infinito, se ha tratado de estimar en ocasiones el asentamiento bajo la carga, siguiendo un método aproxi­mado basado en la fórmula de Boussinesq para el esfuerzo normal vertical ( fórmula 2-1). El análisis que sigue supone que el efecto de los esfuerzos restantes es despreciable.

Se sabe que:

3 P z3» - = 2 ñW<2' »

Para puntos bajo la carga R = z, por lo tanto:__ 3 P 1~ 2% z*

Aplicando la Ley de Hooke en su forma más simple, correspon­diente a un estado monoaxial de esfuerzos, se tiene :

60 CAPITULO III

Page 80: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

dp = dz

En donde dp representa la deformación vertical del elemento dz a la profundidad z bajo la carga. Integrando la expresión anterior entre z e oo ( suponiendo estrato de profundidad infinita)

MECANICA DE SUELOS (II) 61

3P [ d z _ 3P T 1 I o2tiB \ z2 2■kE |_ z J

J s

• = s t b t < 3 - a l )

Nótese que la integración fue hecha a partir del nivel z — z hacia abajo, para evitar la singularidad que presenta la fórmula de Boussinesq inmediatamente bajo la carga.

La fórmula obtenida por Boussinesq para el desplazamiento ver­tical de un punto a la profundidad z y radio vector R es:

P = 2 Í F 1 + ^ [ 2 1 ~ ^ + ( / ? ) 1 ~R (3' a-2)donde p es la relación de Poisson.

Para puntos bajo la carga, la ec. 3-a.2 se reduce a

P ~ 2kÉ z ^ + — 2P-) (3-a.3)

Debe notarse que la ec. 3-a.l coincide con la 3-a.3 para p = 0.5. Todas las fórmulas anteriores dan el asentamiento elástico bajo

la carga, no debido a consolidación.

m -a.2. Asentamientos elásticos bajo cargas distribuidas

Se considera en primer lugar el caso de una superficie circular uniformemente cargada (flexible), en la frontera superior de un medio semi-infinito, elástico, homogéneo e isótropo. D será el diáme­tro de la superficie y p la magnitud de la presión superficial aplicada.

La deformación vertical bajo el centro del área cargada está dada por:

S c = d - p 2) | - D (3-8.4)y en los puntos de la periferia por:

8P = — ( l - p 2) £ D (3-a.5)7T E

Page 81: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El asentamiento promedio del área circular resulta igual a:

5" = ¿ ( 1 - H 2) J - D (3-a.6)

En el caso de una placa circular rígida, con carga total P, la carga media por unidad de área resulta

Ppm - w

Donde R es el radio de la placa. El asentamiento bajo cualquier punto de la placa está dado por:

= - p 2) ^ D (3 -a .7 )

donde D = 2R.Para cargas distribuidas sobre superficie rectangular flexible,

Steinbrenner 2 resolvió el problema del cálculo de asentamientos bajo una esquina del rectángulo cargado. El asentamiento elástico entre la superficie y la profundidad z queda dado por:

p, = -jjr (1 - p2)[~Z, ln B-+ S 4-£ h b + v l 2 + b 2 +z2)

62 CAPITULO III

+ S l n - A ± V H Z ^ Z I Z . | +B (L + y/L2 + B2 + z2) - ]

p LB+ a g H - 1 - W * “ » < » + > + <3' a'8)

Lo cual puede escribirse:

?z ~ ~ + ^ ~ l1 ~ 2P2)^*] = (3-a.9)

donde F t y E 2 son funciones de z/B y L/B, con z profundidad en el suelo, B ancho y L longitud del cimiento. En la fig. III-a.l .a, aparece una gráfica que proporciona los valores de F 1y F 2 y en la parte b de la misma figura, una gráfica que da directamente el valor de Eji, para el caso particular de p = 1 /3.

Si el suelo es homogéneo en toda la masa, el asentamiento elás­tico total podrá obtenerse con las fórmulas anteriores, haciendo z = oo. Si existe una estratificación con cotas zu z2, etc. y módulos

Page 82: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

(q)

« i 3 0 S 3 H 0 1 S A

(D)

(-----) Á. (-----) 'J 30 S3a03»A

m|íD

Page 83: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 84: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de elasticidad Ei, E 2. etc., se podrá hallar el asentamiento total por suma de los parciales de cada capa. El método de disposición de los cálculos se reputa como obvio. El procedimiento tiene el gran defecto de no tomar en cuenta la influencia de las distintas rigideces en la distribución de los esfuerzos. En la ref. 3 aparece un ábaco modifi­cado de los resultados de Steinbrenner y de maaejo aún más sen­cillo (gráfico de López Nieto).

MECANICA DE SUELOS (II) 63

REFEREN C IA S

1. Plantema, G. — Soil Pressure measurements during loading tests on a tunway— Proc. Zurich (3-15).

2. Steinbrenner — Tafeln zur Setzungsberechnung — Die strasse"— 1934.3. Jiménez Salas, J. A. — Mecánica del Suelo. Apéndice 14 — Editorial Dossat

— 1954.4. Juárez Badillo, E. — Notas no publicadas para clases — Se cubren las ideas

expuestas en todo el párrafo III-6 — México, D. F .— 1961.

BIBLIO GRAFIA

J.Theoretical Soil Mechantes—K. Terzaghi—John Wiley and Sons—1956.^ S oil Mechanics, Foundations and Earth Structurcs — G. P. Tschebotarioff —

, McGraw-Hill Book Co.— 1957. .Mecánica del Suelo—J. A. Jiménez Salas—Ed. Dossat—1954.

* Traité de Mecanique des Sois — J. Caquot y J. Kerisel — Gauthier-Villars— 1956. ✓ Meccanica del Terreno e Stabilitá delle Pondazioni — C. Cestelli-Guidi — Ulrico

Hoepli Ed. — 1951.

Page 85: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 86: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

PRESION DE TIERRAS SOBRE ELEMENTOS DE SOPORTE

C A P IT U L O IV

IV-1. Introducción

En este capítulo se trata el importante tema de la determinación de las presiones que la tierra ejerce sobre elementos de retención en­cargados de soportarla. En la actual ingeniería se usan generalmente dos tipos de elementos de soporte: los rígidos y los flexibles. Los primeros serán denominados aquí genéricamente muros y los se­gundos tablestacas. Los muros se construyen generalmente de mani­postería o de concreto, simple o reforzado. Los tablestacas suelen ser de acero. Aparte, se dará atención al estudio de ademes de madera o metálicos en cortes y excavaciones.

Un muro diseñado con el propósito de mantener una diferencia en los niveles del suelo de sus dos lados se llama de retención. La tierra que produce el mayor nivel se llama relleno y es el elemento generador de presión. Este tipo de muros constituye un muy impor­tante grupo de elementos de soporte. En la fig. IV-1 se ilustra la nomenclatura usual en muros de retención y los principales usos de éstos.

El primer intento para calcular la presión de tierras sobre ele­mentos de soporte con metodología científica fue realizado por Ch. A. Coulomb,1 sobre la hipótesis de que la tierra es incompresi­ble, que su deformación antes de la falla es despreciable y que la falla ocurre a lo largo de superficies planas de deslizamiento: la resistencia al esfuerzo cortante del suelo fue, naturalmente, inter­pretada por Coulomb por medio de su propia ecuación

s = c + cr tg <¿>

Las teorías y métodos de cálculo expuestos por Coulomb atraje­ron gran atención de parte de todos los ingenieros cuyas prácticas, hasta entonces ciegamente empíricas, frecuentemente culminaban en fracasos, y desde entonces su influencia ha sido notoria en el campo teórico inclusive hasta nuestros días. De hecho puede decirse que desde la época en que las ideas de Coulomb fueron publicadas las concepciones de los ingenieros sobre los fenómenos de presión de tierra no sufrieron variación apreciable, hasta hace sólo algunos años, en que los avances generales de la Mecánica de Suelos introdujeron6—Mecánica de Suelos II

65

Page 87: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

66 CAPITULO IV

NO M ENCLATU RA EN MUROS DE R E T E N C IO N . R R O C A R R IL .

Evpnldo Relleno

SECCIO N EN BALCO N PARA UN CAMINO O UN F E

ALM ACEN AM IEN TO DE M A TER IA LES ORANULARES

MURO DE R E T E N C IO N PARA AO UAY T IE R R A . MURO SEPA RAD O R EN L A TRAN SICIO N E N T R E 2

SE C C IO N E S DE P R E S A .

FIG. IV-1. Nomenclatura y usos comunes de muros de retención

ideas nuevas en este campo específico. Sin embargo es un hecho his­tórico aleccionador el que las ideas de Coulomb, atractivas teórica­mente, no condujesen en la práctica ingenieril a técnicas que aven­tajasen a sus predecesoras, pues entre teoría y realidad se marcó un

Page 88: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

claro divorcio. El problema estribó en una cuestión de interpretación de las teorías a la luz de la práctica; en efecto, durante años se aplicaron las ideas de Coulomb sobre la base de que el valor del ángulo <¡¡ era, en cualquier caso y material, el ángulo de reposo del suelo.

Posiblemente el más importante responsable de la larga carrera del concepto de ángulo de reposo en estas cuestiones de Mecánica de Suelos lo fue W . J. M. Rankine2 y, aunque Collin y Darwin3’ 4 7 5 demostraron experimentalmente que, por lo*menos en algunos casos, el ángulo de fricción interna de un suelo podía diferir tremendamente del de reposo, el uso de este último en la ecuación de resistencia con­tinuó por largo tiempo, debido a la autoridad del citado Rankine.

Como resultado de investigaciones más recientes se puso de mani­fiesto la falacia inherente al concepto ángulo de reposo. Así en arenas colocadas a volteo, el ángulo de reposo pudiera coincidir más o menos con el 4> correspondiente al estado suelto, pero diferirá seriamente del <f> de una arena compacta. En arcillas, un criterio ciego pudiera llevar a decir, a la vista de un pequeño corte casi vertical en equilibrio, que <j>, interpretado como ángulo de reposo, tuviese valores cercanos a los 90°, lo cual, a todas luces, conducirá a resultados absolutamente erró­neos en cualquier aplicación práctica en que la resistencia de la arcilla se interprete a partir de tal dato. Huelga decir que la interpretación que hoy se da al concepto ángulo de fricción interna, <¡>, coincide con la expuesta en el capitulo correspondiente a resistencia al es­fuerzo cortante en suelos, incluido en el primer volumen de esta obra.

Con la interpretación actual en lo referente a los parámetros de resistencia, muchas de las teorías de presión de tierra clásicas perma­necen hoy en la aplicación de la Mecánica de Suelos a los problemas prácticos. Así es frecuente en la actualidad ver estructuras de soporte que han sido diseñadas a partir de las teorías expuestas por Rankine y Coulomb. Tales teorías, según tendrá ocasión de discutirse, distan de ser óptimas y están afectadas de hipótesis que están lejos de repre­sentar un ideal de perfección, en lo que se refiere al acercamiento con la realidad; pero, en muchos casos, son las de más fácil aplicación y su manejo, en principio, resulta animador para los ingenieros, en el sentido de que parecen no exigir un criterio de especialista muy desarrollado. Esta sensación, común por otra parte a todas las teorías ingenieriles cuyo desarrollo matemático sea más o menos completo, es en muchos casos engañosa y representa un peligro práctico. Todo indica que no está lejano el día en que el crecimiento de la Mecánica de Suelos permita el abandono de las Teorías de Rankine o de Cou­lomb y su substitución por otras teóricamente más satisfactorias; sin embargo, tal día probablemente aún no ha llegado y la investigación copiosa que hoy se realiza sobre el tema aún no ha producido una

MECANICA DE SUELOS (II) 67

Page 89: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

teoría o teorías de uso universal y de desarrollo académicamente ade­cuado para el nivel de la enseñanza. Por ello, en lo que sigue se encontrarán muchas ideas y estudios clásicos, aunque se procurará dar alguna orientación respecto a la dirección de los avances del momento.

68 CAPITULO IV

IV-2. Fuerzas que intervienen en el cálculo de un muro de retención

En general, las fuerzas actuantes contra un muro de retención en el cual la sección estructural se mantenga constante a lo largo de un trecho considerable, pueden calcularse para un segmento uni­tario de muro en la dirección normal al plano del papel, generalmente un metro. De hecho, cuando en lo que sigue no se mencione la lon­gitud de muro sujeta a análisis, se entenderá que se trata de 1 m.

Cuando se analice un mu­ro acartelado o con machones o contra-fuertes, generalmen­te se refieren los cálculos al segmento de muro compren­dido entre dos planos norma­les trazados por el centro de los mencionados elementos.

A continuación se anali­zan las diferentes fuerzas que deben tomarse en cuenta en el cálculo de un muro que, por simplicidad, se supone trape­cial, fig. IV-2.

Estas fuerzas son:FIG. IV-2. Esquema que muestra las fuena, prín- a ) E J p e so p r o p i o d e ]

cipotes que actúan sobre un muro de r t*retención m u ro .

Esta fuerza, que actúa en el centro de gravedad de la sección, puede calcularse cómodamente subdividiendo dicha sección en áreas parciales de cálculo sencillo

b) La presión del relleno contra el respaldo del muro, con su correspondiente intensidad y distribución.

c) La componente normal de las presiones en la cimentación, (fig. IV -2).

Usualmente se considera a la presión en la cimentación como Unealmente distribuida a lo largo de la línea AC, dando lugar a un

Page 90: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

diagrama trapecial. La resultante vertical de estas presiones {ZV) actúa en el centro de gravedad de tal diagrama.

d) La componente horizontal de las presiones en la cimentación.La resultante de estos efectos horizontales se representa en la

fig. IV-2 como ZH. La distribución de estas presiones horizontales, no dibujada en la mencionada figura, se supone análoga a la de las presiones normales en arenas y uniforme en suelos plásticos.

e) La presión de la tierra contra el frente del muro.El nivel de desplante de un muro de retención debe colocarse

bajo la zona de influencia de las heladas y a nivel que garantice la adecuada capacidad de carga del terreno. Así, la tierra colocada en el frente del muro ejerce una resistencia, indicada en la figura mul- ticitada por E ’\ sin embargo, esta fuerza suele omitirse en los cálculos en algunas ocasiones, a causa de ciertas incertidumbres que pudieran existir en lo relativo a su magnitud en un caso práctico.

f) Fuerzas de puente.Se incluye aquí el conjunto de fuerzas actuantes sobre el muro,

si éste forma parte, por ejemplo, de un estribo de puente. El peso propio de los elementos de puente, las fuerzas de frenaje, centrífu­gas para puente en curva, etc., deben ser consideradas.

g) Las sobrecargas actuantes sobre el relleno, usualmente unifor­memente distribuidas o lineales.

h) Las fuerzas de filtración y otras debidas al agua.Si se permite la acumulación, de agua tras el muro generará pre­

siones hidrostáticas sobre él, independientes de la calidad del relle­no, pero en este caso, por otra parte, se reduce la presión debida a la tierra por efecto del peso específico sumergido. Sin embargo, esta condición debe siempre ser evitada, instalando en el muro el drenaje adecuado que garantice la eliminación eficiente de las aguas. Si en un relleno arcilloso existen grietas cercanas al muro y el agua las llena, podrá ejercer, en la correspondiente profundidad, empujes hidróstáticos contra el muro. Si a través del relleno se establece un flujo, por ejemplo por lluvia, la condición de presiones contra el muro puede hacerse más desfavorable, por lo que será preciso analizar la condición de flujo, tomando en cuenta la presencia de fuerzas de filtración.

i) Las subpresiones.Cuando el drenaje bajo el muro no es correcto o ha sufrido

desperfecto, puede almacenarse agua en aquella zona. Si la cimenta­ción es impermeable, el agua puede fluir a lo largo de ella emergiendo a la superficie del suelo en el frente del muro; en estas condiciones puede haber riesgo de tubificación. En cimentaciones permeables, el

MECANICA DE SUELOS (II) 69

Page 91: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

agua que sale a la superficie puede ser poca, pero en todo caso se producirán presiones de agua contra los materiales constituyentes del muro (subpresiones); la distribución de estas subpresiones aparece en la fig. IV-2.

j) La vibración.Las vibraciones producidas por el paso del tráfico sobre caminos

o ferrocarriles, máquinas u otras causas, pueden incrementar las presiones contra muros cercanos. Ello no obstante no es frecuente introducir estos efectos en los cálculos comunes por lo pequeños. A veces puede convenir tomar en cuenta la vibración haciendo 8 = 0.

k) El impacto de fuerzas.Ciertas causas externas, tales como movimiento de vehículos y

otras pueden producir impacto sobre el relleno de un muro. Estos efectos tienden a ser rápidamente amortiguados por el propio relleno y no suelen tomarse en cuenta.

I) Los temblores.El efecto de los movimientos sísmicos puede ser el aumentar

momentáneamente la presión lateral contra un muro. El efecto no suele ser de gran consideración, pero en zonas críticas puede tomarse en cuenta incrementando los empujes calculados en un 10%.

m) La acción de las heladas.Cuando el drenaje de los rellenos no es adecuado, la parte

superior del mismo puede saturarse y en condiciones climáticas apro­piadas el agua puede helarse. Esto puede producir expansiones de cierta importancia en el relleno sobre el muro y este efecto pue­de hacerse notable cuando se repite frecuentemente. Estos efectos se evitan con drenaje apropiado.

n) Las expansiones debidas a cambios de humedad en el relleno.Estos problemas son frecuentes en rellenos arcillosos en los que

la expansión produce un aumento en las presiones laterales sobre el muro; este aumento de las presiones está limitado por las condiciones de fluencia del muro.

Cuando el suelo se seca, se contrae y la presión disminuye corres­pondientemente. La reiteración de estos procesos puede ser perjudi­cial. El efecto suele presentarse más intensamente en la superficie del relleno, decreciendo con la profundidad, de modo que rara vez se manifiesta abajo (¿le 1.5 m aproximadamente, bajo la superficie del relleno.

No hay ningún método seguro para calcular los incrementos de presión producidos por estos fenómenos, que pueden evitarse en gran parte con estratos horizontales de material grueso, que actúe como dren.

70 CAPITULO IV

Page 92: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 71

En este capítulo se estudiará únicamente el modo de calcular los empujes laterales que puedan ejercerse entre el relleno y el ele­mento de soporte, sin considerar otras fuerzas.

IV-3. Estados “plásticos” de equilibrio. Teoría de Rankine en suelos friccionantes

Considérese un elemento de suelo de altura dz situado a una profundidad z en el interior de un semiespacio de suelo en “reposo” (es decir sin que se permita ningún desplazamiento a partir de un estado natural, que es lo que en lo sucesivo se entendrá por "reposo” en este capítulo); sea la frontera del semiespacio horizontal ( fig. IV -3). En tales condiciones la presión vertical efectiva actuante sobre la estructura del elemento es:

Pv — y z (4-1;Donde y es el peso específico correspondiente al estado en que

se encuentre el medio.Bajo la presión vertical

actuante el elemento de suelo se presiona lateralmente ori­ginándose así un esfuerzo ho­rizontal, ph, que, con base en la experiencia, se ha acepta­do como directamente pro­porcional a pv.

j —dz

+ —•ph= >ioyí

FIG. IV-3. Esfuenos actuantes sobre un elemen­to de suelo en "reposo"

pn = K0y z (4-2)

La constante de propor­cionalidad entre pv = y z y

Ph se denomina coeficiente de presión de tierra en reposo y sus valores han sido obtenidos experimentalmente en laboratorio y en el campo, observándose, que, para suelos granulares sin finos, oscilá entre 0.4 y 0.8. El primer valor corresponde a arenas sueltas y el segundo a arenas intensamente apisonadas; una arena natural com­pacta suele tener un K0 del orden de 0.5.

Si se representa en el diagrama de Mohr el circulo correspon­diente al estado de esfuerzos descrito para el elemento mencionado (fig. IV-4) se obtendrá un círculo tal como el 1, que evidentemente no es de falla.

A partir de estas condiciones de esfuerzo en “reposo” se puede llegar a la falla por dos caminos de interés práctico. El primero con­sistirá en disminuir el esfuerzo horizontal, manteniendo el vertical constante; se llega así al círculo 2 de falla, con un esfuerzo principal menor c3 = KA y z, donde KA se denomina coeficiente de presión acti-

Page 93: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

72 CAPITULO IV

va de tierras; nótese que este esfuerzo tr3 corresponde en este círculo a la presión horizontal, pues, por hipótesis, el esfuerzo principal mayor correspondiente es yz o presión vertical debida al peso del suelo sobreyaciente sobre el elemento. El segundo camino para llevar a la falla al elemento en estudio consistirá en tomar al esfuerzo yz como el principal menor, aumentando por consiguiente ahora la pre­sión horizontal hasta llegar a un valor Kp y z, tal que el círculo resul­tante sea tangente a la línea de falla. El valor Kp recibe el nombre de coeficiente de presión pasiva de tierras.

Las dos posibilidades anteriores son las únicas de interés práctico para llegar a estados de falla a partir del de "reposo”, puesto que respetan el valor yz de la presión vertical, que es una condición natural del problema, por lo menos en un primer análisis simplificado.

De acuerdo con Rankine se dirá que un suelo está en estado plástico cuando se encuentra en estado de falla incipiente generali­zado. Asi, de acuerdo con lo anterior, caben dos estados plásticos prácticos. El que se tiene cuando el esfuerzo horizontal alcanza el valor minimo Kayz y el que ocurre cuando dicha presión llega al valor máximo Kpyz. Estos estados se denominan respectivamente activo y pasivo.

En el estado plástico activo, (fig. IV-4) evidentemente se tiene:

* (4-2)pv o-i N*

(ver fórmula 11-23, en el Volumen I de esta obra).

Page 94: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Se ve entonces que

K‘ = W = w ( « ° - í ) <4-3>Expresión que da el valor del coeficiente activo de presión de

tierras.Análogamente, en el estado plástico pasivo se tendrá:

— = — = t¿ - (4-4)p v 0-3 N<p

(ver fórmula 11-22, en el Volumen I de esta obra). Y resulta:

Kv = N* = tg2 («5° + £ } (4-5)

para el coeficiente pasivo de presión de tierras.Los dos casos de estados plásticos anteriores parecen tener una

correspondencia con la realidad ingenieril que los hace de interés práctico.

Considérese un muro cuyo relleno se supone originalmente en “reposo”. Dicho muro podrá físicamente ser llevado a la falla de dos maneras. Una por empuje del relleno, cediendo la estructura hacia su frente: otra, por acción de algún empuje exterior, incrustándose el muro en el relleno y deformándose hacia su espalda.

Rankine pensó que, bajo el empuje del relleno, el muro cede y se desplaza, disminuyendo la presión del relleno a valores abajo del correspondiente al “reposo”; esto haría que la masa de suelo desarro­lle su capacidad de autosustentación, por medio de los esfuerzos cortantes generados. Si el muro cede lo suficiente, la presión horizon­tal puede llegar a ser la activa, valor mínimo que no puede disminuir­se aun cuando el muro ceda más a partir del instante de su aparición.

Así, podría razonarse que, con tal de proyectar un muro para resistir la presión activa, se garantizaría su estabilidad, siempre y cuando el muro pudiese ceder lo suficiente como para que se desarro­lle, en última instancia, dicha presión activa.

Análogamente se podría razonar para el caso en que el muro se desplace hacia su respaldo bajo una fuerza exterior suficiente como para que llegue a desarrollarse la presión pasiva, en cuyo caso podrá diseñarse la estructura contando con la máxima resistencia del suelo.

Aplicando conceptos expuestos en el Capítulo XI del Volumen I de esta obra, puede llegar a determinarse la inclinación de las 1ín<>a«; de fluencia de una masa de suelo sujeta a cualquiera de los dos estados “plásticos" aquí analizados. En efecto, según se vio, en un elemento de suelo sujeto a un esfuerzo principal mayor vertical

MECANICA DE SUELOS (II) 73

Page 95: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

74 CAPITULO IV

o-! y a uno menor horizontal cr3, la línea de fluencia se presenta a un ángulo de 45° + <j>/2 respecto a la dirección del esfuerzo principal menor, supuesta válida la hipótesis de falla de Mohr-Coulomb. En la fig. IV-5 se muestran las líneas de fluencia obtenidas en cada caso; la obtención se explica en los croquis que aparecen en la parte superior.

(a)

i « i * p .

■yp»(b)

1 »•>-

A C T IV O

FIG. IV-5. Lineas de fluencia en los estados de equilibrio "plástico"

Debe notarse cuidadosamente que las fórmulas o ideas expuestas valen sólo para el caso en que la superficie del relleno de tierra sea horizontal y el paramento del muro vertical. Para superficie de relle­no en plano inclinado se analizan los estados de equilibrio “plástico” en el Anexo IV-a.

IV-4. Fórmulas para los empujes en suelos friccionantes. Hipótesis para su aplicación

Si las expresiones para las presiones activa y pasiva, dentro de la Teoría de Rankine, obtenidas para una profundidad z, se integran a lo largo de la altura H de un muro de retención, podrán obtenerse los empujes totales correspondientes. El procedimiento implica la suposición de que los estados plásticos respectivos se han desarrollado

Page 96: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

totalmente en toda la masa del relleno, es decir, que el muro se ha deformado lo necesario.

Así, para el estado plástico activo podrá escribirse, con base en la ec. 4-2:

P » Y Z t A £L\

P* = W = tt ; (4 ' 61

Expresión que da la presión horizontal actuante sobre el muro a la profundidad z, para el caso de relleno con superficie horizontal.

En un elemento dz del respaldo del muro, a la profundidad z, obra el empuje.

dE* = ~W ^zdz

Supuesta una dimensión unitaria normal al papel; por lo tanto en la altura H el empuje total será:

a = 7 ^ J > = 2 7 T ’ 'H- = 4 - JC .TH . (4.7)

La expresión 4-7 da el empuje total activo ejercido por un relleno de superficie horizontal contra un muro de respaldo vertical.

En forma análoga, para el estado plástico pasivo, a partir de la fórmula 4-4 se llega al valor del empuje pasivo total:

E P = ¿N tY H * = l- K PyH* (4-8)

Válida también para muro de respaldo vertical y superficie de relleno horizontal.

Para efectos de cálculo de la estabilidad del muro, considerado como un elemento rígido, el volumen de presiones puede considerarse substituido por sendas fuerzas concentradas, cuya magnitud queda dada por E A y E P; dada la distribución lineal que para ambas presio­nes se tiene en la Teoría de Rankine, se sigue que el punto de apli­cación de tales fuerzas está a un tercio de la altura del muro contado a partir de la base.

Desde luego ambas fuerzas resultan horizontales en el caso hasta aquí tratado.

En el caso de que la superficie del relleno sea un plano inclinado a un ángulo ¡3 con la horizontal, las presiones anotadas para los casos activo y pasivo en el Anexo IV-a, permiten, por un proceso de integración análogo al arriba efectuado, llegar a las expresio­nes de los empujes activo y pasivo. Estas expresiones son:

MECANICA DE SUELOS (II) 75

Page 97: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

c 1 7 j., f „ cosS — V c o s2S — cos-<¿>“] . .£ a = t t ^ 1 C O S 0 r Z. (4 -9 )

2 |_ cos0 + y c o s -0 — cos2<£j

E . = ± . , f f fcosg j g g I (4-10)¿ L COS0 — V COS23 — COS~<jjJ

E n vista de que las distribuciones de presión también son lineales y su dirección es paralela a la superficie del relleno, las resultantes serán paralelas a la superficie del relleno y estarán aplicadas a un tercio de la altura del muro, a partir de su base.

N ótese que para 0 = 0 las fórmulas 4 -9 y 4 -1 0 se reducen alas (4 -7 ) y (4 -8 ) , respectivamente.

U n caso práctico de interés es el que resulta de considerar la superficie del relleno, supuesta horizontal, sujeta a una sobrecarga uniformemeñte distribuida, de valor q. Este caso puede analizarse, para el estado plástico activo, como sigue:

Se vio que, en este caso:

0"S _ 1 JV"a i. N<p

Al obrar la sobrecarga q, el esfuerzo vertical se transforma en:

ffi* = ffi + qy el horizontal en:

= t r 3 -t- A<t3

por lo tanto, podrá ponerse

1 _ ffs + Acr3ffi + q

de donde

ffs + Ao-3 = 4 j - + - j r rN# N<pPor comparación con el caso de sobrecarga nula se deduce de

inmediato:

A ph = Ao-3 = = K Áq ( 4 -1 1)

O sea que, para el caso activo, el efecto de la sobrecarga unifor­memente distribuida es simplemente el aumentar uniformemente la presión actuante contra el muro en el valor dado por la ec. 4-11,

CAPITULO IV

Page 98: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

De un modo totalmente análogo puede verse que para el casopasivo el efecto de la sobrecarga uniforme es aumentar la presiónen el valor:

A ph = A c i = qNf = KPq (4 -12)Debe notarse cuidadosamente que las fórmulas 4-11 y 4-12

tienen su campo de aplicación restringido a relleno con superficie ho­rizontal. Para el caso de relleno inclinado podrán obtenerse expre­siones análogas, a partir de las fórmulas que para las presiones correspondientes aparecen en el Anexo IV-a.

Otro caso de interés práctico es aquél que se tiene cuando parte del relleno horizontal arenoso tras el muro está en condición sumer­gida. Si H es la altura total del muro y H Xt contada a partir de la corona, es la altura de arena no sumergida, (fig. IV -6), la presión vertical del relleno en un punto bajo el nivel del agua será:

pv — yHx + z' Y (4-13)

MECANICA DE SUELOS (II) 77

F I6 . IV-6, Presiones activas de un relleno arenoso parcialmente sumergido y sujeto asobrecarga uniformemente distribuida

Así, la presión ejercida horizontalmente por la arena bajo el nivel freático será:

* = N 7 = w r ( 4 ' 1 4 )

Además, en este caso, sobre el muro y bajo el nivel freático se ejercerá la presión hidrostática:

Pw — yw z' (4-15)El empuje total activo estará dado, por consiguiente, por:

Eá = + 7 f í rH lH * + + 2 ^ H l <4' 16)

Page 99: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

78 CAPITULO IV

Nótese que, a pesar de que el hecho de que la arena esté sumer­gida hace disminuir el valor de y a T> empuje sobre el muro aumenta grandemente en este caso, pues el efecto hidrostático del agua no está afectado por ningún término reductor del tipo \/N$.

Fórmulas análogas a las 4-13 a 4-16 pueden obtenerse para el caso pasivo y para los casos de relleno no horizontal.

Si, sobre los efectos ahora considerados, existe la sobrecarga uni­forme q, su influencia deberá superponerse. Este es el caso que apa­rece dibujado en la fig. IV-6.

Todas las fórmulas anteriores se aplican frecuentemente en la práctica de la construcción de muros de retención de mampostería o de concreto reforzado, por lo cual es de fundamental importancia recapitular las condiciones de su aplicabilidad. Estas son, por supues­to, las hipótesis de que está afectada la Teoría de Rankine y se destacan a continuación:

1? Los estados “plásticos”, tanto activo como pasivo, se desarro­llan por completo en toda la masa del suelo. Ya se comentó que esta hipótesis se verifica razonablemente en los muros reales, que pueden deformarse lo suficiente para ello, siempre y cuando el proyectista no tome precauciones especiales para restringir los movimientos de la estructura como cuerpo rígido. El tipo de movimiento necesario para que pueda desarrollarse un estado "plástico” es un ligero giro del muro en torno a su base, en el sentido conveniente.

2" Cuando la superficie del relleno es horizontal y si el respaldo del muro es vertical, como implícitamente se ha considerado hasta ahora, el muro debe ser “liso”, es decir, el coeficiente de fricción entre él y el suelo de relleno debe ser nulo. Cuando la superficie del relleno es un plano inclinado a un ángulo ¡3 con la horizontal, ha de admitirse que el muro es rugoso con un coeficiente de fricción con el suelo tal que las presiones resultantes sobre el respaldo vertical resulten inclinadas al mismo ángulo (3.En muros de concreto reforzado con secciones típicas el aná­lisis por el método de Rankine presenta ciertas variaciones que se mencionan en el Anexo IV-b.

IV-5. Teoría de Rankine en suelos “cohesivos”En suelos puramente “cohesivos”, para la aplicación práctica de

las fórmulas que se obtienen a continuación, es necesario tener muy presente que la “cohesión” de las arcillas no existe como propiedad intrínseca, según ha quedado establecido en el Capítulo XII del Volu­men I de esta obra, sino que es propiedad circunstancial, expuesta a cambiar con el tiempo, sea porque la arcilla se consolide o sea que

Page 100: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 79

se expanda con absorción de agua. Por ello, es necesario tener la seguridad, en cada caso, de que la "cohesión” de que se haya hecho uso en las fórmulas de proyecto, no cambie con el tiempo. Obviamente esta garantía, según se comenta adelante, es, por lo menos, muy difícil de obtener.

Considérese un elemento de suelo puramente "cohesivo” a la profundidad z. Al igual que en el caso de los suelos friccionantes, si la masa de superficie horizontal de suelo está en "reposo”, la presión horizontal sobre el elemento, sujeto a la presión vertical yz, será K0 yz. En este caso el valor de K0 depende del material y de su historia previa de esfuerzos (Capítulo XII del Volumen I de esta obra).

En la fig. IV-7 se representa, en el círculo 1, al estado de esfuer­zos del elemento arriba men­cionado.

Como antes, si se permite deformación lateral, el mate­rial puede llegar a la falla de dos modos. En el primero se permite que el elemento se deforme lateralmente, por disminución de la presión ho­rizontal, hasta el valor míni­mo compatible con el equi­librio; este nuevo estado de esfuerzos se representa con el círculo 2 y corresponde al es­tado “plástico” activo, en el cual (ver fig. IV-7) las pre­siones valen:

F!G. IV-7. Estados plásticos en el diagrama de Mohr. (Suelos cohesivos)

La horizontal: La vertical:

P a = yz — 2c Pv = yz

(4-17)

pv es el esfuerzo principal mayor y pÁ el menor, en el círculo de falla 2 tangente a la envolvente s = c, obtenida en prueba rápida.

El otro modo de alcanzar la falla en el elemento situado a la pro­fundidad z, sería aumentar la presión horizontal hasta que, después de sobrepasar el valor yz, alcanza uno tal que hace que el nuevo círculo de esfuerzos (círculo 3) resulte también tangente a la envol­vente horizontal de falla. En este momento se tiene el estado "plásti­co” pasivo y las presiones alcanzan los valores.

La horizontal: pP = yz + 2c La vertical: p„ = yz

y pP es el esfuerzo principal mayor.

( 4- 18)

Page 101: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

También ahora puede establecerse la misma interpretación prác­tica respecto a la generación de los estados plásticos eri el diseño de muros de retención. Las fórmulas para las presiones activas pueden relacionarse con el empuje de suelos sobre muros, en tanto que las pasivas se relacionan con los casos en que los muros presionan al relleno tras ellos.

Desde este punto de vista pueden obtenerse, como en el caso de suelos friccionantes, fórmulas para los empujes totales activo y pasivo, integrando en la altura H del muro las respectivas presiones hori­zontales. El procedimiento para ello es el ya descrito y los resultados obtenidos son:

E Á = j - y H * - 2 c H (4-19)

E P = ■— y H- + 2cH (4-20)

Estos empujes son horizontales y pasan por el centroide del área de presiones.

Debe notarse que las fórmulas 4-19 y 4-20 únicamente serían aplicables si la superficie del relleno tras el muro fuera horizontaly si los estados plásticos correspondientes se desarrollaran por com­pleto en el relleno.

La fórmula 4-19 proporciona un procedimiento sencillo para calcular la máxima altura a que puede llegarse en un corte vertical de material “cohesivo” sin soporte y sin derrumbe. En efecto, para que un corte vertical sin soporte se sostenga sin fallar, la condición será E a = 0, lo que, según la expresión 4-19, conduce a:

yH2 — 2cH — 0

y 4c/ /« = — (4 -21 )T

El valor H c suele denominarse altura crítica del material "cohe­sivo”. La fórmula 4-21 da valores un poco altos de la altura estable real y en caso de ser usada en la práctica deberá ser afectada por un factor de seguridad de 2, como mínimo.

La Teoría de Rankine aplicada a suelos "cohesivos’' debe ser objeto de una discusión de carácter fundamental. En efecto, como va se mencionó, la "cohesión”, tal como se ha interpretado en el pasado, no es un elemento de cálculo confiable, sino un parámetro cuya varia­ción con el tiempo es grande, difícil de prever y generalmente ten­diente a disminuir el valor inicial.

80 CAPITULO IV

Page 102: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 81

Como una regla general, el proyectista no debe confiar en ella, por sugestiva que inicialmente se le presente, en obras de retención. Un relleno siempre tiene la posibilidad de saturarse de agua más o menos rápidamente; una excavación siempre induce un flujo hacia sus bor­des. Así, en cualquier caso, el material “cohesivo” tiende a disminuir su resistencia finalmente y un proyecto basado en la resistencia del suelo por "cohesión” quedará en condiciones inseguras con el paso del tiempo.

Se han citado casos en que, por razones particulares, pudiera pensarse en la posibilidad de que el relleno no variase su contenido de agua con el tiempo. El caso de relleno superficialmente pavimen­tado (zonas urbanizadas) o recubierto de algún modo es el más socorrido. Pero aún así, la ruptura de un tubo que conduzca agua, la presencia de áreas verdes o, inclusive, la utilización posterior dei terreno para otros fines que obliguen a retirar el recubrimiento, acon­sejan al proyectista no confiar inicialmente en un parámetro de resis­tencia expuesto a desvanecerse.

Existe el hecho adicional de que cuando el relleno cohesivo aumenta su conte­nido de agua y, por consi­guiente, pierde “cohesión”, la presión sobre el muro aumenta fuertemente sin signo exterior que lo acuse. Así la falla se presenta en forma abrupta, sin avisos precursores.

Por todo ello no es acon­sejable el uso práctico de las fórmulas presentadas en es­ta sección para los empujes, salvo casos tan especiales que difícilm ente pueden imaginarse.

Si se observa la primera de las fórmulas 4-17 se nota que teóricamente la distri­bución de la presión del re­lleno es lineal, con una zona superior trabajando a ten­sión y una inferior a com-

Muro de retención mostrando grietas por empuje presión. El valor de la ten- efe/ relleno. Nótese la falta de drenaje frontal sión en la superficie de7—Mecánica de Suelos II

Page 103: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

82 CAPITULO IV

relleno es 2c y la profundidad a que se extiende la zona de tensiones caracterizada por p.\ — 0, resulta ser (ver fórmula 4-17):

En la fig. IV-8.a se muestra la distribución de presiones activas en el presente caso, así como la profundidad a que se extiende la zona de tensión.

La parte b) de la misma figura muestra la distribución teórica de la presión pasiva.

Como al suelo no se le supone capacidad para trabajar a la ten­sión, debe admitirse que, en el caso del estado activo, se desarrollarán grietas verticales, cuya profundidad está dada por la fórmula 4-22. El mecanismo de la formación de grietas puede concebirse como sigue: en la superficie es donde el suelo está expuesto al máximo esfuerzo de tensión: si en este plano por cualquier motivo se inicia la grieta, en su parte inferior se produce una fuerte concentración de esfuerzos de tensión, que hará que la grieta progrese hacia abajo, hasta la zona en que ya no existan esfuerzos de tensión. Es, pues, bastante lógico suponer que en suelos “cohesivos”, los agrietamientos

se producen siempre a cier­ta profundidad. A falta de mejor aproximación teórica, la fórmula 4-22 proporciona un criterio satisfactorio pa­ra estimar la profundidad de las grietas producidas.

En vista de todo lo ex­puesto anteriormente en re­lación al concepto de “co­hesión” y a su cambio con el tiempo, se considera in­necesario extender el análi­sis de los estados plásticos a los casos de relleno in­

clinado y a muros de respaldo no vertical. Esta extensión podrá verse en la ref. 6.

IV-6. Teoría de Rankine en suelos con “cohesión y fricción”

En el Capítulo XII del Volumen I de esta obra se discutieron las distintas envolventes de resistencia al esfuerzo cortante de los suelos y se concluyó que, desde el punto de vista de esfuerzos efectivos,

( a ) (b)

FIG . IV-8. Distribución teórica de la presión ac­tiva y pasiva en suelas puramente

"cohesivos"

Page 104: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 83

todos los suelos pueden considerarse puramente friccionantes; es decir trató de relegarse el concepto de “cohesión” tal como tradi­cionalmente ha sido considerado, a la categoría de mito.

Ello no obstante, la aplicación práctica del concepto de esfuerzos efectivos a los problemas diarios presenta la dificultad de valuación de las presiones de poro en la etapa de proyecto; este problema, ya se dijo, no está hoy resuelto teóricamente en forma del todo satis­factoria. Por otra parte, sobre todo en obras no muy grandes, resulta antieconómico programar la medición de las presiones de poro durante la construcción, e imposible, por lo tanto, el conocer en todo instan­te la resistencia de los suelos al esfuerzo cortante, para poder modi­ficar sobre la marcha tanto el proyecto como los métodos constructi­vos. Esto obliga, como también se aclaró, a seguir usando en el presente las envolventes de resistencia en función de los esfuerzos totales; siguiendo este criterio, el proyectista se ve frecuentemente obligado a trabajar con dos parámetros de cálculo denominados “cohesión y ángulo de fricción” aparentes. En la presente sección se tratará precisamente la aplicación de la Teoría de Rankine a aquellos suelos en los que la envolvente de falla, con base en esfuerzos tota­les, obtenida del tipo de prueba triaxial adecuado al caso, presenta “cohesión” y "fricción”, es decir, es del tipo tantas veces repetido.

s = c + crtg<¡>

Si el relleno es horizontal, puede razonarse de manera análoga a como se hizo en la sección IV-4 para el material puramente fric­cionante. Con referencia a la fig. IV-9, puede verse que un elemento de suelo a la profundidad z, considerado en “reposo”, está sujeto a un estado de esfuerzos representado por el circulo 1. De nuevo pue­de llegarse a la falla por disminución de la presión lateral o por aumento de la misma a partir del valor K0 yz. Se llega así a dos círculos representativos de los estados “plásticos” acti­vo (círculo 2) y pasivo (círculo 3).

Se vio en el Capítulo XI del Volumen I de esta obra que en el caso que se trata la relación entre el esfuerzo principal máximo y el mínimo está dada por:

FIG . IV-9. Estados plásticos en el diagrama de Mohr. (Suelos con "cohesión'1 y "fric­

ción")

Page 105: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ctj = ffzN<¡> + 2 c V N#En el caso del estado activo, pA — cr3 y ax = yz, por lo que:

P Á = N ¡ ~ ^ k ( 4 ' 2 3 )

En tanto que en el pasivo ffj = pP y er3 = yz: por ello:

pv — yz N<¡> + 2 c V Ñ l (4-24)

Las expresiones 4-23 y 4-24 dan las presiones horizontales que se ejercen en los dos estados plásticos. Los empujes correspon­dientes se obtienen, como siempre, integrando las presiones a lo largo de la altura H del muro. Se obtiene así:

EA = — y H * - - ^ - H (4-25)2 N* V N ¡

yEP = ± N *y H * + 2 c V N ¡H (4-26)

Las líneas de acción teóricamente son horizontales a través del centroide del área total de presiones.

En el caso del estado activo, al igual que en los suelos puramentecohesivos, hay ahora una zona del diagrama de presiones que corres­ponde a un estado de tensión. La profundidad a que llega esta zona, contada a partir de la corona del muro, puede obtenerse con el crite­rio de que en ese punto pA = 0. Si pA — 0.

£ - = w y = (4-27)A/V V Nf> ySi, por efecto de estas tensiones, el relleno pudiera agrietarse ha

de tenerse en cuenta que dejarán de producirse las tensiones y, por ello, el punto de aplicación del empuje podrá calcularse con base en el triángulo inferior de compresiones, únicamente. Como antes, ahora la expresión 4-27 da una idea plausible para calcular la pro­fundidad de la grieta formada.

La altura crítica con la que puede mantenerse sin soporte el suelo en corte vertical puede calcularse también con el criterio EA = 0. En tal caso:

1 y =

84 CAPITULO IV

2 Nj, V N j

H e = - Í VÑ* (4-28)

Page 106: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Para el caso en que la superficie del relleno no sea horizontal, en el Anexo IV-c se dan normas y fórmulas apropiadas.

IV-7. Influencia de la rugosidad del muro mi la forma de las líneas de fluencia

En el caso de un muro con relleno horizontal y de respaldo vertical, la Teoría de, Rankine supone que éste es liso de modo que no se desarrollan esfuerzos cortantes a, lo largo de él, con lo que las presiones horizontales son esfuerzos principales. Las líneas de fluencia resultan ser, entonces, dos familias de rectas inclinadas 45° ± <j>/2, respecto a la horizontal, según que se trate de los esta­dos plásticos activo o pasivo, respectivamente.

Si el respaldo del muro ha de ser considerado rugoso podrán desarrollarse en su superficie esfuerzos cortantes que modifican la forma de la red de líneas de fluencia. La nueva forma de estas redes, con una somera discusión al respecto se presenta en el Anexo IV-d, para el caso de suelos "friccionantes”.

IV-8. Teoría de Coulomb en suelos “friccionantes”

En 1776 C. A. Coulomb publicó la primera teoría racional para calcular los empujes en muros de retención. En la Teoría se consi­dera que el empuje sobre un muro se debe a una cuña de suelo limitada por el paramento del muro, la superficie del relleno y una superficie de falla desarrollada dentro del relleno, a la que se supone plana, (fig. IV-10).

MECANICA DE SUELOS (II) 85

FIG. IV-10. Meconismo d * • m pu ¡• d o sun/os " f r íc c io n o n io t " según C o u lo m b

Page 107: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La cuña OAB tiende a deslizar bajo el efecto de su peso y por esa tendencia se producen esfuerzos de fricción tanto en el respaldo del muro como a lo largo del plano OB. Supuesto que las resistencias friccionantes se desarrollan por completo, las fuerzas EA y F resultan inclinadas respecto a las normales correspondientes los ángulos 5 y <j>, de fricción entre muro y relleno y entre suelo y suelo respectivamente. El valor numérico del ángulo 8 evidentemente está acotado, de modo que:

0 < 8 <<¿

En efecto, 8 = 0 corresponde al muro liso y es inconcebible un valor menor para un ángulo de fricción. Por otra parte, si 8 > <t>, lo cual en principio es posible, la falla se presentaría en la inmediata vecindad del respaldo del muro, pero entre suelo y suelo; este caso es prácticamente igual a que el deslizamiento ocurriese entre muro y suelo, por lo que el máximo valor práctico que puede tomarse en cuenta para 8 es precisamente <¿>. Siguiendo indicaciones de Terzaghi, el valor de 8 puede tomarse en la práctica como:

| - < 8 < - | ¿ ( « 9 )

Considerando el equilibrio de la cuña se ve que el polígono diná­mico constituido por W, F y E debe cerrarse. Como W es conocida en dirección y magnitud y se conocen previamente las direcciones de E y F, dicho dinámico puede construirse para una cuña dada. Así puede conocerse la magnitud del empuje sobre el muro. Es claro que no hay razón ninguna para que la cuña escogida sea la que produce el empuje máximo. Se ve, así, que el método de trabajo que se propone tiene que desembocar en un procedimiento de tanteos, dibujando diferentes cuñas, calculando el empuje correspondiente a cada una y llegando así a una aproximación razonable para el valor máximo, producido por la cuña “crítica”.

Debe notarse que si el plano de falla escogido coincide con el respaldo del muro, el empuje correspondiente a esa cuña será, evi­dentemente, nulo y si el plano de falla se escoge formando un án­gulo <t> con la horizontal el empuje también es nulo; en efecto, en este caso (ver fig. IV-10) la fuerza F resulta vertical hacia arriba; siendo W vertical hacia abajo, la única posibilidad de equilibrio será W = F y E = 0. Para cuñas con plano situado entre esas dos posiciones extremas, el empuje sobre el muro no es cero, luego debe existir un máximo, que resulta así geométricamente acotado. Ese máximo es el que ha de aproximarse por el método de tanteos arriba descrito. En la sección IV-9, se reseñan algunos métodos que per­

86 CAPITULO IV

Page 108: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

miten llegar a un valor del empuje máximo adecuado para los proyectos prácticos gráficamente, obviando los tanteos.

Para el caso de un relleno “friccionante” limitado por un plano, aunque sea inclinado y de un muro de respaldo plano puede darse un tratamiento matemático a las hipótesis de Coulomb y llegar a una fórmula concreta para el empuje máximo. Esta fórmula se dedu­ce en el Anexo IV-e y se presenta a continuación:

EA = - y H 2_________________ eos2 (<fr • oj)

MECANICA DE SUELOS (II) 87

2 cos‘w eos (S + u>) Ti + /sen(6 + 0)senfo — fl)~ L \ cos(8 + w ) c o s ( oj — 0 ) _

(4-30)

= ¿ r * Kdonde:Ea empuje activo máximo, según la Teoría de Coulomb

<j> ángulo de fricción interna de la arena oj ángulo formado entre el respaldo del muro y la vertical 0 ángulo formado entre la superficie plana del relleno y la hori­

zontal.Las demás letras tienen el significado usual en este capítulo.Si el muro es de respaldo vertical, u = 0 y la fórmula 4-30 se

reduce a:

Ea = ± r H 2 -----------------------eos § í~ 1 + /sen (8 + +) sen (< /.-0 )12 (4-31)L \ eos 8 eos 0 J

Si, además, el relleno es horizontal 0 = 0 y de la expresión 4-31 se obtiene:

Ea = U h * ------------------- <2ͱ------------------ (4-32)2 c o s 8 [l eos 8

Debe notarse que si 8 = 0 o sea si no hay fricción entre el muro y el relleno, la ec. 4-32 conduce a la fórmula:

E a - - y H 2 —~ - en ^ _ —1 - y H 2 (4-33)Á 2 1 + s e n $ 2N<,y { óó)De manera que, para este caso, las teorías de Rankine y Coulomb

coinciden.

Page 109: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

88 CAPITULO IV

También es interesante hacer notar que si en la fórmula 4-31 se considera 8 = ¡J, se obtiene la expresión 4-9 de la Teoría de Ran­kine; es decir que la Teoría de Coulomb coincide con la de Rankine si el empuje se considera paralelo a la superficie del relleno.

Históricamente Coulomb no consideró el estado pasivo de esfuer­zos, pero sus hipótesis se han aplicado a este caso, siendo posible obtener fórmulas similares a las presentadas para el caso activo. De hecho la fórmula para el caso pasivo es la misma 4-30, pero cam­biando en ella <¡> por — <¿>, 8 por — 8 y cambiando el signo del radical del denominador; la fórmula resulta:

EÁ = ly H > . eos2 + w)

cos2w eos (w — 8) f . _ /sen(8 + <ft)sen(ft + ¡5)|_ \cos(co — 8 ) c o s ( u — 3) _

(4-34)

La justificación del cambio se ilustra en la fig. IV-11. La deduc­ción de la fórmula es análoga a la presentada en el Anexo IV-e, teniendo en cuenta las diferencias comentadas.

En el Anexo IV-f se presentan también los análisis por sobre­carga, para relleno estratificado y para respaldo del muro formado por una linea quebrada, que se salen de la situación analizada en esta sección.

Si el ángulo 8 es grande, la superficie de deslizamiento real se aparta mucho del plano supuesto en la Teoría de Coulomb y ésta conduce a errores de importancia, fuera de la seguridad en la determinación del empuje pasivo. Terzaghi y Peck valúan ese error en hasta un 30% si 8 = <j>, teniéndose valores menores para menores

Page 110: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ángulos 8. En el caso del empuje activo la influencia del valor del án­gulo 8 es mucho más pequeña y suele ignorarse en la práctica.

La Teoría de Coulomb no permite conocer la distribución de presiones sobre el muro, pues la cuña de tierra que empuja se considera un cuerpo rígido sujeto a fuerzas concentradas, resultantes de esfuerzos actuantes en áreas, de cuya distribución no se especifica nada. Por ello, no puede decirse nada, dentro del cuerpo de la Teoría respecto al punto de aplicación del empuje activo. Para salvar esta dificultad el propio Coulomb supuso que todo punto del respaldo del muro representa el pie de una superficie potencial de deslizamiento. Así puede calcularse el empuje sobre cualquier porción superior del muro; si ahora se considera un pequeño aumento en la altura de la porción, calculado el nuevo empuje, se tiene por diferencia con el ante­rior el incremento, AE, de empuje en que aumentó el valor original: este incremento entre el aumento de altura que se haya considerado da la presión en ese segmento del muro. Con este método convenien­temente reiterado puede conocerse con la aproximación que se desee, la distribución de presiones sobre el muro en toda su altura, por cuyo centroide pasará el empuje resultante. Lo anterior conduce a la dis­tribución hidrostática, con empuje a la altura H J3 en muros con respaldo plano y con relleno también limitado por superficie plana. Para los casos en que no se cumplan estas condiciones, el método anterior resulta laborioso y Terzaghi ha propuesto una construcción aproximada que, sin embargo, da el punto de aplicación con sufi­ciente precisión en la práctica, según la cual basta trazar por el cen­tro de gravedad de la cuña crítica, una paralela a la superficie de falla, cuya intersección con el respaldo del muro da el punto de apli­cación deseado.

Por otra parte, cabe un comentario de crácter general respecto a la Teoría de Coulomb. Aparentemente el método toma en cuenta, tal como aquí se ha descrito, dos ecuaciones de equilibrio de proyec­ción de fuerzas (a esto equivale, en esencia, el hecho de que el dinámico sea un polígono cerrado), con dos incógnitas, E y F, de las cuales, a fin de cuentas, sólo una interesa; sin embargo, debe notarse que hubiera podido trabajarse con una sola ecuación de proyección y una sola incógnita (E ) si se proyectasen las fuerzas sobre una normal a la dirección conocida de F. Puede así afirmarse que la Teoría de Coulomb utiliza para establecer el equilibrio de la cuña rígida una sola ecuación de equilibrio, lo cual es insuficiente, según la Estática.

IV-9. Métodos gráficos para la aplicación de la Teoría de Coulomb a rellenos “friccionantes”

Se presenta a continuación un método gráfico debido a Culmann® que permite llegar fácilmente al valor del máximo empuje ejercido

MECANICA DE SUELOS (II) 89

Page 111: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

90 CAPITULO IV

contra un muro por un relleno arenoso. El método es general y se aplica a relleno de cualquier forma; la descripción del método se refiere a la fig. IV-12.

El método consiste en lo siguiente: por el punto A, de la base del muro trácense dos líneas, la ‘ <¡>" y la ‘‘6’’; la primera a un ángulo <j> con la horizontal y la segunda a un ángulo 6 con la anterior. El ángulo 6 y su método de obtención son los mostrados en la figura mencionada.

A continuación, escójanse diferentes planos hipotéticos de desli­zamiento, Abx, Ab -2 ■ ■ . etc. El peso de estas cuñas de deslizamiento podrá calcularse multiplicando su área por el peso específico, y, de la arena que constituye el relleno (recuérdese que se considera una dimensión unitaria en la dirección normal al plano del papel). A una escala de fuerzas conveniente, estos pesos podrán llevarse, a partir de A sobre la “línea </>"; así se obtienen los puntos au a2 . . . etc.

Por estos últimos puntos trácense ahora paralelas a la “línea 6”, hasta cortar en los puntos Ci c¡¡. , . etc. a los respectivos planos de falla de las cuñas. Los segmentos ai Ci. a2 c2 •.. etc. representan, a la escala de fuerzas antes usada, los empujes que produce cada una de las cuñas arbitrariamente escogidas. En efecto, en la sección b) de la fig. IV-12 aparece un triángulo de fuerzas correspondiente a una cualquiera de las cuñas deslizantes escogidas. El empuje E y el peso W forman el ángulo 0, puesto que este es, por definición, el ángulo formado por £ y la vertical. Entre la reacción a lo largo del plano

Page 112: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 91

de falla, F, y W se forma el ángulo ¡3 — <j>, siendo (3 el que forma el plano de deslizamiento con la horizontal.

FIG . IV -13. El método de Culmann cuando existe una sobrecarga lineal

Considérese ahora el triángulo Aa2 c2r ligado, por ejemplo, a la misma cuña deslizante. Aa2 es proporcional al peso de la cuña, W, por construcción. El ángulo en a2 es 0 por ser a2 c2 paralela a la “línea 6". Evidentemente, el ángulo en A, del triángulo Aa2 c2, es (3 — </>, siendo 3 el ángulo que forma el plano de deslizamiento Ab2 con la horizontal. Entonces el triángulo Aa¿ c2 es semejante al 123 de la parte b) de la fig. IV-12, Se ve, comparando esos triángulos que el lado a2 c2 es el homólogo de E en el triángulo de fuerzas; por lo tanto esas dos magnitudes son proporcionales y c2 a2 representa a E a la escala de fuerzas escogida.

Puede trazarse una linea que contenga a todos los puntos c, obte­nidos según se vio. Esta es la “línea de empujes" o línea de Culmann. Una paralela a la “línea <£”, tangente a la línea de Culmann, permite calcular el empuje máximo como el segmento ac, interpretado a la misma escala de fuerzas usada y siendo c el punto de tangencia resul­tante sobre la línea de Culmann. La línea Ac. prolongada hasta b, proporciona el plano de deslizamiento más crítico, ligado al máximo empuje.

Page 113: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

92 CAPITULO IV

El método de Culmann permite también llegar al empuje máximo producido por la combinación de un relleno “friccionante” y una sobrecarga lineal de intensidad q unidades de fuerza por unidad de longitud (fig. IV -13).

El procedimiento a seguir es totalmente análogo al arriba des­crito, con la diferencia de que a la derecha del plano Ab3 definido por la posición de q, debe llevarse sobre la “línea <f>” no sólo el peso de la cuña deslizante, sino, sumado, el valor de q a la misma escala de fuerzas usada. Precisamente en la línea Ab3 la curva de Culmann deberá presentar una discontinuidad por efecto de la sobrecarga.

F IS . IV -14. Punto de aplicación del empuje, según el método de Culmann

El empuje E ', dado por el segmento a' c' es el máximo conside­rando la sobrecarga, mientras que el segmento ac sería el empuje máximo, si no hubiese sobrecarga. Se sigue que si la sobrecarga estuviese situada a la derecha de b" ya no ejercería efecto, pues en tal caso el empuje sería igual al máximo obtenido con la línea de Culmann punteada; desde luego la línea cc" se ha trazado para­lela a la “línea <j>”

El punto de aplicación del empuje máximo puede obtenerse tam­bién gráficamente y con suficiente aproximación siguiendo las reglas que se detallan en la fig. IV-14.

Si no hay sobrecarga lineal una paralela a la superficie de desliza­miento crítica Ab por G, centro de gravedad de la cuña deslizante, corta el muro en un punto en que puede considerarse aplicado el empuje E. (fig. IV-14.a).

Si hay sobrecarga, a la fuerza anterior se añadirá, para fines de diseño, otra, A E, calculada restando E' — E, obtenidos como se indi­ca en la fig. IV-13, y aplicada en el tercio superior del segmento f¡/, en el que / es la intersección de una paralela a la “línea

Page 114: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

trazada por q, con el respaldo del muro y /' es la intersección con el mismo plano de una paralela a la superficie crítica de deslizamiento, trazada también por q. (fig. IV-H .b).

En el Anexo IV-g se presenta un método alternativo del de Culmann, debido a Engesser10.

El método de Culmann puede emplearse para el cálculo del empuje pasivo ejercido contra un relleno arenoso. El procedimiento y su demostración son idénticos, con la diferencia de que la “línea <j>" debe ahora dibujarse formando ese ángulo con la horizontal, pero hacia abajo.

IV. 10. La Teoría de Coulomb en suelos con “cohesión” y “fricción”

Cuando un muro con relleno “cohesivo” y “friccionante” está en las condiciones mostradas en la fig. IV-15.a, la superficie de falla es una curva como la indicada y, bajo la zona de agrietamiento ya mencionada, las líneas de fluencia son curvas, (véase el Anexo IV-c).

MECANICA DE SUELOS (II) 93

FIG . IV-15. Simplificación para llegar a la aplicación de la feorla de Coulomb en rellenos con materiaI "cohesivo" y "Iriccionante"

Dentro de la cuña A'MM'N'N el estado de esfuerzos es seme­jante al analizado atrás dentro de la Teoría de Rankine y el diagrama de presiones en la vertical A' A" puede calcularse como ya se dijo. El empuje total contra el muro estará entonces dado por la resultante de ese diagrama de presiones combinada con el peso de la cuña B'AA'A" y la fuerza de reacción existente en la superficie AA'. Todo esto conduce a un procedimiento laborioso y difícil que normalmente se abrevia recurriendo a simplificaciones.

Por ejemplo, puede suponerse, como se hace en la parte b) de la fig. IV-15, que la superficie hipotética de falla supuesta es un círculo y en tal caso puede calcularse el empuje aplicando el método del "círculo de fricción”, como más adelante se expone. También puede suponerse que esa superficie tiene como traza con el papel

Page 115: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

94 CAPITULO IV

un arco de espiral logarítmica, lo cual permite desarrollar un método de cálculo conveniente, que también se menciona posteriormente.

En la mayoría de los casos de la práctica resulta suficientemente aproximado el considerar a la superficie hipotética de falla como un plano que se extienda desde la base del muro hasta la zona de agrietamiento, tal como se muestra en la parte c) de la fig. IV-15. Así resulta aplicable al caso la teoría de Coulomb en la forma que a continuación se presenta con referencia a la fig. IV-16.

Supuesta una cuña de deslizamiento, su equilibrio quedará garan­tizado por el de las siguientes fuerzas: el peso propio total, W, calcu­lado como el producto del área de la cuña por el peso específico del suelo: la reacción entre la cuña y el suelo, con dos componentes, F debida a la reacción normal y a la fricción y C, debida a la "cohe­sión"; la adherencia, C', entre el suelo y el muro y, finalmente, el empuje activo E.

Estas fuerzas deben formar el polígono cerrado que aparece en la fig. IV-16, en el cual puede calcularse el valor de E correspon­diente a la superficie de falla supuesta. Nótese que las fuerzas C y C' pueden conocerse no sólo en dirección, sino también en magnitud, multiplicando el parámetro c del suelo por las longitudes AG y AB' respectivamente.

El método de cálculo lleva a un procedimiento de tanteos para determinar el máximo E posible. El muro deberá calcularse, por supuesto, para soportar la combinación de las fuerzas C’ y E míz.

Page 116: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

J^n caso del empuje pasivo también puede llegarse a aplicar™ Teoría de Coulomb simplificando la forma de la superficie dedeslizamiento, que resulta también curva, a modo de considerarla recta, en forma análoga a la arriba indicada. En estas condiciones, también puede encontrarse el empuje de proyecto por un procedi­miento de tanteos análogo al descrito para el empuje activo. Vuelve a insistirse en que, para el caso de empujes pasivos, la Teoría de Coulomb resulta ya muy poco aproximada y del lado de la inseguri­dad, por lo que su uso no es recomendable.

IV-11. El método del Círculo de FricciónEste método es aplicable para el caso de que la superficie de

deslizamiento se suponga circular y, de acuerdo con la fig. IV -17, puede, para el caso activo, desarrollarse como sigue:

MECANICA DE SUELOS (II) 95

Después de calcular la profundidad de la zona agrietada, trácese una curva circular de centro en O y radio R, la cual se considera

Page 117: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

como la traza de una superficie hipotética de falla. El peso de la masa de tierra deslizante puede calcularse por cualquier procedimiento práctico, así como la magnitud de las fuerzas C de “adherencia” entre el muro y el suelo y C, efecto de la “cohesión” a lo largo de la superficie de deslizamiento. La linea de acción de C es el respaldo del muro, pero la de C ha de calcularse teniendo en cuenta que debe ser paralela a la cuerda AM que subtiende el arco circular y estar situada a una distancia x del centro del citado arco tal que su mo­mento con respecto a ese centro sea igual al momento de los esfuer­zos c a lo largo del arco circular, es decir:

96 CAPITULO IV

A través del centro del triángulo AB'V' dibújese una vertical hasta cortar a una paralela a la superficie del relleno que pase por el tercio inferior del segmento A V . En este punto de intersección puede considerarse aplicada, con suficiente aproximación, la resul­tante de la fuerza P (componente normal y de fricción del empuje total) y la fuerza de adherencia C , entre el muro y el suelo. Ésto equivale a suponer que a lo largo de A V hay una distribución lineal de presiones, cuya resultante, paralela a la superficie del relleno, actúa contra el respaldo del muro en combinación con el peso del triángulo AB'V'; a esta acción total sobre el muro, se opone, como reacción (colineal), la resultante de P y C'. Según se ve, lo anterior es simplemente la aplicación de las ideas de Rankine. Esta fuerza P puede considerarse inclinada un ángulo 8 = 2<j>/3, respecto a la nor­mal al respaldo del muro.

Las fuerzas C y C', según ya se comentó, son conocidas en magnitud y dirección y su resultante puede calcularse. Esta resultante es el vector 1-2 del dinámico mostrado en la parte b) de la fig.IV -17. La línea de acción de esta resultante puede obtenerse trazan­do, en la parte a) de la figura, una paralela a la dirección 1-2 por el punto ae intersección. D. de C y C'.

La línea de acción de la resultante de C y C' puede prolongarse hasta cortar a la del peso de la masa deslizante. W , en el punto G. El vector 1-3 del diagrama de fuerzas es la resultante de IV, C y C'- La línea de acción de esta resultante puede obtenerse trazando una paralela a tal dirección por el punto G: tal línea de acción debe prolongarse hasta cortar a la línea de acción de P en el punto H.

Con centro en O y radio igual a Rsen</> dibújese una circunferen­cia; ésta recibe el nombre de "círculo de fricción”. Por H puede trazarse con suficiente aproximación, una tangente al "círculo de fric­ción”. Es claro que esta línea forma un ángulo <¡¡ con el radio de la superficie de falla correspondiente al punto I, en el cual corta la tan­gente a la superficie de falla; por lo tanto la línea I f es la linea de

Page 118: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

acción de la reacción total que corresponde a la línea de falla AM. En realidad habría que efectuar una corrección, pues esta resultante no es tangente al círculo de fricción, pero la corrección es pequeña y prácticamente despreciable. Este punto se analizará en la sección correspondiente del Capítulo V.

Por el punto 1 del diagrama de fuerzas debe llevarse una parale­la a // y por el 3 una paralela a P, obteniéndose así el punto 4 que cierra el polígono de fuerzas y determina el valor del empuje P co­rrespondiente a la superficie de falla supuesta. La composición de P y C' proporciona el empuje total E correspondiente a la sección considerada.

Para encontrar el valor máximo posible de P, para fines de proyecto, deberá seguirse un procedimiento de tanteos, reiterando el método anterior el número de veces necesario.

Para el caso de empuje pasivo es posible desarrollar un procedi­miento similar al arriba descrito.IV-12. Método de la espiral logarítmica

Se ilustra a continuación, para el caso de empuje pasivo, otro método de cálculo muy frecuente en la solución de problemas de pre­sión de tierras. En este método, llamado de la espiral logarítmica, no es preciso suponer que la superficie de deslizamiento en estudio sea plana. En la fig. IV-18.a se representa una superficie de contacto AB que empuja a un relleno de superficie horizontal y constituido por un material cuya resistencia al esfuerzo cortante sigue la ley general:

s = c + <rtg >

MECANICA DE SUELOS (II) 97

La superficie de deslizamiento consta de una parte curva y otra recta (segmentos AD y D E).

FIG . IY-18. Ilustración del método de "la espiral logarítmica" para el caso de empujopasivo

8—Mecánica de Suelos II

Page 119: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El arco AD es un segmento de espiral logarítmica con centro en O. El hecho de que, por continuidad, el tramo de espiral deba ser tangente al segmento de recta D E en D, obliga a que el centro O caiga sobre el segmento BD. En estas condiciones la ecuación de la espiral logarítmica puede escribirse como:

r = r0e9t (4-35)

La masa de suelo BDE puede considerarse en estado "plástico” pasivo de Rankine, de manera que no hay esfuerzos cortantes actuan­do en la sección vertical D F y, sobre ésta, el empuje pasivo es horizontal (E t) y puede calcularse como ha quedado indicado.

La masa ADFB estará en equilibrio bajo la acción de las siguien­tes fuerzas: su peso propio, W, que pasará a través de su centro de gravedad: el empuje E u situado a D F /3; la resultante, C, de la cohesión actuante en el arco AD; la fuerza resultante de la adheren­cia entre el suelo y la superficie AB, C'; la fuerza F, resultante de los esfuerzos normales y tangenciales de fricción producidos en el arco AD y la fuerza P, resultante de los esfuerzos normales y tangenciales de fricción a lo largo de AB. Esta última fuerza estará inclinada respecto a la normal al muro un ángulo:

5 = 4 *

Como la línea de acción de P no es conocida a priori se debe recurrir a un artificio aproximado para determinar su magnitud y posición. El artificio consiste en reemplazar a P por dos fuerzas P' y P", con la misma dirección que P. La fuerza P' se considera en equilibrio con W, E\ y F'; en donde E\ y F' son las anteriores Ei y F, pero considerando en una primera aproximación, que la C del suelo es nula: la P" debe equilibrar a C, C', E'\ y F" (estas dos últimas fuerzas son la E x y F, antes citadas, pero admitiendo por el momento que la y del suelo sea igual a cero). En el primer grupo se han reunido las fuerzas de masa y las normales y de fricción debidas al efecto de W; en el segundo grupo aparecen las fuerzas de cohesión, que son independientes de W. Los puntos de aplica­ción de P' y P" serán, desde luego, AB/3 y AB/2, respectivamente. En estas condiciones, cada una de esas fuerzas podrá calcularse por separado y su resultante produce el empuje total P.

Puesto que el arco escogido entre A y D es de una espiral logarítmica, según la ec. 4-35, todos los radios vectores del mismo forman un ángulo <j> con la normal al arco en cada punto. Como 4> es el ángulo de fricción interna, se sigue que las direcciones de los

98 CAPITULO IV

Page 120: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

radios vectores son las de los elementos de fuerza cuya resultante es F, por lo que la propia F debe pasar por el centro de la espiral, O.

Para determinar P' puede, entonces, elegirse arbitrariamente una superficie hipotética de deslizamiento AD E (fig. IV -18). El empuje E\ se calcula con la ecuación:

E\z=-L y DF*

y actúa en D F/3.Si se toman ahora momentos en torno a O de las fuerzas E\

W, F ' (momento nulo) y P , se tendrá la magnitud de P . Si el suelo no tuviese “cohesión”, P sería el valor del empuje total correspon­diente a la superficie de falla supuesta. Con otras superficies de falla trazadas con el mismo criterio expuesto (moviendo el centro de la espiral sobre BD ) pueden obtenerse otros valores de P . El mínimo P obtenido sería el empuje pasivo total de proyecto, si el suelo no tuviese “cohesión”.

Si el suelo tiene “cohesión”, deberá determinarse el valor de P", componente del empuje total debida al efecto de aquella. En el plano D F se considera ahora actuando un empuje pasivo E'\ obteni­do haciendo y — 0 en la expresión usual. Así:

E'\ = 2 c D F V N i

El hecho de hacer y = 0 equivale a anular el peso del suelo, dejando sólo el término del empuje que depende de la "cohesión" del mismo. El punto de aplicación de E'\ será el punto medio del segmento DF.

Si se considera un elemento ds en la superficie AD, obrará en él una fuerza cds, cuyo momento respecto a O vale: (fig. IV -18.b):

, tdddM — re cosé ds — re cosó = cr2 ddeos

Entonces, el momento de la “cohesión" total será:

M = 1 dM = -7-c ■ (ri2 — r02) (momento de C)

MECANICA DE SUELOS (II) 99

Tomando ahora momentos respecto a O de las fuerzas P", C, C', E ”i y F" (momento nulo) puede conocerse la fuerza P ' correspon­diente a la superficie de falla supuesta.

Page 121: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Con diferentes superficies de deslizamiento podrán obtenerse otros P" (deben usarse las mismas trazadas para calcular P ') .

En el caso general, en que el suelo tenga “cohesión” y "fricción”, conviene llevar en forma gráfica los valores de la suma P' + P" co­rrespondientes a cada superficie de deslizamiento supuesta. La combi­nación mínima da el valor del P total de proyecto.

IV-13. Método semiempírico de Terzaghi para el cálculo del empuje contra un muro de retención.

Debido a lo poco conveniente de las teorías clásicas, antes únicas y a la falta de otras de superior arrastre, se han desarrollado en el pasados algunos métodos empíricos y semiempíricos para la valua­ción de los empujes ejercidos por los rellenos de tierra contra los elementos de soporte. El Dr. Terzaghi ha propuesto un método es­pecífico que reúne una buena parte de la experiencia anterior con la suya propia y que constituye quizá, el método más seguro para la valuación de empujes contra elementos de soporte, con tal de que éstos caigan dentro del campo de aplicabilidad del método propuesto, desgraciadamente restringido a muros de escasa altura (alrededor de unos 7.0 m, como máximo).

El primer paso para la aplicación del método estriba en encasi­llar el material de relleno con el que ha de trabajarse, en uno de los siguientes cinco tipos:

I. Suelo granular grueso, sin finos.II. Suelo granular grueso, con finos limosos.

III. Suelo residual, con cantos, bloques de piedra, gravas, arenas finas y finos arcillosos en cantidad apreciable.

IV. Arcillas plásticas blandas, limos orgánicos o arcillas limosas.V. Fragmentos de arcilla dura o medianamente dura, protegidos

de modo que el agua proveniente de cualquier fuente no pe­netre entre los fragmentos.

En general, los tipos de suelo IV y V no son deseables como suelo de relleno, debiendo ser evitados siempre que sea posible; en particular, el tipo V debe considerarse absolutamente rechazable cuando haya riesgo de que pueda entrar agua a los huecos entre los fragmentos de arcilla, provocando su expansión y el correspondiente aumento de las presiones sobre el muro.

Si, por alguna razón que siempre procurará evitarse, el muro fuera a proyectarse antes de conocer el material a usar como relleno, debe­rá realizarse el proyecto sobre las bases más desfavorables.

El método propuesto cubre cuatro casos muy frecuentes en la práctica, en lo que se refiere a la geometria del relleno y la condi­ción de cargas.

100 CAPITULO IV

Page 122: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

l 9 La superficie del relleno es plana, inclinada o no y sin sobre­carga alguna.

29 La superficie del relleno es inclinada, a partir de la corona del muro, hasta un cierto nivel, en que se toma horizontal.

39 La superficie del relleno es horizontal y sobre ella actúa una sobrecarga uniformemente repartida.

49 La superficie del relleno es horizontal y sobre ella actúa una sobrecarga lineal, paralela a la corona del muro y uniforme­mente distribuida.

Para el primer caso de los arriba mencionados, el problema puede resolverse aplicando las fórmulas:

E„ = ±K»H *

(4-36)E V = ± K VH>

que proporcionan las componentes horizontal y vertical del empuje actuante en el plano vertical que pasa por el punto extremo inferior del muro, en el lado del relleno (fig. IV -19).

En la misma fig. IV-19 se muestran gráficas que permiten obte­ner los valores de K H y Kv, necesarios para la aplicación de las fórmu­las anteriores, en función de la inclinación de la superficie del relleno y del tipo de material con que haya de trabajarse. Deberá notarse en la figura citada el criterio empleado para medir la altura H.

Las expresiones y gráficas anteriores proporcionan el valor del empuje por metro lineal de muro. El empuje deberá aplicarse a laaltura H /3, contada del paño inferior del muro.

En el caso de trabajar con relleno del tipo V, el valor de H con­siderado en los cálculos debe reducirse en 1.20 m respecto al usualy el empuje obtenido debe considerarse aplicado a la altura

d' = \ ( H - 1.20) (4-37)

contada a partir del nivel inferior del muro.Cuando el relleno tiene superficie inclinada hasta una cierta altura

y después se hace horizontal (caso 29 de los arriba considerados), los valores de K„ y Kv deberán obtenerse de las gráficas de la fig. IV-20. En la misma figura se muestran las convenciones a que deberán ajustarse las mediciones de las alturas usadas, los puntos y planos de aplicación del empuje, etc. La altura del punto de aplica­ción, cuando el relleno sea del tipo V, también será la dada por la expresión 4-37, usando en ella el valor H — 1.20 m.

MECANICA DE SUELOS (II) 101

Page 123: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

102 CAPITULO IV

L o s n ú m e ro s e n lo s c u rv a s in d ic a n t i

t ip o de m a te r ia l.

P a ra m a te r ia le s d e l U po 5 lo s c a lc u lo s

se r e a l iz a n c o n u n a a ltu ra , H , m e n o r

que la re a l en 1 .2 0 m

FIG . IV-19. Gráficas para determinar el empuje de rellenos con superficie plana, segúnTerzaghi

Cuando el relleno sea de superficie horizontal y soporte sobrecarga uniformemente distribuida (caso 39 de los antes citados), la presión horizontal sobre el plano vertical en que se supone actuante el em­puje deberá incrementarse uniformemente en:

p = C q (4-38)

Donde q es el valor de la sobrecarga uniformemente repartida, en las unidades apropiadas. El valor de C de la fórmula anterior se esco­gerá de la Tabla 4-1.

Page 124: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

K en

Kg

/m*/

m

MECANICA DE SUELOS (II) 109

H|3 0

ijl/2 K,l;/2>

K,H*K»M*■ ; í ;

_L_

SUELO TIPO I S U ELO TIPO 2 S U E LO T IP O 3

K„fjÜ ijü i-

1

-L X

I , 6 J -

h 1 —

-K „ - ■ A V ' - ;p -

V a lo re * de lo re lac ión H , /H

S U E LO T IPO 4 S U E LO T IP O 5

Valores de la relación H./H

FIG , IY-20. Gráficas para determinar el empuje de rellenos en terraplén, con remate

Page 125: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

104 CAPITULO IV

TABLA 4-1

Valores de C

Tipo de relleno cI 0.27

II 0.30III 0.39IV 1.00V 1.00

Si la superficie del relleno horizontal soporta una carga lineal paralela a la corona y uniforme (49 caso de los arriba mencionados), se considerará que la carga ejerce sobre el plano vertical en que se aceptan aplicados los empujes una carga concentrada que vale:

P = C q'

donde q' es el valor de la carga lineal uniforme y C se obtiene, como antes de la Tabla 4-1. El punto de aplicación de P puede obte­nerse con la construcción mostrada en la fig. IV-21. Si al trazar la linea a 40° el punto de aplicación de P resulta bajo la base del muro, el efecto de q' podrá despreciarse. La carga q' produce también una presión vertical sobre la losa de cimentación del muro cuyo efecto podrá calcularse (fig. IV- 21) considerando una in­fluencia a 60° a partir de q', uniforme en todo el tramo ab y de magnitud q'/ab, considerando en los cálculos sólo la parte de tal presión que afecte a la losa de ci­mentación (tramo a'b').

Los métodos arriba des­critos se refieren a muros con cimentación firme, en cuyo caso la fricción y la adherencia entre suelo y muro está dirigida hacia abajo, ejerciendo un efecto estabilizante que tiende a reducir el empuje. Si el mu­ro descansa en terreno blan­

F IS . IV-21. Método para calcular la influencia de una tobrecarga lineal (Método de

Tenaghi)

Page 126: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 105

do su asentamiento puede hacer que la componente vertical del empuje llegue a invertirse. Esto aumenta el empuje considerablemen­te, por lo que Terzaghi recomienda que, en este caso, los valores del empujé obtenidos en las gráficas anteriores, se incrementen sistemáticamente en un 50%.

En los muros calculados con el método semiempírico de Terzaghi deben proyectarse buenas instalaciones de drenaje, para poder garan­tizar la no generación de presiones hidrostáticas contra el muro, no tomadas en cuenta en las gráficas anteriores.

IV-14. Arqueo en suelos

En todo lo dicho hasta ahora sobre presión de tierras en muros de retención, se ha supuesto que el* muro puede desplazarse, sin nin­guna limitación, lo suficiente para que se desarrollen en el relleno los estados críticos, en el caso de la Teoría de Rankine o para que tengan lugar los desplazamientos necesarios para llegar al estado crítico en la cuña deslizante, considerada por Coulomb.

Sin embargo, aún y cuando en muchos muros pudiera conside­rarse que éste es el caso, por lo menos desde un punto de vista práctico, en algunos claramente no lo es (muros con restricción es­tructural a la deformación; por ejemplo en constituyentes de marcos rígidos). Además, en otros problemas estructurales, tales como ade­mes o tablestacas, en los que el empuje de tierras juega papel rele­vante, las condiciones anteriores no se cumplen, ni aún adoptando un criterio simplista. En efecto, en estas estructuras existen puntos cuya deformación está restringida en alto grado, en los cuales se producen concentraciones de presión que disminuye, por el contrario, en zonas donde está menos restringida la deformación. En esta redistribución de esfuerzos, debida a las condiciones de deformación impuestas, juega un papel importante el arqueo de los suelos.

El efecto de arqueo puede visualizarse reflexionando como sigue: supóngase una masa de suelo de gran extensión que descanse apoyada en una superficie horizontal rígida; supóngase que, por algu­na razón, una parte de esa superficie cede un poco hacia abajo, de modo que el suelo que haya quedado sobre esa parte tienda también a descender. Al movimiento de esa masa de suelo relativo al resto de suelo que ha quedado inmóvil, por estar firmemente apoyado, se opondrá la resistencia al esfuerzo cortante que pueda desarrollarse entre la masa móvil y el resto del suelo estacionario. Esta resistencia tiende a mantener a la masa móvil en su posición original y, por lo tanto, reduce la presión del suelo sobre la parte cedida de la super­ficie de soporte. Como efecto consecuente, aumentará, por el contra­rio, la presión que las estacionarias ejercen sobre las partes fijas de la superficie de soporte.

Page 127: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

106 CAPITULO IV

Tiene lugar, por lo tanto, una transferencia de presión, de la parte de la superficie cedida a los apoyos estacionarios. Este efecto recuerda el modo de trabajar de un arco estructural y de ahí recibe el nombre de efecto de arqueo.

La consecuencia práctica del efecto anterior en elementos de so­porte en que haya puntos de deformación restringidos y zonas de cedencia más fácil, es una disminución de presión en estas zonas y una concentración en aquellos puntos, de modo que, a fin de cuentas, resultan modificados tanto el diagrama de distribución de presiones, como la magnitud del empuje total.

En el Anexo IV-h se detalla tanto cualitativa como cuantitati­vamente el efecto de arqueo y su influencia en las presiones a considerar en los proyectos relativos a estructuras de soporte.

IV.15. Ademes

Se trata ahora el caso de obras de ademado provisional, que se ejecutan en excavaciones para garantizar la estabilidad de las paredes durante el tiempo necesario para la construcción. Por lo general, estos ademes son de madera o de una combinación de elementos de made­ra y elementos de acero y solamente en casos hasta cierto punto excepcionales se justifica construirlos totalmente de acero.

La disposición de los elementos de soporte suele ser parecida a la que se describe a continuación. En primer lugar se hinca verti­calmente una serie de postes o viguetas de acero de sección H, siguiendo el contorno de la excavación a efectuar y hasta una pro­fundidad mayor que el fondo de la misma. En seguida, el espacio entre esos elementos se reviste con tablas horizontales que se van añadiendo a medida que la excavación progresa; también, según la profundidad aumenta, deberán afirmarse los elementos verticales hin­cados con puntales de acero o de madera, colocados transversalmen­te a la excavación, apoyados en largueros longitudinales.

En general, los puntales son los elementos de los que más nece­sita preocuparse el ingeniero proyectista, para lo cual será preciso conocer la magnitud y la distribución del empuje del suelo sobre el ademe. Esta magnitud y distribución, como ya se ha dicho, depende no sólo de las propiedades del suelo, sino también de las restric­ciones que el elemento de soporte imponga a la deformación del propio suelo y de la flexibilidad de toda la estructura de soporte en general.

Según la excavación prosigue, la rigidez de los puntales ya coloca­dos impide el desplazamiento del suelo en las zonas próximas a los apoyos de esos puntales. Por otra parte, bajo el efecto del empuje, el ademe en las zonas inferiores gira hacia dentro de la excavación, de manera que la colocación de los puntales en esas zonas va prece-

Page 128: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 107

dída de un desplazamiento del suelo que será mayor, en general, cuanto mayor sea la profundidad de la zona considerada. Este tipo de deformación que sufre el suelo durante el proceso de excavación y colocación del ademe es equivalente, desde el punto de vista de la distribución de presiones, a un giro del elemento de soporte alrededor de su extremo superior. En estas condiciones de deformación las teorías clásicas de Rankine y Coulomb no son aplicables y, por lo tanto, para calcular el empuje sobre el ademe es preciso recurrir a otros métodos. En el Anexo IV-i se presenta la forma usual de efectuar estos cálculos. Sin embargo, es un hecho que en ademes las teorías proporcionan resultados por lo general muy poco con­fiables, pues no toman en cuenta una serie de efectos reales, tales como el arqueo, que juegan un papel importante y modifican gran­demente la magnitud y distribución de los empujes dados por las teorías. En efecto, la distribución de presiones en este tipo de obras es aproximadamente parabólica, con el punto de aplicación del empuje muy cerca del punto medio de la altura del ademe, con­trariamente a la distribución lineal, similar a la hidrostática, que las teorías clásicas consideran en muros de retención. Otra diferencia importante entre el comportamiento de los muros de retención y los ademes estriba en que los muros constituyen verdaderas unidades estructurales, que fallan como un conjunto, por lo que las irregulari­dades locales en la distribución de presiones tras el muro tienen rela­tivamente poca importancia; los ademes, por el contrario, pueden fácilmente fallar en forma local, rompiéndose un puntal en alguna zona en que la concentración de presiones sea importante, lo cual po­ne en peores condiciones los restantes puntales y puede conducir al desarrollo de un mecanismo de falla progresiva.

No hay actualmente ningún modo para saber si el proceso de excavación y construcción del ademe producirá la suficiente ceden- cia en el suelo como para que se desarrolle en éste toda la resistencia al esfuerzo cortante y el empuje llegue al valor correspondiente al estado activo. De hecho, los puntales suponen una restricción para la deformación del ademe que permite pensar que, por lo menos en las zonas próximas a ellos, la presión se concentrará fuertemente. Ello dependerá de su acuñamiento y del tiempo transcurrido entre la excavación y su colocación, principalmente.

Todo lo anterior justifica la afirmación ya hecha de que las teorías clásicas de empuje de tierras no ofrecen suficiente confia- bilidad en este tipo de estructuras, por lo que, o bien es preciso recurrir a otros métodos de cálculo (Anexo IV-i) o a mediciones efectuadas sobre modelos a escala natural o en obras reales. A este respecto, Terzaghi13 presenta los resultados de medición efectuadas durante la construcción de obras en arenas compactas y en arcillas de origen glaciar blandas y medianamente firmes.

Page 129: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Durante la construcción del ferrocarril metropolitano de Berlín, en arenas uniformes y compactas, con presiones de filtración elimi­nadas abatiendo el nivel freático, se establecieron celdas medidoras en los ademes empleados, obteniéndose curvas reales de distribución de presiones. La forma de estas curvas resultó ser bastante errática y fuera del marco de las teorías establecidas, aunque conservando cierta tendencia parabólica. Con un criterio puramente práctico, Ter- zaghi estableció una envolvente sencilla de forma trapecial, útil para ser aplicada en cualquier lugar en que hayan de ademarse arenas compactas. Esta envolvente se muestra en la fig. IV-22.a.

108 CAPITULO IV

FIG. IV-22. Envolventes prácticos de presión, según Tenaghia) Arenas de Berlínb) Arcillas de Chicago

Respecto a la magnitud de los empujes totales medidos se obser­vó que eran aproximadamente un 10% superiores a los calculados con la Teoría de Coulomb y que estaban aplicados en la zona cen­tral del ademe. El valor cíe la presión máxima registrada resultó ser un 20% menor que la presión máxima correspondiente a una distribución lineal de empuje activo. Con estos datos, Terzaghi fijó la altura del trapecio envolvente en el valor.

0.8 pA eos 8donde

pA eos 8 = componente horizontal de la presión máxima calculada con la Teoría de Coulomb, (supuesta una distribución lineal de presiones).

8 = ángulo de fricción entre el ademe y el suelo, conside­rado igual a 2/3 <j>

Page 130: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El valor de pA puede calcularse con la expresión:

2 PÁ Pá - ~ T T

dondePA = empuje sobre el ademe calculado según la Teoría de Cou­

lomb, con el método gráfico de Culmann, por ejemplo.H = altura del ademe.En arenas sueltas no existen hoy observaciones análogas a las

anteriores que sean totalmente confiables. En este caso, Terzaghi

Eropone el uso de la envolvente de la fig. IV-22.a, modificándola asta tomar la forma correspondiente a la superficie a b d e .

En las arcillas blandas o medianamente firmes de origen glaciar existentes en Chicago, E. U. A., Terzaghi obtuvo también gráficas de distribución de presiones, con medidas directas. La envolvente práctica de tales diagramas se muestra en la parte b) de la fig. IV-22 y también ahora es trapecial. Como en el caso de las arenas, las mediciones indican que la distribución real de presiones sobre el ademe sigue una ley aproximadamente parabólica, con máximo en la parte central y con variaciones que dependen del procedimiento de excavación y construcción del ademe, además de las propiedades del suelo. La altura del trapecio vale ahora, según Terzaghi

yH — 2 qu

donde qu representa la resistencia de la arcilla a la compresión simple.Las observaciones de Chicago se hicieron sobre arcillas del tipo

CL. con resistencia a la compresión simple del orden de 1 kg/cm2. La parte superior (2 m aproximadamente) del estrato estaba pre- consolidada por evaporación, mientras que las partes más profundas eran prácticamente de consolidación normal. Estos datos delimitan el campo de aplicabilidad práctica del diagrama de la fig. IV-22.b.

IV-16. Ademado en túnelesEl problema del ademado en túneles presenta singularidades de

interés suficiente como para ameritar un tratamiento especial. En efecto, dependiendo de la naturaleza de la roca o el suelo atravesa­do por la obra y de sus accidentes geológicos, el ademe puede no hacerse necesario o, por el contrario, requerirse a un grado que haga su costo prácticamente comparable al de las obras de revestimiento definitivo y que haga de importancia decisiva los criterios y métodos constructivos empleados en su proyecto y erección.

A continuación se presenta una tabla en la que se indican las normas más generales de criterio en lo referente a ademado en

MECANICA DE SUELOS (II) 109

Page 131: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO IV

Túnel excavado en roca estratificada y fragmentada

Page 132: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II)

Excavación de un fúnel en roca estratificada

Túnel excavado en roca moderadamente fragmentada

Page 133: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

112 CAPITULO IV

túneles que crucen roca. La Tabla 4-2 se refiere a la fig. IV-23, en la cual se aprecia el sentido de las letras usa­das.

La carga Hp se refiere a la altura de roca que se puede considerar actuante sobre el túnel.

En el Anexo IV -j se de­talla más esta cuestión tan importante y, frecuentemente tan descuidada por los inge­nieros constructores, a menu­do con deplorables conse­cuencias.

TABLA 4-2 Táñeles en R oca14

Estado de la Roca Carga Hp m Observaciones

Roca sana e Intacta cero Ademe ligero, si hay ro­ca explosiva

Roca sana estratificada 0 a 0.5B Cuando sea necesario, ademe ligero.

Roca moderadamente fisurada 0 a 0.25B Ademe ligero, si hay ro­

ca explosiva.

Roca moderadamente fragmentada 0.25B a 0.35 (B+H ,)

Ademe en el techo, ra­ramente en las pare­des y nunca en el piso

Roca muy fragmentada 0.35 (B + H ,) a 1.10(5+//,) Ademe en el techo y en las paredes

Roca triturada y quí­micamente intacta 1.10(B+H,) Recomendable ademe

circularRoca que fluye plásti­

camente (a poca profundidad)

1.10(B+Z/<) a 2.10(B + H ,) Conviene ademe circu­lar

Roca que fluye plásti­camente (a gran profundidad)

2.10(B+//,) a 4.50(B+í/i) Conviene ademe circu­lar

Roca expansiva Hasta 70 m, independiente­mente del valor (B+//()

Indispensable ademe circular

TECHO

PISOFIG. IV-23. Sección de un túnel

Page 134: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 113

IV-17. Tablestacas ancladas

Las tablestacas ancladas son elementos de retención del suelo, generalmente en fronteras con agua.

Dependiendo de la profundidad de hincado para un tipo de suelo dado, se agrupan en tablestacas de apoyo libre y de apoyo fijo. En el segundo caso la tablestaca se hinca lo suficiente como para que sólo pueda fallar por flexión o por deficiencia en el anclaje, pero se excluye la posibilidad de falla por desplazamiento de su extremo enterrado, al ser superada la resistencia pasiva del terreno; obvia­mente son de apoyo libre las tablestacas que no cumplen estas con­diciones. De acuerdo con las características de su construcción, las tablestacas pueden ser de dragado o de relleno; en las primeras, la estructura se hinca en el terreno natural y después se draga su lado exterior, cediendo espacio a las aguas; en las segundas, por el con­trario, se gana terreno al agua hincando la tablestaca de modo que una altura importante quede libre y rellenando posteriormente el lado interior. En la fig. 1V-24 se muestran esquemáticamente los tipos de tablestacas en lo que respecta a sus tipos de apoyos.

Las tablestacas ancladas son estructuras que presen­tan muchas particularidades que am eritan un análisis especial. Durante siglos se usaron bajo una base pura­mente empírica, sin intentar ningún criterio de análisis; después, en épocas corres­pondientes al comienzo del presente siglo, se empezó a dar una atención especial al problema (H. Krey, 1910, en A lem ania), elaborán­dose una serie de teorías entre las que la de la "línea elástica” y la de la "viga

equivalente” alcanzaron la mayor popularidad entre los proyectistas. Las hipótesis básicas de todas estas teorías15 se presentan a conti­nuación, con referencia a la fig. IV-25.

En la parte a) de la figura se muestra una tablestaca anclada con apoyo inferior libre. Se supone que toda la superficie interior está sujeta a presión activa y que en la parte enterrada de la super­ficie exterior actúa una resistencia pasiva, también calculable por las teorías clásicas.

(a)

FIG. IV-24. Tablestacas ancladasa) de apoyo libreb) de apoyo fijo

9—Mecánica de Suelos II

Page 135: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

114 CAPITULO IV

En la parte b ) de la misma figura aparece una tablestaca anclada de apoyo inferior fijo. Se toma ahora en cuenta que en b existe una inflexión en la curva elástica de la tablestaca (fig. IV -24.b).

En el diagrama de la fig; IV-25 se muestran las presiones con­sideradas.

Nótese que abajo del punto de inflexión b las presiones se invier­ten, teniéndose la activa por el lado exterior y la pasiva en el inte­rior. La profundidad de hincado D se calcula de tal modo que la elástica de la tablestaca satisfaga la condición de apoyo fijo tal como ha quedado indicada al comienzo de esta sección; normalmente, los cálculos necesarios se realizan dentro del marco de las teorías clásicas, o bien por un procedimiento de tanteos o con base en hipó­tesis simplificatorias.

FIG. IV-25. Concepciones ciáticas respecta al empuje de tierras sobre tablestacasancladas

a) de apoyo libreb) de apoyo fijo

En las épocas en que se desarrollaron las ideas arriba expuestas no se sabía nada respecto a su validez; desde entonces se han des­arrollado un gran número de observaciones que demuestran que las hipótesis antes mencionadas no pueden sostenerse si se desea un razonable acercamiento a la realidad; sin embargo, estas observacio­nes no han alcanzado frecuentemente entre los proyectistas el eco deseado. En el Anexo IV-k se mencionan las principales observa­ciones realizadas en los últimos años, reportadas por el Dr. Terzaghi, así como las modificaciones que el propio investigador propone para el diseño de las tablestacas ancladas.15

Page 136: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ANEXO IV a

Estados de equilibrio “plástico” en masas de arena de superficie inclinada. Teoría de Rankine

En el caso de una masa de arena con superficie inclinada los estados de equilibrio plástico pueden encontrarse analizando las con­diciones de equilibrio de un elemento prismático como el que se muestra en la fig. IV-a.l.a.

MECANICA DE SUELOS (II) 115

FIG. IV-a.l. Estados "plásticos" en una masa friccionante semiinfinita

Page 137: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Puesto que el estado de esfuerzos en cualquier plano vertical es independiente de la posición del plano dentro del medio, se sigue que los esfuerzos en las dos caras verticales del elemento de la parte a) de la figura mencionada, deben ser iguales en magnitud, pero de sentido contrario. Esto conduce a la idea de que la fuerza actuante en la cara inferior del elemento debe ser vertical hada arriba y de valor yz, dado que se considera unitaria la dimensión del elemento según la horizontal. Los esfuerzos normal y tangenrial que obran en la cara inferior del elemento en estudio se deducen del hecho de que las fuerzas correspondientes que los producen son yz eos ¡3 y yz sen (3, respectivamente y de que el área de la cara inferior vale 1/cos (3. De ello:

c — yz eos3 (3( 4 - a . l )

t — yz sen |3 eos 3Nótese que siempre:

= tg 3 (4-a.2)

por lo que el punto que representa a estos esfuerzos deberá estar en una recta que pase por el origen y esté inclinada un ángulo 3 con la horizontal. Supóngase que D es ese punto.

El círculo de Mohr que represente al estado plástico activo, cau­sado por una expansión de la masa de suelo en la dirección del talud, deberá, por lo tanto, pasar por D y ser tangente a la línea de falla del suelo, inclinada <£ respecto a la horizontal, desarrollándose hacia la izquierda, al contrario que el círculo representativo del estado plástico pasivo, que debe cumplir las mismas condiciones, pero desarrollándose hacia la derecha. Los dos círculos nombrados son, los que aparecen en la fig. IV-a.l.d.

A partir de estas consideraciones y aplicando la Teoría del Polo (Capítulo X I del Volumen I de esta obra) se podrán encontrar los esfuerzos ligados a cualquier dirección dentro de la masa y a la profundidad z. En efecto, como los esfuerzos r y i anotados arriba obran en un plano que forma un ángulo 3 con la horizontal y como la linea OD de la fig. IV -a.l.d tiene precisamente esa misma incli­nación, se concluye que la intersección de OD con el círculo del estado activo situará al polo correspondiente al estado plástico activo {Pa) y en forma similar podrá obtenerse el punto Pv. que es el polo del estado plástico pasivo.

Las direcciones de las superficies de fluencia en ambos estados se obtendrán trazando paralelas a las rectas que resultan de unir los respectivos polos con los puntos de falla a, a', b y b'.

116 CAPITULO IV

Page 138: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Se obtienen así las direcciones PAa y PÁa' (dA y dA) para el caso activo y Ppb y Ppb’ (dp y dp ) para el pasivo. Las partes b) y e ) de la fig. IV-a.l representan esas superficies de fluencia.

El esfuerzo principal mayor en el estado "plástico” activo estará representado por la abscisa del punto B y su dirección será normal a la obtenida uniendo PA y B. Esta dirección forma con las líneas de fluencia ángulos de 45° — <j>/2. Análogamente, usando Pp y E, podrá obtenerse una dirección que es normal a la del esfuerzo prin­cipal mayor del estado "plástico” pasivo, que forma ángulos de 45° + <£/2 con las correspondientes líneas de fluencia.

Para obtener la magnitud de los esfuerzos normal y tangencial sobre un plano vertical a la profundidad z, cuya resultante, según se vio (fig. IV -a.l.a) es .paralela a la superficie del relleno, simplemente se trazará una vertical por el polo PA. cuya intersección con el círcu­lo de Mohr del estado activo dará un punto cuyas coordenadas son los esfuerzos deseados.

Nótese que las coordenadas de dicho punto son, en valor abso­luto, iguales a las del polo Pa, por lo que el segmento OPA repre­sentará ahora la magnitud del esfuerzo total actuante sobre el piano vertical.

Para 3 = 0, el punto D coincide con B y la presión total sobre un

§lano vertical es horizontal y tiene por magnitud el segmento O A. ¡ste es el caso analizado en la sección IV-3.

Conforme 3 crece, el punto D se mueve sobre el arco Ba (fig. IV-a. 1 .d) y el polo PA lo hace sobre el arco Aa; por lo tanto, el es­fuerzo total actuante sobre el plano vertical a la profundidad z (OPA) irá aumentando en magnitud y su dirección será siempre la dada por el ángulo 3-

El 3 máximo posible es <j>, si ha de haber equilibrio y en este caso D y PÁ coinciden en a.

En el caso general 0 3 ^ la magnitud del esfuerzo total queactúa en el plano vertical puede encontrarse con base en conside­raciones geométricas referidas a la fig. IV -a.l. La obtención de esa presión, dirigida según 3. o sea paralela a la superficie del relleno y actuante sobre el respaldo vertical del mismo, es algo laboriosa y no se incluye en esta obra; su expresión es:

f n eos 3 — Veos2 3 — eos2 <f\ v PA = yz\ eos 3 ------£ ~ 7 - n j ===== = Y* Kah (4-a.3)

L eos 3 + Veos2 3 — eos2 <¡>JDonde KAa es el coeficiente de presión activa de tierra, cuando

la superficie del relleno está inclinada un ángulo 3-Si 3 = 0 la fórmula 4-a.3 se reduce a la ya vista:

Pa = Y2 r rS * = Y2192(45 ~ */2)= (4'2)

MECANICA DE SUELOS (II) 117

Page 139: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

118 CAPITULO IV

Si 3 = (j>, de la expresión 4-a.3 se obtiene:pA — yz eos P (4-a.4)

Para el caso del estado plástico pasivo puede razonarse en todo momento en forma semejante a la anterior, obteniéndose como resul­tado de la presión ejercida a la profundidad z, contra un plano ver­tical, el valor.

Per 8 C O S ( i + V c o s ^ j g i l _ KrfL eos P — V C O S 2 P — C O S 2 <j>J

(4-a.5)

Esta presión también es paralela a la superficie del relleno.También ahora para p — 0 (relleno horizontal) se llega a las

fórmulas presentadas en el cuerpo del capítulo (sección ly-3)^ y para P = <f> se tiene para la presión pasiva una expresión idéntica a la 4-a.4. Nótese que al crecer el ángulo P la presión pasiva dis­minuye en magnitud, al revés de lo que sucedía con la activa.

ANEXO IV-b Empujes contra muros de respaldo no vertical

En las secciones de muros de mampostería en que el respaldo no sea vertical o en las secciones usuales de muros de concreto reforza­do con losa de cimentación han de modificarse los procedimientos de aplicación de las fórmulas obtenidas en la sección IV-4.

Fl©. IV-b.l. Diagrama da presión acfiva en muros de concrefo reforzado

Considérense los muros mostrados en la fig. IV -b.l. En ellos la línea AB en la parte a) y las aB en las partes b) y e ) correspon­den a las líneas de fluencia según la dirección d'A de la fig. IV-a.l.d,

Page 140: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

representativa de los estados plásticos de Rankine. Al sufrir el muro el empuje y desplazarse hada la izquierda, como consecuenda de ello, la libertad que existe para que dicha línea se desarrolle por completo, es lo que garantizará que se llegue al estado plástico activo en todos los puntos del relleno a la derecha de dicha linea, ya que, evidentemente, las líneas de fluencia paralelas a la dirección dA, en la misma fig. IV-a.l.d, no tienen restricción para su formación.

En la parte a) de la fig. IV-b.l, a partir del punto A, puede desarrollarse la línea de fluencia sin ningún obstáculo, a causa del ligero bisel en la losa de cimentación. En el muro b) la línea de fluencia no puede partir de A, por restricción impuesta por la losa, por lo que en la parte Aa no se puede llegar a tener un estado plástico activo. En la parte c) de la fig. IV-b-1, además de la limitación indicada para b), la línea de fluencia corta al muro en b, por lo que las presiones arriba del punto b' no pueden ser las corres­pondientes al estado plástico activo.

En el caso a), consecuentemente, podrán aplicarse las fórmulas de la Teoría de Rankine, presentadas en la sección IV-4 para el caso de empuje activo con superficie de relleno inclinada, al cálculo del valor de E Á actuante en la sección vertical AC. Una vez obtenido EA se encontrará la resultante de dicho empuje con el peso, W, de la masa de relleno comprendida entre el plano AC y el respaldo del muro.

En el caso b) de la fig. IV-b.l sólo la parte limitada por aB está en estado activo y por lo tanto sólo el empuje sobre la parte aC de la sección vertical AC podrá calcularse con las fórmulas de la sec­ción IV-4. La parte de empuje' correspondiente a la sección a A tendría que calcularse con otro procedimiento, por ejemplo el de Cou­lomb; sin embargo, en la práctica el empuje total É A se calcula como si toda la línea AC estuviera en la zona del relleno en estado activo de Rankine. El error cometido con ello resulta siempre inferior a 2%.

Análogamente, en el caso c) de la figura citada, se ha compro­bado que si se considera el empuje activo actuando en toda la sección AC, el error cometido no suele sobrepasar al 6%.

Tanto en el caso b) como en el c) los empujes activos calcula­dos deberán componerse con el peso W para encontrar el efecto total del relleno sobre el muro.

En muros de mampostería con respaldo inclinado pueden suceder dos casos. El primero, que la línea AB quede dentro del relleno, en cuyo caso vale todo lo arriba dicho, resultando el empuje total de la composición de empuje activo actuante sobre un plano vertical tra­zado por el pie del respaldo, con el peso de la cuña comprendida entre dicho plano y el respaldo del muro. Pero si la línea A S cae dentro del cuerpo del muro no podrá desarrollarse el estado activo en el relleno y la presión sobre el muro será mayor que la correspon­

MECANICA DE SUELOS (II) 119

Page 141: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

120 CAPITULO IV

diente a dicho estado. En ese caso es recomendable recurrir al mé­todo de Coulomb para calcular el empuje.

ANEXO IV-cExtensión de la Teoría de Rankine en snelos con “cohesión” y

“fricción”En el cuerpo de este capitulo se analizó la Teoría de Rankine

para suelos con "cohesión” y "fricción”, en el caso de relleno de superficie horizontal y muro de respaldo vertical.

En el presente Anexo se extenderá tal teoría, primero al caso en que el relleno tenga como superficie límite un plano inclinado y, segundo, al caso de muros con respaldo no vertical. Se diferenciará la presión activa de la pasiva.

Considérese una masa de suelo limitada por una superficie plana que forme un ángulo 3 con la horizontal. Si se considera un ele­mento de espesor unitario y altura dz a la profundidad z, puede lle­garse a las expresiones:

ct = yz eos2 3 t = yz sen 3 eos 3

Fl©. IV-c.l. C irc u io s de M o fo p a ra e l e s ta d o p lá s t ic o a c t iv o en do s p ro fu n d id a d e s d ife re n te s . Suelos con "c o h e s ió n " y " f r ic c ió n "

Page 142: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

para los esfuerzos normal y tangencial actuantes sobre un plano para­lelo a la superficie del relleno.

En la fig. IV-c.I dichos esfuerzos están representados por el punto D. El círculo de Mohr correspondiente al estado plástico activo del elemento será tangente a la envolvente de falla que, incidental­mente, no pasará por el origen, (círculo 1).

El polo, P/¡, podrá encontrarse trazando por D una paralela a la superficie del relleno hasta cortar al círculo. Esta línea pasará por el origen y no es paralela a la envolvente de falla, salvo el caso especial en que |3 = <£. La dirección de las superficies de fluencia a la profundidad z específicamente está dada, según se discutió en el cuerpo de este capítulo, por d A y d A1, direcciones que se cortan al ángulo de 90 —

Si se considera otro elemento análogo a una profundidad mayor que la anterior, de modo que los esfuerzos normal y tangencial en la dirección $ de la superficie del relleno, estén representados por el punto iy, se tendrá un nuevo círculo correspondiente al estado plástico activo (2 de la fig. IV -c.l). Una de las direcciones de las superficies de fluencia, a esta nueva profundidad, está dada por la cTÁ. Debe observarse que en este caso de suelo “cohesivo” y “fric­cionante", la dirección de la línea de fluencia varía con la profundi­dad, según se desprende del hecho de que d ' A no es ya paralela a d A . Así, ahora las líneas de fluencia del estado plástico activo ya no son rectas, sino curvas, como las mostradas en la fig. IV-c.2.

MECANICA DE SUELOS (II) 121

FIG. IV-c.2. E stado p lá s t ic o a c t iv o on suelos co n "c o h e s ió n " y " f r ic c ió n "

Obsérvese que las superficies de fluencia conjugadas también resultan curvas, ya que deben formar con las primeramente conside­radas el ángulo constante 90° —

Page 143: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El efecto arriba mencionado es indudablemente debido a la in­fluencia de la "cohesión” y por lo tanto debe tender a disiparse conforme la profundidad aumenta; en otras palabras, a profundidad creciente, las líneas de fluencia tienden a ser las correspondientes a un material puramente friccionante.

En la fig. ÍV-c.2 se ha considerado el hecho práctico de que el suelo no trabaja a la tensión. Por ello se ha tomado en cuenta una zona de profundidad.

2o = — V Ñ ; (4-27)r

en la cual podrán presentarse grietas.El diagrama de distribución de presiones sobre un muro de

respaldo vertical deberá empezar a la profundidad z0 y, como se des­prende de la fig. IV -c.l, la intensidad de las presiones ya no es pro­porcional a la profundidad, puesto que los círculos 1 y 2 ya no son tangentes a una envolvente que pase por el origen. La distribu­ción es del tipo mostrado en la fig. ÍV-c.2 y puede también decirse que esta distribución, a profundidad creciente, tiende a la lineal, correspondiente al material considerado como puramente friccionante,

En la práctica, sin embargo, la distribución de presiones se con­sidera lineal, con el empuje resultante paralelo a la superficie del relleno y pasando a través del centroide del área del diagrama de presiones. La magnitud de este empuje práctico puede calcularse como el área del diagrama lineal de presiones, multiplicando la altura (H — z0) por la mitad de la presión actuante en la base del muro; ésta puede obtenerse gráficamente en el diagrama de Mohr midiendo la distancia OPa•

En el caso de que el respaldo del muro sea inclinado podrá hacerse una discusión similar a la efectuada en el Anexo IV-b. En la práctica, sin embargo, es usual proceder como allí se indica, com­poniendo la presión actuante sobre un plano vertical trazado por el extremo de la base del respaldo con el peso de la cuña de suelo comprendida entre ese plano y el respaldo del muro.

En el caso del estado plástico pasivo puede razonarse de un modo análogo al activo. Ahora es preciso suponer que, bajo la acción del muro, el suelo se comprime lo suficiente como para que se desarrollen en todo punto esfuerzos cortantes iguales a la máxima resistencia. En este caso, por estar toda la masa sujeta a esfuerzos de compresión, no habrá zona de agrietamiento. Las líneas de fluencia no son rectas, si la superficie del relleno es inclinada; uno de los ángulos formados por las líneas al cortarse sigue siendo 90° + <¡>. La distribución de presiones sobre un plano vertical da lugar a un diagrama convexo, en lugar de cóncavo como resultaba en el caso del estado activo; no existe forma práctica para tomar en consideración tal diagrama

122 CAPITULO IV

Page 144: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de presiones y en los trabajos diarios se aproxima con ley lineal, siendo su área igual al empuje total que se considera.

Al igual que en el estado activo, si la superficie del relleno es horizontal, las líneas de fluencia para el caso pasivo se vuelven rectas y el diagrama de presiones resulta rigurosamente lineal, con lo cual se obtienen las fórmulas presentadas en la sección IV-6,

En todas las discusiones anteriores, para que logren desarrollarse los estados plásticos activo o pasivo, es preciso suponer que la defor­mación del muro es la requerida para ello. Como en ambos casos lo que se necesita es que entre en estado plástico una cuña de mate­rial que parta del pie de la base del muro, el desplazamiento de éste no precisa ser una traslación paralela a sí mismo, sino que basta con que el muro pueda girar alrededor del pie de la base, para que pueda considerarse que los estados pueden generarse. Al considerar la resistencia del suelo como definida por los parámetros c y <¡>, se admite que el material es “cohesivo” y “friccionante”; como este no es el caso, según se discutió ampliamente, las líneas de fluencia de­berían de modificarse de modo que sólo tomasen en consideración las propiedades del suelo en términos de sus esfuerzos efectivos, que haría que sufriesen modificaciones inclusive las distribuciones de presiones sobre el muro. Desde este punto de vista, aún en los materiales puramente "cohesivos”, las líneas de fluencia deberían de cortarse a 90° + <¡>, siendo <f> el ángulo de fricción interna del suelo. El problema se torna muy complejo si se desea tomar en cuenta en la Teoría estricta a las propiedades reales del suelo y se complica especialmente si se introducen condiciones de preconsolidación. Po­dría decirse que este tema puede considerarse realmente inexplorado hasta hoy y que apenas se ha completado la etapa de aplicación de teorías a materiales ideales, sin que por el momento hayan crista­lizado las inquietudes sugeridas en los investigadores ante el com­portamiento real de los suelos, cada día mejor conocido.

En realidad la Teoría de Rankine debe verse tan sólo como un marco de referencia que permita al lector ubicar sus ideas y poder así enfrentarse con cierta sensación de estabilidad a los problemas reales del suelo. En las secciones de este capítulo se discuten factdres importantes que deben tomarse en cuenta cuando la estructura de contención tiene limitaciones para desplazarse lo requerido en los estados plásticos.

ANEXO IV-d Influencia de la rugosidad del muro en la forma de las lineas de

fluencia. Suelos “friccionantes”Si el respaldo vertical de un muro de retención es rugoso, se

desarrollan a lo largo de él esfuerzos cortantes que influyen en la

MECANICA DE SUELOS (II) 123

Page 145: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

forma de las líneas o superficies de fluencia. Considérese un muro de respaldo vertical rugoso, con relleno horizontal constituido por un suelo puramente “friccionante”. Si el muro se desplaza o gira en tomo a su base alejándose del relleno, la masa de arena que tiende a deslizar genera esfuerzos cortantes en el respaldo del muro a causa de su tendencia a bajar. Estos esfuerzos cortantes inclinan al empuje activo resultante un ángulo S respecto a la normal en el plano de con­tacto; éste es el ángulo de fricción entre el suelo y el muro. Este ángulo se considera positivo cuando la reacción del muro sobre el relleno tiene componente vertical dirigida hacia arriba. En la fig. IV-d.l .a se presenta este caso, anotándose las líneas de fluencia resultantes en tales circunstancias.

124 CAPITULO IV

FIS. IV-d.l. L ineas d e f lu e n c ia en su e lo " f r ic c io n a n te " con m uro d e re sp a ld o rugoso

La zona deslizante tiene una frontera que puede considerarse compuesta de dos tramos: el bd, curvo y el de, recto. La cuña ade está formada por dos familias de líneas rectas de fluencia que corres­ponden al estado activo de Rankine. La cuña abd está formada por dos familias de líneas que, como las anteriores, se cortan a 90° — <j>.

Si por alguna razón, la presencia de una carga vertical sobre la cresta por ejemplo, el muro tiende a bajar respecto al relleno, el ángulo S se invertirá y la componente vertical de la reacción del muro sobre el relleno será hacia abajo. En este caso (fig. IV-d.l.b) la

Page 146: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

cuña deslizante resulta mucho menor y las líneas de fluencia se zoni- fican como antes, invirtiéndose la curvatura de las que no son rectas.

Algo completamente análogo puede decirse del caso de empuje pasivo, si bien en este caso el ángulo 8 se considera positivo si la acción del muro sobre el relleno tiene componente vertical dirigida hacia abajo, (figs. IV-d.l. c y d).

MECANICA DE SUELOS (II) 125

ANEXO IV-eDeducción de la fórmula de Coulomb para presión de tierra en

suelos friccionantes. Construcción de Rebhann-Poncelet

IV-e.l Construcción de Rebhann-Poncelet

Para la deducción de la fórmula de Coulomb es un excelente pun­to de partida una construcción gráfica presentada en 1871 por G. Rebhann7, sobre una solución originalmente debida a V. Poncelet8.

Por sí misma la construcción mencionada puede usarse para en­contrar el empuje de proyecto y el plano de falla crítico; desde este punto de vista la construcción representa un método gráfico de análo­gos efectos a los de Culmann o Engesser.

Las etapas de la construcción, con referencia a la fig. IV -e.l, son las siguientes:

1. Prolongúese CD hacia ambos sentidos2. Dibújese AC, con C en el primer quiebre del relleno3. Dibújese una línea paralela a A C por B, hasta que corte a

CD prolongada, en F4. Dibújese una línea por A, que forme el ángulo <f> con la

horizontal y llévesela hasta que corte CD en G5. Dibújese FH, perpendicular a AG por F6. Dibújese FI, formando un ángulo w + 8 con FH7. Trácese un semicírculo con diámetro AG, siendo / su centro8. Dibújese por I una perpendicular a AG, hasta K9. Con A como centro y AK como radio trácese un arco que

cortará a AG en L10. Dibújese ML, paralela a FI11. Con centro en L y ML como radio, dibújese un arco de círcu­

lo que cortará a AG en N12. Dibújese MN13. Dibújese AM.

El área LMN, multiplicada por y del relleno, es el empuje total que se ejerce sobre el muro. La línea AM es la traza del plano crítico de falla y el ángulo VA M es el ángulo de ruptura.

Page 147: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

126 CAPITULO IV

Fl©. IV-e.l. C o n s tru cc ió n de R ebhann-P once le t

Page 148: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

IV-e.2 Demostración de la construcción de Rebhann-Poncelet

Se hará en las siguientes etapas (fig. IV -e .l) :1. El peso de la cuña deslizante, W, puede encontrarse como

sigue: los triángulos A C F y ACB s<jn de igual área, por tener igual base (AC, común) e igual altura “(yues B F es paralela a A C por construcción).

Así el área de la cuña ABCM es igual a la del triángulo AFM.Entonces, si AO es normal a FM , se tiene:

W = ^ y OA • FM (4 -e .l)

2 . La expresión para E puede determinarse como sigue:Dibújese MQ, perpendicular a AG; ya que ML es paralela a Fl

y el ángulo IFH vale w + 8,4 LMQ = 2L IFH = w + 8

Dibújese la vertical MR. Entonces por la etapa 4 de la cons­trucción:

4 QMR = 4 SAG = <¡>

Sea el 4 VAM — a. Entonces en la figura se ve:

4 RMA = 4 VAM = aAsí:

4 L M A = 4 LMQ + 4 Q M R + 4 RM A— w + 8 + <f> + a

y 4 LAM = 90° — 4 SAG — 4 VAM = 90 — £ — a

En el triángulo LM A:

LM senX-^ LAM) _ sen(90 — <j> — a)AL s e n (4 LMA) ~ sen(w + 8 + <j> + a) e

La cuña ABCM está en equilibrio por la acción de E y F (parte b ) de la fig. IV -e .l). El triángulo abe de fuerzas es el que se muestra en la parte c) de la misma fig. IV -e.l. De él:

E sen á sen (90 — <f> — a)

MECANICA DE SUELOS (II) 127

Page 149: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

128 CAPITULO IV

De las ecs. 4-e.l y 4-e.4:

E = AO • F M (4-e.5)

Los triángulos FIG y MLG son semejantes, por lo que:

m = T ¡ ? PM = P G ^ <4- 6 >

m = K T '■ L M ^ L G ^ (4-e.7)

De las relaciones 4-e.5, 4-e.6 y 4-e.7 se tiene:

E = h A O F G Tü-L G T 5 ^ Lde donde

f f _ l A O -F G -IF 1L-LG lt£ - 2 T — 1 7 B ? -------------3 2 “ , 4 -e'8 >

3, La localización del plano crítico de falla puede determinarse como sigue:

En la expresión 4-e.8, todas las cantidades son constantes que dependen del peso específico del suelo, las dimensiones del muro y la forma de la superficie del relleno, con excepción del último que­brado, cuyo valor es función de la posición del plano de ruptura AM.

Para encontrar el máximo valor de E, que es el que deberá uti­lizarse en el proyecto de un muro, deberá obtenerse el valor máximo del quebrado:

IL ■ LG AL

Para facilitar la nomenclatura se hará:

AG = a AI = b y AL = yentonces:

IL — y — b LG — a — ypor lo tanto:

Page 150: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El problema se centra pues en encontrar el valor de y que hagamáximo el valor de Y en la ec. 4-«.9. Al diferenciar dicha expresiónrespecto a y, se tiene

| L = + £ ± - i = o9.9 y

de donde se llega al valor:

y = \íab (4-e.lO)

Debe demostrarse ahora que la construcción presentada en el apartado IV-e.l, satisface la ec. 4-e.lO.

Desde luego, en el triángulo rectángulo AIK(A K ) 2 - ( A I ) 2 + (IK ) 2

y en el triángulo rectángulo IK]

(IK ) 2 = (JK )2 - ( ] I ) 2

por lo tanto= (AI ) 2 + ( JK)2 - (//) =

MECANICA D E SUELO S (II) 129

peroAK = AL = y, AI = b, ]K = JI = b - j

substituyendo

y> = » - + ( - 2- ) ‘ - ( ‘ - t ) ’ = * 6

de donde

y = Vah

que es la expresión 4-e.lO. Así la construcción de Rebhann-Pon- celet queda justificada y debe proporcionar el valor de E máximo posible, para un problema dado.

La construcción es válida sólo en el caso en el que el punto M caiga entre el muro y el punto D. Tampoco puede aplicarse sin mo­dificación a muros tipos voladizo. En este caso debe calcularse pri­mero el empuje contra un plano vertical por el punto extremo de la base del muro y combinar ese empuje con el peso de la cuña de suelo comprendida entre ese plano y el respaldo del muro.10—Mecánica de Suelos II

Page 151: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

IV-e.3. Deducción de la fórmula de Coulomb

Considérese el caso mostrado en la fig. IV-e.2 en el que un relleno de superficie inclinada ejerce un empuje contra un muro de respaldo plano. Si se aplica a ese caso la construcción de Rebhann- Poncelet podrá notarse que los puntos F y C coinciden con el B y que el punto G cae ahora sobre la superficie del relleno.

130 CAPITULO IV

Con el punto F considerado en B, la fórmula 4-e.8 queda:

„ 1 f AO • BG • IB1IL • LG . . .

El término entre paréntesis rectangulares es constante y depen­diente solo de los valores de H, 0, w, 8 y fijos para un problema dado. El último término de la expresión depende de la posición del plano de falla AM; ya se vio que ese valor es máximo si:

y = Vabde la figura

AO = AB ■ eos (w — 0)

Page 152: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 131

en el triángulo ABG

BG = AB sen (90° — <t> + w) sen (tf>- 0)

en el triángulo ABI

IB — A B sen (90° <j> + w)- A ü- sen (90o ^ s - w )

también de la figura se deduce

IL — tj — b, LG — a — y, AL = y, IG — a — b

yIL ■ LG _ (y — b) (a — y) _ a¿ , , - X j — - — a — —

pero y = Vab, para obtener el máximo empuje; por lo tanto

— xt— — a — 2 V ab + b —----------------A.L a

substituyendo en la ec. 4-e.ll, se tiene:

p — * / jm , / sen (90° — <¿> + w)£ - ¿ a f a - p ) x

v . d sen (90 — <£ + o») (a — Vafe)2 sen (90 — 8 — te) a ( a - 6 ) 2

lo cual da:

p _ J_ , ab\2 COS (w — P) eos2 (<ft — m) Afi ( a — Yab\ 22 sen (<f> — 0) eos (w + 8) a \ a — b ]

(4-e.l2)En la fig. IV-e.2 puede verse que:

AB = — • ^ _ sen (<ft — 0) _ sen ( — 0)eos m ’ a — sen (90° + 0 — w) ~ eos (w — 0)

_ /aha — V a F 1 — V i 2 1

- * , - ± - 1 + .|T

Page 153: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

b _ sen (8 + >) _ sen (8 + <t>)AB sen (90 — S — w) eos (S 4- w )'

a _ sen (90 + (3 — tv) _ eos (w — 3)AB sen (<f> — 3 ) sen(<¡!>— 3)

de lo anterior

b _ b/AB _ sen (8 + $) sen ( > — 3 )a a/AB eos (S 4- w) eos (w — 3)

substituyendo todos estos valores en la ec. 4-e.l2 se tiene

B = — y H 2 1 eos (w — 3) eos2 (<f> — w) sen (<¡> - 3)2 c0s2u> sen (<¡> — 3) eos (5 + w) eos (w — 3)

x 1________________. sen (S + <ft) sen ( . — 3) ~[2

L eos (S + w) eos (w — 3) Jlo cual aún puede simplificarse hasta llegar a

E — — y H 2 _____________________ eos2 (<f> — w) _2 , S ~ " I sen (8 + <í>) sen (<£ — 3) 1 2eos- u> eos (5 + w) 1 + J -----

L \ cos(5 + w)cos(w — 3) Jque es la expresión 4-30 a la que se quería llegar.

132 CAPITULO IV

ANEXO IV-Í

Teoría de Coulomb en suelos friccionantes, aplicada a algunos casos especiales de interés práctico

IV-f.l. Análisis de sobrecargas

La fórmula 4-30 puede ser utilizada para tomar en cuenta la pre­sencia de sobrecargas uniformes sobre la superficie del relleno, pero no sirve para manejar sobrecargas no uniformes o cargas lineales.

En rellenos horizontales o planos inclinados un ángulo 3 con la horizontal, el procedimiento usual para tomar en cuenta una sobre­carga uniforme es transformarla en un colchón de tierra equivalente. Si p es la presión uniforme y y e l peso específico del suelo, la altura del colchón equivalente será:

Page 154: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 133

El diagrama de presiones será en este caso trapecial y si el muro tiene altura H, el empuje total vale:

E = M h ' H + Y Hi)K H'f l )

donde K tiene el sentido que se desprende de la fórmula 4-30. El empuje estará aplicado en el centroide del área del trapecio de presiones.

IV-f.2. Relleno estratificado

Si el relleno tras el muro está formado por varios estratos de suelo de espesor constante y paralelos a la superficie del relleno, la presión lateral total podrá calcularse considerando la carga total sobre cada estrato como sobrecarga uniforme. También ahora el valor de K de la fórmula 4-f.l, aplicada al caso presente tiene el sentido con que aparece en la expresión 4-30. Es conveniente proceder de arriba a abajo en la consideración de los distintos estratos.

IV-f.3. Muro de respaldo quebrado

Si un muro tiene su respaldo quebrado como el mostrado en lafig. IV -f.l, la fórmula de Coulomb podrá aplicarse por etapas. Un empuje E x podrá obtenerse con la ex­presión 4-30 para la parte BB' del respaldo. El empuje E 2 se supone ser el corres­pondiente a la parte del dia­grama lineal de presiones actuante sobre A V que cu­bre la parte AB del respal­do. El empuje de proyecto E es la resultante de esos dos y pasa por su intersección.

Page 155: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

134 CAPITULO IV

ANEXO IV-g Construcción gráfica de Engesser

La construcción de Engesser es análoga a la de Culmann y se aplica de un modo similar. Con referencia a la fig. IV-g.l, la cons­trucción puede realizarse como sigue:

¥.na,y?z„ trabadas las líneas <j> ’ y "0" en la forma vista en la sección IV -8, llevense sobre la línea " f y a partir de A segmentos Aalt Aa2 . etc. que representen, a una cierta escala de fuerzas, a los pesos W j W« .. . etc. de las diferentes cuñas deslizantes supues­tas y limitadas por los planos Abt, Ab2 . . . etc.

Por los puntos au a2. . . etc., trácense paraielas a los respectivos pianos de deslizamiento Abu Ab , . . . etc.

Una vez dibujadas estas líneas es fácil trazar su envolvente con suficiente precisión. Esta linea aparece con trazo lleno en la fio. IV-g.l y recibe el nombre de curva de Engesser. La curva de En­gesser corta a la “línea 6" en el punto c, tal que Ac es el empuje máximo buscado, representado a la escala de fuerzas utilizada en el dibujo.

Page 156: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En eíecto, es fácil ver, para la cuña deslizante 1 por ejemplo, que el triángulo Aa-iCi es semejante al triángulo de fuerzas que aparece en la citada fig. IV-g.l, de modo que el segmento Aci es el correspondiente empuje, a la escala de fuerzas usada. Asi el segmento Ac es el máximo de los empujes obtenibles. No se considera necesa­rio detallar más la demostración del método que es en todo análoga a la presentada para el procedimiento de Culmann.

El punto de aplicación del empuje puede obtenerse como se indicó para el método de Culmann.

ANEXO IV-h

Arqueo en suelos

En el cuerpo de este capítulo se trató el arqueo en suelos desde un punto de vista puramente cualitativo, exponiéndose brevemente en que consiste este importante efecto. Insistiendo en este aspecto pura­mente descriptivo, se expone a continuación un experimento que permite visualizar el efecto en forma muy clara.

Considérese una balanza sobre una mesa. Sobre uno de los platillos de la balanza está situado un cilindro vertical de vidrio o lucita, de modo que el cilindro no toque el platillo, por estar provisto de un apoyo independiente situado sobre la mesa. Én el otro platillo se ha colocado un recipiente con agua, provisto de una llave de purga; el agua extraída se recogerá en una probeta graduada. En el platillo situado bajo el cilindro de vidrio se coloca un contrapeso que equilibre al peso del recipiente colocado en el otro platillo cuando esté vacío de agua. La fig. IV-h.l muestra un esquema de la dispo­sición de los elementos antes citados.

Una vez colocado el cilindro muy cerca del platillo, pero sin tocarle, con la balanza fija (sin movimiento en los platillos), se llena de arena, dejándola caer por la parte superior. La arena descansa así directamente sobre el platillo. Al mismo tiempo, en el otro platillo, se coloca agua en el recipiente contrapesado, de manera que el peso del agua sea igual al de la arena del primer platillo. En estas condi­ciones se dejan en libertad los platillos observándose, como es natu­ral, que quedan equilibrados. Si ahora se abre la llave de purga del recipiente que contiene el agua, permitiendo que ésta fluya hacia la probeta, se observará que la balanza no se desnivela, aún cuando el peso que se pierda de agua sea importante.

Cuando sólo una pequeña fracción del agua original quede en el recipiente, se notará que la balanza llega a desnivelarse, derra­mándose la arena del cilindro a través del espacio producido bajo él por el movimiento de la balanza.

MECANICA DE SUELOS (II) 135

Page 157: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Una interpretación sugestiva del experimento descrito consiste en suponer que lo que sucede en el cilindro es que cuando el platillo tiende a bajar y a ceder bajo la arena, ésta empieza a trabajar por arqueo transmitiendo su peso, por fricción, a las paredes del cilindro. Este efecto disminuye el peso de la arena que gravita sobre el platillo. A medida que sigue drenándose el agua del recipiente del otro platillo, el primer platillo bajo la arena seguirá bajando una magnitud imperceptible, pero suficiente para dar lugar a mayor desarrollo del efecto de arqueo en la zona inferior de la arena. La zona superior gravitará sobre los arcos o, mejor dicho para este caso, bóvedas formadas en la masa granular inferior. El desequilibrio de la balanza se presenta cuando el peso del agua es igual prácticamente al peso de la arena contenida en el semi-elipsoide de revolución indicado en la figura por trazo discontinuo, pues esta masa de arena no tiene ninguna otra forma de sustentación posible. Una vez roto el equilibrio, este volumen de arena cede permitiendo el desplome de los arcos o bóvedas con la consecuencia del derrame de toda la arena observado en el experimento.

136 CAPITULO IV

FIG . IV-h. I Experimento que ilustra e l efecto de arqueo en suelos granulados

A este efecto de arqueo suele también llamársele acción de silo por presentarse en los silos para el almacenaje de cereales.

Las teorías de arqueo más estudiadas se refieren por lo general a dos problemas específicos: el primero considera un estrato de

Page 158: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

arena de extensión infinita, pero espesor finito, descansando sobre una base infinita de la cual cede una sección angosta de longitud infinita; es decir, se analiza un problema de deformación plana; el segundo problema considera el caso de un elemento vertical de sopor­te que gira en torno a su extremo superior, provocando el arqueo de la masa del relleno. En la fig. IV-h.2 (a y c) se esquematizan ambos problemas mencionados.

MECANICA DE SUELOS (II) 137

Z O N A O E C E O E N C lA

F IS . IV-h.2. ¿os dos problemas más preferentemente tratados por las Teorías de Arqueo

Terzaghi11 distingue tres tipos de teorías de arqueo, en referencia al tratamiento del primero de los dos problemas mencionados.

1 ) Teorías en las que se consideran las condiciones para el equi­librio de la arena localizada inmediatamente arriba de la zona de cedencia, sin investigar si los resultados obtenidos son compatibles con las condiciones de equilibrio de la arena situada más lejos de dicha zona.

2 ) Teorías basadas en la hipótesis de que la masa completa de arena colocada sobre la frontera que cede está en condiciones de equilibrio crítico. Esta hipótesis no es compatible con los datos experimentales de que se dispone.

3) Teorías en que se supone que las secciones verticales ad y be (fig. IV-h.2.a), que pasan por los extremos de la faja de cedencia son superficies de deslizamiento y que la presión sobre la frontera cedente es igual a la diferencia entre el peso total de la masa de arena colocada sobre esa frontera y la resistencia friccionante desarrollada a lo largo de las superfi­cies de fluencia. Las superficies reales de deslizamiento son la ae y bf, curvas, según indican los datos experimentales, con una separación mayor en la superficie que el ancho de la zona de cedencia; por lo tanto la fricción a lo largo de las su-

Page 159: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

perficies verticales supuestas no puede estar totalmente des­arrollada, pues esas superficies no son, estrictamente ha­blando, superficies de fluencia. Este hecho produce un error del lado de la inseguridad.

Las Teorías de los tres grupos conducen a resultados diferentes entre sí y puede decirse que el fenómeno de arqueo no ha sido estudiado en la realidad lo suficiente como para poder juzgar el valor relativo de cada una de ellas. El grupo más sencillo de anali­zar es el mencionado en tercer lugar y una Teoría de este grupo es la que se expone a continuación.

En ella se considera que la resistencia del suelo está dada en general, por la ley de Coulomb:

5 = c + ctg<£Se considera también inicialmente que en la superficie del terreno

considerado actúa una sobrecarga q.IV-h.2.a se muestra un elemento prismático de suelo

situado a la profundidad z y de espesor dz. El esfuerzo vertical en la cara superior se denomina cr„ y el esfuerzo horizontal, en las caras laterales, se supone ser:

cjh = K e v (4 -h .l)donde K es una constante.

Considerando el equilibrio vertical del prisma elemental se tiene:2Bydz ~ 2 B (<yv + dav) - 2Bav + 2cdz + 2Kavtg<t> dz (4-h.2)Simplificando y operando puede llegarse a:

dtxv , K c- + av- m = r - - E . (4-h.3)

que es una ecuación diferencial lineal, de primer orden y primer grado. Resolviéndola se tiene

o'v = e - f áz[ J Q e~Jí>ííz dz + C]donde

P = § tg* y Q = r ~ § -por lo tanto

OV = c-1<*/*> ~ -§•){ «»(*/«»* dz + Coperando

C\

138 CAPITULO IV

Page 160: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 139

Teniendo en cuenta el planteamiento del problema puede escri­birse la siguiente condición de frontera:

av — q si z — 0 (d-h.5)Aplicando esta condición a la solución 4-h.4 se llega a:

B( - 5 ) .ffv - — ' ----- 11 _ e-Kt'Hi/n, ) + q (4. h 6)K tg<¡>

Donde c es la base de los logaritmos naturales. Si el material que constituye el estrato bajo estudio es puramente "friccionante” (c ~ 0), la ecuación anterior se reduce a :

ff, = - (1 - C-Kt" ^ ñ>) + q (4-h.7)Ktg $Si la sobrecarga q es nula, la ec. 4-h.7 aún puede reducirse a:

oy = (1 - e“Als (s/B)) (4-h.8)Ktg (¡>Cuando z tiende a oo el valor de oy para un estrato de arena

limpia, sin sobrecarga, tiende a:

" = ■ & ■ (*-h9>que naturalmente es constante. Se ve entonces que, en este caso, la presión vertical dentro de la arena ya no sigue la conocida ley lineal sino que su gráfica se hace curva, acercándose asintóticamente al valor (4-h.9); de manera que, según la Teoría expuesta, la presión que actúa en la frontera cedente resulta menor de lo que se deduciría de la profundidad de tal frontera. Viendo la fórmula 4-h.9 y consi­derando, para fines apreciativos, un valor <j> — 30° y K =1, se tiene:

ffr = 2 By (4-h.lO)lo cual indica que, para esos valores, la presión que se ejerce sobre la zona cedente es únicamente la correspondiente a una columna de arena de altura 2B, o sea el ancho de dicha zona cedente. Es impor­tante notar, en la ec. 4-h.9, que el valor de la presión vertical ov es proporcional al ancho de la zona cedente, 2B.

Pero por otra parte, los datos de la observación experimental en arenas12 han demostrado que el valor de K aumenta desde 1, muy cerca del centro de la frontera que cede, hasta 1.5 en una elevación 2B sobre ese punto. A elevaciones mayores que 5B aproximadamen­te parece ser que el hecho de que la frontera ceda ya no influye

Page 161: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

140 CAPITULO IV

en el estado de esfuerzos de la arena. Estos hechos experimentales imponen la hipótesis de que la resistencia al esfuerzo cortante de la arena se moviliza sólo en la zona inferior de espesor z2 de las superficies de deslizamiento ad y be; con esta hipótesis, la parte su­perior de la masa de arena actúa sobre la masa que se extiende en la altura z2 simplemente como una sobrecarga q y la presión en Id frontera cedente debe entonces calcularse haciendo uso de la fórmula 4-h.7.

Si Zi (fig. 4-h.2.a) es la profundidad a lo largo de la cual no existen esfuerzos cortantes en las superficies verticales de desliza­miento, se tendrá

q = yz,Por lo tanto, para ese valor de q y para z = z2, profundidad

en que la resistencia al esfuerzo cortante de la arena si se moviliza, la ec. 4-h.7 queda:

OV = (1 - e-K ) + y Zie-* .strwi) (4-h.l 1)Atg$

Cuando z2 tiende a oo el valor de crv tiende a

- = 4 <4-h-9 >que es el mismo valor 4-h.9, constante.

Por lo tanto, cuando una parte de la frontera inferior de una masa de arena de gran espesor cede, la presión sobre esta zona cedente no es igual a la correspondiente a toda la altura de la arena que gravita sobre ella, sino que alcanza un valor menor que tiende al dado por la expresión 4-h.9, independientemente de la profundidad.

Por ejemplo, si <¡> = 40°, K = 1, zx =■ 45, la presión de la arena crece según ley hidrostática con la profundidad hasta el valor Zi = 45, pero abajo de éste, la presión queda medida por la ec. 4-h.l 1 y disminuye cuando la profundidad aumenta, acercán­dose asintóticamente al valor 4-h.9. La teoría indica que a una profundidad de más de 85, la influencia del peso de la arena en el espesor zx ya es despreciable, pues a tal profundidad el valor de o» ya se acerca suficientemente al valor final constante. También puede decirse que a una elevación de más de 45 ó 65 sobre el centro de la zona cedente, la presión sobre tal zona cedente ya no se ve in­fluenciada por el estado de esfuerzos prevalecientes en las capas su­periores de la arena.

En realidad, la transición entre la resistencia al esfuerzo cortante totalmente movilizada en la parte baja de la superficie de desli­zamiento ad y be y el valor nulo en las partes altas de esas superfi­cies es seguramente gradual y, por lo tanto, también será suave la

Page 162: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

variación del esfuerzo normal vertical con la profundidad, no alcan­zándose el valor yzu a partir del cual disminuye bruscamente, sino que comienza a variar gradualmente desde antes de esa cantidad, con valores ya menores que los correspondientes a la ley lineal. En la fig. IV-h.2.b se muestra esquemáticamente con línea llena la varia­ción real de er„, verificada con mediciones, en tanto que con trazos discontinuados se indica la teórica, brusca.

El efecto de arqueo es mucho más difícil de analizar en el segun­do caso, mostrado en la parte c) de la fig. IV-h.2, correspondiente a un elemento vertical de soporte que gire en torno a su extremo superior. Para analizar este problema se han hecho diversos intentos con la hipótesis de que la superficie de deslizamiento es plana, arco circular o de espiral logarítmica, llegándose en forma cualitativa, a algunas conclusiones importantes. La distribución de presiones hori­zontales tras el elemento vertical no es, en realidad, lineal, sino que adopta una forma de tipo parabólico, análoga a la mostrada en la fig. IV-h.2.c. Esto trae como consecuencia inmediata el que el punto de aplicación del empuje total se acerque mucho a la mitad de la altura del relleno. Al mismo tiempo, la investigación ha demostrado3ue el nuevo empuje es mayor que el correspondiente al estado activo

e Rankine.

ANEXO IV-iMétodos teóricos para el cálculo de empujes sobre ademes.

Método de la espiral logarítmica

MECANICA DE SUELOS (II) 141

Considérese en primer lugar una excavación en arena (c = 0 ) de altura H, como la mostrada en la fig. IV-i.l. Se supone en lo que sigue que no obran presiones hidrostá- ticas sobre el ademe. La posición inicial del ademe corresponde a la línea ab y la ab' representa la po­sición final.

Se trata de encontrar el empuje P que obra so­bre el ademe, por metro de longitud de éste. La hipótesis básica de este método consiste en supo­ner que la superficie de

FIG . IV-1.1 Método de lo espiro! logarítmico po­ra el cálculo de empuje en ademes

Page 163: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

falla del suelo tiene con el plano del papel una traza constituida por una espiral logarítmica de ecuación:

r ~ r , e olg$ (4 -i.l)

Donde e es la base de los logaritmos naturales y el sentido de r, r0 y 6 queda indicado en la fig. IV-i.l.

Como la parte superior de la masa deslizante no puede defor­marse lateralmente, por efecto de la primera hilera de puntales, la superficie de deslizamiento debe cortar a la superficie del terreno en ángulo recto. Por una conocida propiedad de la espiral logarítmica, la normal en cualquier punto forma un ángulo <¡> con el radio vector de ese punto: por lo tanto el centro de la espiral debe estar sobre una recta que forme el ángulo <j> con la superficie horizontal del relleno. El deslizamiento de la cuña de suelo ocurre hacia abajo en la frontera superior y esta componente del movimiento en toda la cuña hace que el empuje sobre el ademe resulte inclinado con la horizontal un cierto ángulo S.

Como ya se ha dicho, la distribución de presiones contra el ademe no sigue la ley lineal de las teorías clásicas, sino que tiene una forma aproximadamente parabólica, de modo que el empuje total resulta aplicado en un punto próximo a H/2. Las observaciones experimentales han probado que si se adopta el valor n = 0.55H, contado a partir del fondo de la excavación, como punto de aplica­ción del empuje P, siempre se estará del lado de la seguridad; por ello, este valor máximo observado es el adoptado en la práctica.

El procedimiento de cálculo se desarrolla como sigue. Escogido un punto d en la superficie horizontal del terreno, trácese una espiral logarítmica de ecuación dada por la expresión 4-i.l y que pase por ese punto y por b. Dadas las propiedades de la espiral, el centro de esa curva debe quedar en una línea que forme un ángulo <f> con la superficie horizontal del terreno. Sea O ese centro. La reacción P de las fuerzas normales y de fricción sobre la superficie de desliza­miento pasa por O, dadas las propiedades de la espiral. Entonces tomando momentos respecto a O, sólo hay que tomar en cuenta la fuerza W , peso de la cuña y la P, obteniéndose;

P m = W lde donde

P = W —m

Puede así desarrollarse un método de tanteos, probando dife­rentes posiciones de la espiral, que producen distintas curvas de deslizamiento. Naturalmente que el empuje de proyecto será el má­ximo obtenido en los tanteos.

142 CAPITULO IV

Page 164: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La experiencia ha demostrado que el valor de P de proyecto suele ser aproximadamente un 10% mayor que el obtenido aplicando la Teoría de Coulomb, haciendo uso del método de Culmann, por ejemplo. Esto proporciona un criterio de valuación del empuje que es suficientemente aproximado para análisis preliminares.

En el caso en que el terreno en que se efectúa la excavación sea puramente “cohesivo” puede aplicarse el mismo método descrito, con <f> — 0 , en cuyo caso la ecuación de la espiral se reduce a:

r = r0 (4-i.2)

que es la ecuación de una circunferencia. Como, por las razones expuestas, la curva debe cortar ortogonalmente a la superficie hori­zontal del relleno, se sigue que el centro de la circunferencia debe de caer sobre la prolongación de la superficie horizontal de dicho relleno. El método de tanteos se plantea ahora comparando un mo­mento motor, producido por el peso de la cuña de deslizamiento circular, con otro resistente correspondiente al empuje P y a la cohesión que se desarrolla a lo largo de la circunferencia que limita la zona de deslizamiento. Este último momento vale: cLr, siendo c la cohesión del suelo, L la longitud del arco de la circunferencia de deslizamiento y r el radio de la misma.

En este caso puede conservarse el valor experimental n =■ 0.55H.

ANEXO IV-j Ademado en túneles

IV-j.l. Carga de roca

El término carga de roca indica el espesor de la masa de roca que gravita realmente sobre el techo o arco del túnel.

Si el valor de la carga de roca es diferente de cero y el túnel carece de ademe, la masa de material que gravita sobre el techo tiende a penetrar en el túnel poco a poco, en tanto que el techo va adqui­riendo una forma irregular.

La carga de roca depende de la naturaleza de la misma y de una serie de detalles circunstanciales, tales como su agrietamiento, grado de alteración, etc. Si la roca está sana o moderadamente agrie­tada, el techo del túnel puede soportarse a sí mismo o requerir un ademe relativamente débil, en tanto que si el agrietamiento o la alte­ración son muy grandes, el empuje sobre el ademe puede llegar a ser tan grande como los que se manejan comúnmente en empuje de tierras. Frecuentemente, a lo largo de un túnel se encuentran preva­leciendo muy diferentes condiciones y el ingeniero ha de estar siem­

MECANICA DE SUELOS (II) 143

Page 165: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

pre dispuesto a modificar cualquier criterio de diseño preconcebido a la vista de las condiciones que vaya descubriendo la propia obra.

La carga que actúe sobre los ademes depende en cierta medida del estado de esfuerzos existente en la masa de roca, antes de perfo­rar el túnel. La relación entre la presión vertical ejercida por la roca sobre una cierta sección y la horizontal actuante en esa sección, depen­de principalmente de la historia geológica de la roca y puede variar entre límites muy amplios. En general la presión vertical suele ser mayor en masas no perturbadas de roca; en una masa plegada, la presión horizontal depende de si las fuerzas horizontales que causaron el plegamiento han o no desaparecido; en este último caso, la pre­sión horizontal puede tener cualquier valor, sólo limitado por la resis­tencia de la roca a la compresión. En general, no hay modo de conocer el estado de esfuerzos en el interior de una masa de roca, por lo que la existencia de fuertes presiones horizontales sólo puede deducirse de algunas manifestaciones externas, tales como la aparición de roca explosiva a pequeña profundidad.

IV-j.2. Túneles en roca sana e intactaLa teoría ha demostrado que, en roca sana, la modificación que

la presencia del túnel impone en el estado de esfuerzos de la masa general, tiende a nulificarse rápidamente a medida que aumenta el alejamiento del túnel; de hecho a distancias del orden de un diámetro el efecto de la excavación ya es despreciable.

En las paredes del túnel el esfuerzo radial, actuante en dirección normal a la pared, es nulo y el circunferencial, en la dirección de la tangente, es aproximadamente igual al doble del que existió antes de perforar el túnel. Un elemento de la pared del túnel está sujeto a un estado de esfuerzos hasta cierto punto similar al de un espéci­men de roca que se pruebe a la compresión simple; la falla se produce cuando el esfuerzo circunferencial llegue a igualar a la resistencia de la roca a la compresión; esto conduce a muy grandes esfuerzos circunferenciales posibles que, si no hay presiones horizontales en la masa de roca sana, corresponden a alturas de roca sobre el túnel, compatibles con d equilibrio, del orden de los miles de metros. En estas condiciones, es evidente que el túnel en roca sana no precisará por lo general, ningún ademe.

Existe, sin embargo, un problema rdativamente frecuente en tú­neles que atraviesan roca sana y que hace que éstos deban ademarse en forma suficiente para la protección de los trabajadores durante el período de construcción. Este problema suele denominarse roca explo­siva. En muchos casos, de las paredes y del techo de los túneles que cruzan roca sana se desprenden violentamente lajas de roca, que salen proyectadas a gran velocidad con el consiguiente peligro. El fenómeno ocurre cuando la roca en las paredes o techo del túnel

144 CAPITULO IV

Page 166: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 145

está sujeta a estados de deformación elástica intensa; ésta puede deberse a la permanencia de presiones horizontales, dejadas por fenó­menos de plegamientos tectónicos no disipados o puede deberse a otras causas no bien definidas aún. En la fig. IV -j.l se muestra un esquema de la formación de una laja explosiva. El remedio contra la roca explosiva es dar a las paredes y el techo del túnel un elemen­to que ejerza una fuerza hada ellos que neutralice la tendenda expan­siva. La presión necesaria para lograr el fin perseguido es pequeña y cualquier ademe que sea capaz de aguantar unas 2 ton/m2 es sufi­ciente para cumplir el objetivo.

A veces, si el fenómeno de roca explosiva toma pro­porciones muy grandes, se produce la fragmentación de las paredes y el techo del túnel tras el ademe, en cuyo caso éste deberá proyedarse

l a j a e x p l o s i v a Para soportar el empuje ma­yor que corresponde a ese tipo de roca. En cualquier caso el ademe deberá acu­ñarse bien contra las pare­des del túnel.

IV-j.l Generación de roca explosiva

rV-j.3. Túneles estratificada

en roca

La roca estratificada presenta el problema de romperse fácilmen­te a lo largo de los planos de estratificación y de juntearse transver­salmente a esa dirección. Cuando la estratificación es horizontal se presenta en estas rocas el efecto conocido como de puente, según el cual la roca se sostiene sola como una losa sin necesitar ademe, siempre y cuando la resistencia a la tensión de la losa sea mayor que los esfuerzos ocasionados por la flexión (fig. IV -j.2). Si los es­fuerzos de tensión son mayores que la resistencia de las losas de roca, el techo del túnel se agrieta y exige un sostén adecuado.

El efecto de los explosivos en el frente del túnel durante el proce­so de la construcción produce una sobreexcavación que depende de la distancia entre las juntas de la roca, de la cantidad y potencia de los explosivos y de la distancia entre el ademe ya colocado y el frente de trabajo sin ademar. Aún en los casos .en que se permita el desarrollo completo de la sobreexcavación, al no ademar el frente del túnel oportunamente, es raro que la cavidad que se forma sobre el techo del frente, por derrumbe, sobrepase el valor 0.5B, donde B es el ancho del túnel y esto sólo en caso de que la roca esté muy11—Mecánica de Suelos II

Page 167: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

junteada. Así pues, no es razonable, en la práctica, pensar que la carga de ro­ca sobre el adejne pueda exceder aquel valor, que constituye un límite supe­rior adecuado para ser tomado en cuenta en el proyecto; es claro que, si el ademe se construye con rapidez en el frente descu­bierto de la obra y se pro­cura ir acuñando con frag­mentos de roca el espacio entre dicho ademe y el embovedamiento provoca­do por las explosiones, se puede llegar a cargas de roca menores que 0.55.

Si los planos de estratificación de la roca están en dirección vertical, el monto de la sobreexcavación depende mucho de la distan­cia entre el frente de ataque de la excavación, sin ademar y el principio del ademe ya construido atrás. Ahora las masas de roca se sostienen por fricción en sus planos de estratificación y el techo del ademe sólo tiene que soportar la diferencia entre su peso y dicha fricción; en realidad, las observaciones prueban que la situación es más favorable de lo que a primera vista podría decirse y la carga de roca muy rara vez excede en estos casos el valor del peso de la masa aflojada por el efecto de los explosivos. Tomando un valor de la carga de roca del orden de 0.255 (5, ancho del túnel) parece ser que se garantizan buenas condiciones para el ademe del techo.

Si los planos de estratificación están inclinados respecto al eje del túnel se ejercen empujes no sólo sobre el techo de éste, sino también en la pared interceptada por la estratificación. En la fig. IV-j.3 se muestra esquemáticamente el procedimiento propuesto por Terzaghi para calcular estos empujes.

La cuña aed empuja a la pared ac del soporte y trata de penetrar en el túnel. El valor de este empuje, por unidad de longitud del túnel, puede calcularse suponiendo que a lo largo de de no hay adherencia entre roca y roca y que, a lo largo de ce se ha producido también una ruptura, de modo que la masa cefg gravita sobre el techo del túnel. La cuña ade, entonces, está en equilibrio bajo su peso W, la reacción F, a lo largo de ad y el empuje E sobre la pared. Como se conoce W en magnitud y dirección y F y E en dirección {<j> es el ángulo aparente de fricción interna de la roca de que se trate a lo largo de los planos de estratificación), puede trazarse el triángulo de fuer­zas correspondiente y obtener el valor de E. El valor del ángulo <f>

146 CAPITULO IV

FIG. IV-j.2. Efecto de puente en roca estrati­ficada

a) con ¡untas transversales muy espa­ciadas

b) con ¡untas transversales próximas

Page 168: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

depende no sólo de la na­turaleza de la roca, sino también de la presión del agua que pueda existir en los planos de estratificación de la misma; la experiencia ha indicado que si las ma­sas de roca contienen en sus planos de estratificación arcilla, <j> puede llegar a va­ler 15°, en tanto que será del orden de 25°, si la roca es limpia. El valor de la carga de roca que la cuña cefg ejerce sobre el techo del túnel podrá variar de 0.5B, para estratificación muy poco inclinada a 0.25B,

en casos sobre estratificación muy escarpada.

IV-j.4. Túneles en roca fisurada

Es frecuente que el fisuramiento ocurra paralelamente a la super­ficie del terreno. En estas rocas los problemas de sobreexcavación y soporte son muy similares a los tratados para el caso de las rocas estratificadas. Si las fisuras ocurren al azar, el no poner ademe conduce generalmente a un embovedamiento, especialmente sobre el techo; sin embargo, es frecuente que, por lo irregular de la trayec­toria de fisuramiento, la fricción y trabazón entre la roca juegue un gran papel, por lo que el empuje en las paredes suele ser nulo y en el techo ligero, correspondiente, cuando mucho, a una carga de roca equivalente a una altura de una cuarta parte del ancho del túnel.

Cuando este tipo de roca está sujeto a un fuerte estado de defor­mación elástica presenta también el problema de la roca explosiva, que debe ser prevenido como se dijo atrás.

IV-j.5. Túneles en roca triturada

En este tipo entran una gran variedad de formaciones, desde roca muy fragmentada hasta roca a tal grado triturada que su comportamiento sea realmente el de una arena.

En estas rocas es típico el fenómeno conocido como efecto de arqueo, que indica la capacidad de la roca situada sobre el techo de un túnel para trasmitir la presión debida a su peso a las masas colo­cadas a los lados del mismo. Este efecto es en todo similar al del

MECANICA DE SUELOS (II) 147

FIG. !V-¡.3. Cálculo de empujes en roca estratifi­cada en planos inclinados

Page 169: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

arqueo de arenas, ya mencionado y se produce como una conse­cuencia de la relajación de esfuerzos causada en el techo de la per­foración. En la fig. IV -j.4 se muestra esquemáticamente la masa de roca afectada por el fenómeno.

148 CAPITULO IV

a b

FIG . IV-i.4. Arquea sobre un túnel

Para determinar la carga que actúa sobre el techo del túnel tomando en cuenta el efecto de arqueo pueden analizarse teorías, como la mencionada en el Anexo IV-h, o resultados de pruebas de laboratorio realizadas sobre arenas. Estas pruebas, bastante re­presentativas del comportamiento de arenas o rocas trituradas situa­das sobre el nivel freático, permiten llegar a algunas conclusiones de interés práctico. La fig. IV-j.4 muestra la masa de roca afec­tada por el arqueo; el peso de esa masa, que tiende a penetrar en el túnel mientras no se construya el ademe apropiado, se trans­fiere en su mayor parte a las masas laterales de roca y es resis­tido por la fricción que se desarrolla en las superficies ac y bd. Nótese que el ancho de la zona de arqueo, Bu es mayor que el ancho del túnel. También se observa que el espesor D de la zona de arqueo es aproximadamente igual a 1.5 Bi; por encima de esa altura, los

Page 170: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

esfuerzos en la masa de roca permanecen prácticamente inalterados, cuando se efectúa la excavación. Basta que la roca ceda un poco en el techo del túnel para que la carga sobre el ademe llegue a valores inclusive mucho menores que el espesor de la zona de arqueo, D. Así se obtiene un H^i^. Si a partir de este punto, la deformación del intradós del arco del túnel sigue aumentando, la carga de roca vuelve a crecer tendiendo, según la deformación aumenta, a un valor Hpmáx que es, sin embargo aún bastante menor que D. En general, dependiendo de circunstancias difíciles de cuantificar, la carga de roca adopta algún valor Hv. intermedio entre H vmín y Hpmíx.

Después de que el ademe del techo ha sido instalado y adecua­damente acuñado, la carga de roca aumenta con el tiempo, con velo­cidad decreciente, hasta un valor último que vale, según Terzaghi

H„ ui, = 1.15 //p

Donde Hp es el valor de carga de roca originalmente actuante en el ademe.

Este valor se alcanza independientemente de la profundidad a que se excave el túnel bajo la superficie del suelo, (véase Anexo IV-h).

El valor de Hv, actuante sobre el ademe en un principio, depende de Bx y, según Terzaghi, se tiene:

~Hr — C Bx (d -j.l)

donde C es una constante que depende de la compacidad de la roca y de la distancia que haya cedido el techo del túnel, antes de que su ademe se instalase.

Si la roca está totalmente triturada, hasta el grado de presentarel aspecto de una arena, el ancho de la zona de arqueo llega alvalor:

= B + H t

La carga de roca Hp sobre el techo del túnel puede estimarse, según la ec. 4-j.l, con los valores de la Tabla 4-j.l obtenidos de pruebas en modelos representativos en arenas secas.

La presión media sobre las paredes del túnel puede estimarse aplicando las teorías de presión de tierra en arenas con la ecuación:

P* = 0.3 y (0.5//* + Hp) (4-j.2)

donde y es el peso específico de la masa de roca totalmente trituraday las demás literales tienen el sentido ya conocido.

Según ya se dijo, estos valores de la carga de roca y la presión horizontal aumentan con el tiempo un 15% aproximadamente, y este aumento deberá de tomarse en cuenta para el proyecto.

MECANICA DE SUELOS (II) 149

Page 171: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La experiencia ha indicado que los valores reales que se producen en los túneles suelen acercarse mucho más a los mínimos que a los máximos dados por la Tabla 4-j.l. Esto indica que la deformación del techo del túnel, que tiene lugar durante la excavación basta para producir el desarrollo completo del arqueo de la masa de roca.

150 CAPITULO IV

TABLA 4-j.l

Roca totalmente tri­turada, equivalente a

arenaHr Cedencia del techo del túnel

CompactaMín: 0.27 (B + H t)

Máx: 0.60 (B + H t)

0.01(B + H t)

0.15(fí + H t) o más

SueltaMín: 0.47 {B + H<)

Máx; 0.60 (B + H t)

0.02 (fi + Ht)

0.15(i? + H t) o más

De todo lo anterior se deduce que, en estos tipos de roca, es conveniente la construcción inmediata del ademe y el acuñamiento correcto del mismo.

Si el túnel está excavado bajo el nivel freático, las pruebas en modelos han demostrado que el fenómeno de arqueo no se ve interfe­rido por el flujo que se produce hacia el túnel, que actúa como un dren subterráneo, pero que las fuerzas de la filtración hacen que la carga de roca prácticamente se duplique. Naturalmente, el flujo afecta en forma importante la capacidad de carga en la base de los puntales del ademado lateral; en el Volumen III de esta obra se expondrán criterios para cuantificar este importante efecto.

IV-j.6. Túneles en roca fragmentada

Por el término fragmentada se indica una roca, que, por su gran cantidad de juntas, grietas y fisuras forma bloques independientes entre los que prácticamente no existe interacción. Las junturas entre los bloques pueden ser angostas o anchas y pueden o no estar relle­nas de materiales más finos. El comportamiento mecánico de estas formaciones se parece al de las arenas compactas de grano grueso, sin ninguna cohesión. Si las junturas entre los bloques están distri­buidas al azar, es frecuente que se presenten presiones, no sólo en el techo del túnel, sino también en sus paredes.

Page 172: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La carga de roca en estas formaciones está determinada por leyes parecidas a las que rigen los efectos del arqueo de las arenas; así, la carga H v sobre el techo de un túnel excavado a profundidad considerable es independiente de dicha profundidad y depende lineal- mente de la suma de B + H t.

La experiencia indica que estas rocas no se adaptan de inmediato al nuevo estado de esfuerzos provocado por la excavación del túnel. En el momento inmediato posterior a la acción de los explosivos, algunos bloques de la zona del frente de ataque caen dentro del túnel, produciendo un embovedamiento en dicho frente y tendiendo a formarse un domo de bloques inestables que termina donde co­mienza la zona ya ademada del túnel; en estas condiciones, el frente de ataque se sostiene a sí mismo por un cierto tiempo, al cabo del cual, la caída de los bloques continúa, formándose una cúpula y otro domo de roca inestable. Si el ademe sigue sin colocarse, el efecto es progresivo y la caída de una cantidad de roca produce la inestabi­lidad de otra masa en forma de domo que, a su vez, caerá posterior­mente. El tiempo que la masa inestable de bloques se sostiene a sí misma depende de la forma y tamaño de los bloques, del ancho de las junturas, de la matriz que las ocupe y de la distancia entre el fren­te de ataque y el ademe ya instalado. Al tiempo transcurrido entre la acción de los explosivos y la caída del primer domo de roca inestable se le llama período de acción de puente, tp. Este período se atribuye tanto a la resistencia viscosa de la matriz que rellena las juntas, como a la falla progresiva de las zonas de apoyo entre los bloques.

Aún cuando se construya un ademe adecuado, bien acuñado con­tra la roca, dentro del tiempo de acción de puente, la carga de roca sobre el techo del túnel tiende a crecer con el tiempo por dos razones. En primer lugar, porque según el frente de excavación avanza a partir de un cierto punto del túnel, el efecto tridimensional de domo se ve substituido por el bidimensional de arqueo, menos eficaz; en segundo lugar, porque el acuñamiento del ademe contra la roca no detiene del todo el acomodamiento de ésta bajo el nuevo estado de esfuerzos producido por la excavación; estos movimientos aumentan la carga de roca y el aumento no cesa hasta que los bloques han alcanzado su acomodo definitivo. El aumento total de la carga de roca y el tiempo que transcurra hasta que llegue a su valor constante depende en alto grado de la intensidad del acuñamiento del ademe contra la roca; si esta operación se hace adecuadamente, el tiempo mencionado no sobrepasa, en general, una semana. Por otra parte, si el espacio entre el ademe y la roca no se rellena bien con peda- cería de roca y el ademe no se acuña convenientemente, la carga inicial de roca puede ser pequeña, menor inclusive que la que se tiene cuando aquellas operaciones se ejecuten satisfactoriamente, pero esa carga crece durante varios meses y su valor final llega a ser mucho

MECANICA DE SUELOS (II) 151

Page 173: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

mayor que el que se alcanza en el caso de rellenado y acuñamiento apropiados,

El tiempo de acción de puente aumenta rápidamente cuando el espadamiento entre los puntales de ademado disminuye. La distancia mínima que puede disponerse entre el frente de la excavación y el prindpio de la zona ademada es algo mayor que la distancia de avance de la excavación en un dclo de uso de explosivos. Esa distan­cia suele ser del orden de 6/10 del ancho, B, del túnel; varía con el tipo de roca y muy rara vez excede de 5 ó 6 m. Es evidente, por otra parte, que si el tiempo de duración de una operadón de explosi­vos es mayor que el período de acción de puente, el ademe debe llevarse muy cerca del frente de la excavación.

El período de acción de puente debe influir en la programación de las operaciones de excavadón, limpieza y ademado del túnel. Si este período es sólo algo mayor que el que se requiere para ventilar el frente de ataque, tras la acción de los explosivos, serán inevitables los derrumbes en dicho frente. Cuanto mayor sea la diferencia entre esos dos tiempos habrá mayor margen para construir el ademe y, consecuentemente, los derrumbes serán evitados en la correspondiente propordón, hasta el límite en que el tiempo de acdón de puente cubra el lapso necesario para ventilar el túnel y ademar el frente descubier­to, en cuyo caso no habrá derrumbes de material, si las operaciones se llevan convenientemente.

En realidad no existe una frontera específica entre la roca tritu­rada, analizada en la sección IV-j.5 y la roca fragmentada que ahora se trata; por lo tanto, en este caso la carga de roca puede variar de 0.25B, que corresponde a la roca moderadamente juntea- da, ya también analizada, a los valores más grandes que puedan presentarse en roca triturada. Arbitrariamente pueden distinguir­se dos tipos dentro de la roca fragmentada en lo que se refiere a la estimación de la carga de roca que se produce: roca mode­radamente fragmentada o roca muy fragmentada. Con base en las observaciones realizadas en túneles para ferrocarril a través de los Alpes, se ha llegado a algunas estimaciones de H p en roca modera­damente y muy fragmentada. En túneles con agua a través de roca moderadamente fragmentada, H„ puede valer inicialmente cero y aumentar posteriormente a algunos metros. Si la roca está muy frag­mentada, el valor inicial de Hv puede ser más grande. Con base en estas experiencias puede elaborarse la Tabla 4-j.2.

En túneles en seco los valores de H v pueden ser mucho menores que en túneles en que el agua esté presente; sin embargo, es reco­mendable diseñar siempre para la condición más crítica, pues es muy difícil garantizar la ausencia permanente de las aguas en el tipo de obras que aquí se trata.

El hecho de que las junturas entre los bloques de la roca estén ocupadas por arcilla puede ser muy importante en épocas en que el

152 CAPITULO IV

Page 174: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II)

TABLA 4-j.2

153

Tipo de rocaCarga de roca, H ,

Inicial Ultima

Moderadamenteagrietada O 0.25 5 a 0.35 (fl + H t)

Muy agrietada 0 a 0.6 (B + H t) 0.35(B + H t)a1.10 (B + H t)

túnel esté seco, pues la arcilla seca actúa como cementante gracias a su resistencia al esfuerzo cortante; pero al humedecerse el túnel esta resistencia al esfuerzo cortante tiende a disiparse con rapidez y no es prudente, por lo tanto, confiar en ella, salvo casos muy especiales. Por ello es aconsejable usar los valores de la Tabla 4-j.2 independientemente de la apariencia de la roca durante la construcción.

IV-j.7. Táñeles en roca alterada y en arcilla

Como ya se ha indicado (ver Volumen 1 de esta obra), la alte­ración química convierte a la mayoría de las rocas, incluyendo todas las rocas ígneas y la mayor parte de los esquistos y pizarras, en arcillas. En ocasiones, la conversión es completa, en tanto que en otras se restringe a ciertos minerales únicamente; la alteración puede afectar a toda la masa de la roca o puede sólo ocurrir en las partes próximas a sus fisuras, grietas, juntas, etc. En cualquier caso es claro que las propiedades mecánicas e hidráulicas de la roca alterada difieren radicalmente de las de la roca original y tienden a parecerse mucho y a veces a ser las mismas que las de una arcilla.

Cuando se excava un túnel en estas rocas alteradas se produce un efecto de arqueo, análogo al tratado en rocas fragmentadas y trituradas; es decir, la carga de roca, es mucho menor que la presión correspondiente al peso de todo el material sobreyaciente a la exca­vación. Sin embargo, en rocas alteradas el efecto de arqueo se presenta asociado con fenómenos que son inexistentes en los otros tipos de roca mencionados.

En roca alterada o arcilla, el tiempo de acción de puente es mucho más largo que en arenas o rocas trituradas o fragmentadas, por ello muv rara vez se hace necesario en estos casos la excavación escalo­nada del frente del túnel; pero, por otra parte, el crecimiento de la carga de roca con el tiempo, a partir del valor inicial es, en este

Page 175: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

caso, mucho mayor y más prolongado que en rocas químicamente intactas.

Las propiedades de las arcillas de mayor significación en lo que se refiere a túneles son su expansividad al ser aliviadas de cargas, la variación de la resistencia al esfuerzo cortante con la presión normal y la velocidad de reacción a los cambios de esfuerzos.

Cuando la arcilla es aliviada de presiones tiende a expanderse y en presencia de agua lo hace, generalmente en alto grado; este fenómeno ya ha sido suficientemente discutido en el Volumen I de esta obra. Cuando se excava un túnel en estos materiales, la arcilla de las zonas próximas al borde de la excavación ve disminuidas fuertemente sus presiones de confinamiento y por lo tanto se expande tomando agua del material más alejado del túnel; esto trae consigo la disminución de la resistencia al esfuerzo cortante de la arcilla próxima a las paredes del túnel. En ocasiones se ha señalado que es la humedad prevaleciente en general en el interior de los túneles la causa del reblandecimiento de la arcilla en su techo y paredes; esta afirmación carece totalmente de consistencia y, de hecho, una muestra de arcilla extraída de la pared y dejada dentro del túnel, en contacto con el ambiente, se seca fuertemente en pocos días.

Cuando un túnel en arcilla no es ademado adecuadamente, el material de las paredes, piso y techo fluye lentamente y tiende a cerrar la excavación. Se dice entonces que fluye plásticamente. Durante ese proceso y debido a la expansión que se produce simul­táneamente, la resistencia de la arcilla al esfuerzo cortante disminuye hasta un mínimo, en el cual se mantiene prácticamente constante; este valor final se denomina “cohesión última”. Es evidente que el tiempo que tarden en producirse los fenómenos de expansión y pér­dida de resistencia depende de la permeabilidad de la arcilla, en primer lugar y del conjunto de sus propiedades en general. Para un túnel dado y a una profundidad dada, la velocidad de expansión aumenta rápidamente con las dimensiones de la parte del túnel no ademada, por lo que suele bastar llevar el ademe suficientemente cerca del frente de la excavación para prevenir problemas de ex­pansión.

Cuando el frente avanza una cierta distancia adelante del adema­do, la acción tridimensional de domo, que ocurre en el frente, es sustituida por el efecto bidimensional de arqueo, menos efectivo naturalmente, por lo que las expansiones tienden a aumentar, sobre todo en el piso y las paredes del túnel. El flujo hacia el túnel va asociado con una deformación que alarga a un elemento de arcilla en la dirección radial y lo acorta en la dirección circunferencial; esta deformación hace que la fricción interna del material y su cohesión aparente trabajen, por lo que, en el momento en que la arcilla empieza a fluir hacia dentro del túnel, el material vecino a las fronteras de éste empieza a funcionar como un arco que rodea a todo el túnel

154 CAPITULO IV

Page 176: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA D E SU ELO S (II) 155

llegando a constituir un verdadero cilindro. Este material que resiste en la periferia de la excavación recibe el nombre de cilindro resis­tente y ayuda poderosamente a soportar la presión de la arcilla situada más lejos de la excavación.

Tan pronto como el túnel se adema y acuña convenientemente, el flujo de arcilla cesa, aun cuando ésta no se haya adaptado al nue­vo estado de esfuerzos producido por la excavación y, por lo tanto, no se haya neutralizado la tendencia a fluir. Como consecuencia de esto, la presión contra los ademes aumenta, aunque a razón decre­ciente. El tiempo durante el que tal aumento de presión ocurre oscila entre algunas semanas y muchos meses.

La expansividad de las arcillas depende mucho de la presión a que hayan sido consolidadas. En arcillas preconsolidadas la capacidad de expansión es grande, la velocidad con que se presenta el fenó­meno es baja y el incremento de presión sobre los ademes construidos es grande y lento. Si el túnel está a poca profundidad, el valor último de la presión sobre el ademe puede exceder la presión del colchón existente.

Muy frecuentemente las arcillas duras se presentan muy agrie­tadas; estas arcillas se disgregan fácilmente cuando, bajo presión, fluyen en las paredes de un túnel pues, como ya se dijo, tal fluencia trae consigo una disminución de longitud de cualquier elemento en la dirección circunferencial. Estos efectos producen la caída de estos materiales de los techos de los túneles y el período de acción de puente de estas arcillas está generalmente limitado por el mencionado efecto de desmoronamiento.

En arcillas blandas suaves el concepto de periodo de acción de puente carece de significado, pues estos materiales fluyen desde un principio.

Todos los mecanismos anteriores pueden presentarse en rocas que contengan la cantidad suficiente de arcilla; en realidad, ésta puede ser producto de la descomposición de la propia roca o tener algún otro origen. La roca en sí puede ser junteada, triturada o, inclusive, mecánicamente intacta. Sin embargo, las propiedades de la roca, en lo que se refiere a su capacidad de fluencia o a su expan­sividad, quedan determinadas por las de la arcilla que contenga.

Las escasas pruebas que se han realizado hasta hoy en rocas que fluyen plásticamente, pero de poca o nula expansividad in­dican que la carga de roca H v es proporcional a (B + H t), pero con un coeficiente de proporcionalidad más alto que en el caso de roca muy agrietada. El valor Hp aumenta durante varias semanas a par­tir del momento de la excavación y también crece con la profundidad del túnel respecto al nivel del terreno. Las mayores presiones repor­tadas por Terzaghi en túneles excavados a profundidades de una o dos centenas de metros indicaron que el valor de H p correspondien­te aumentó desde 1.10 (B + H t) inicialmente, hasta 2.1 (B + H t)

Page 177: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

a que llegó finalmente. A profundidades del orden de más de 300 m, el valor inicial de Hp medido resultó del orden de 2.10 (B + H t), pero este valor puede crecer hasta unos 4.50 (B + H t) en el trans­curso de los meses siguientes a la perforación. Otro interesante dato de la experiencia es que la presión en las paredes parece ser del orden de un tercio de la que se produce en el techo y la presión en el piso es como la mitad de ésta última.

En rocas expansivas resultan aplicables las ideas expuestas para las arcillas preconsolidadas de modo que el período de acción de puente depende sobre todo de la velocidad de expansión y del espa- ciamiento entre las fisuras que la roca pueda presentar. La carga de roca inicial es debida casi exclusivamente al acuñamiento, pero este valor aumenta durante mucho tiempo, a veces varios meses, hasta alcanzar cifras muy importantes.

La falla del ademe en roca expansiva va acompañada de una relajación casi instantánea de la presión, por lo que el ademe fallado suele bastar durante algunos días para que la falla no tome, por lo menos, carácteres de catástrofe. La presión aumenta otra vez, cuando un nuevo ademe substituye al destruido, pero su valor final ya es menor que el alcanzado anteriormente. Cuando el ademe no es circu­lar, el aumento en contenido de agua y disminución de la resistencia al esfuerzo cortante que ocurre en la roca próxima al túnel al expan- derse puede fácilmente ser causa de que los puntales del ademe penetren en el piso del túnel, comenzando así el colapso general de la estructura de protección; por ello el tipo de ademado circular debe considerarse ahora como indispensable.

Muy pocos datos confiables se tienen actualmente para valuar la carga de las rocas expansivas. En túneles superficiales la carga de roca puede ser bastante mayor que la correspondiente al material existente sobre el túnel. En túneles profundos se han llegado a medir frecuentemente presiones del orden de 10 kg/cm2 y excepcional­mente se han encontrado valores tan altos como 20 kg/cm2; este último valor es toscamente equivalente a un colchón de 80 m de roca gravitando sobre el techo del túnel. Estas presiones indican que, aún en rocas expansivas, el efecto de arqueo es importante. Como quiera que la expansión trae consigo un alivio de las presiones ejer­cidas por el suelo, siempre que no existan restricciones, es recomen­dable dejar entre el ademe construido y la excavación una holgura;10 ó 15 cm es un valor satisfactorio.

Un procedimiento recomendado por Terzaghi para la construc­ción del ademado es el siguiente. Se colocan costillas circulares de acero suficientemente resistentes para aguantar la presión de expan­sión de la roca; como consecuencia la roca fluye en torno a esas costillas venciendo la resistencia de los elementos de soporte inter­calados entre las costillas, que se construyen relativamente débiles. Una vez que estos elementos han cedido, se retiran, se rebana el

156 CAPITULO IV

Page 178: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

material expandido y se vuelven a construir los elementos interme­dios. Así se logra que la presión vaya siendo controlada sin necesidad de sustituir todo el ademe o sin construirlo todo de muy alta re­sistencia.

Un aspecto muy importante es, naturalmente, reconocer la expan- sividad de la roca antes de efectuar la excavación del túnel. Para ello Terzaghi recomienda tomar muestras de roca fresca, sumergirlas en agua y medir su incremento de volumen. Un incremento menor de 2% indicaría que la roca no es expansiva, en el sentido en que aquí se ha venido tratando. Este punto es importante, no sólo para juzgar la carga de roca, sino también para decidir el grado de acuñamiento que haya de dársele al ademe; en efecto, se vio que en todos los tipos de roca antes tratados un buen acuñamiento en el ademe reduce no sólo el período de tiempo durante el cual la presión aumenta, sino también el valor final de dicha presión; por el contra­rio, en rocas francamente expansivas ya se mencionó la conveniencia práctica de dejar una holgura entre el ademe y las paredes de la excavación, pues esto reduce el valor final de la presión sobre el soporte. Así pues, el correcto juicio sobre la expansibilidad de la roca define los procedimientos de construcción en lo que a esta impor­tantísima cuestión se refiere.

NOTA. Este Anexo ha sido elaborado teniendo en cuenta la ref. 14 en forma muy predominante.

ANEXO IV-k Tablestacas andadas

rV-k.l. Efecto de los movimientos de la tablestaca en la presión de tierra

Los métodos clásicos de diseño de tablestacas, que se han men­cionado brevemente en el cuerpo de este capítulo, contienen la hipótesis básica de que basta un movimiento ínfimo en la estructura para que las presiones de la tierra se reduzcan a sus valores extremos y que los movimientos subsecuentes ya no tienen influencia en estas presiones. Estas hipótesis resultan insostenibles a la luz del conoci­miento que resulta de las mediciones efectuadas en modelos de la­boratorio y en estructuras construidas. Según estas observaciones, reportadas por Terzaghi, (fig. IV -k.l), el mínimo coeficiente activo de presión de tierras, KÁ, corresponde, en arenas compactas, a un valor de deformación de la tablestaca, d, de 0.0005, definiendo esa d como la relación entre el desplazamiento de la corona del muro por giro en torno al pie y su altura no enterrada. Este valor permaneció constante en las pruebas de referencia hasta d = 0.002; la deforma­ción posterior de la estructura hizo que KÁ aumentase, tendiendo al

MECANICA DE SUELOS (II) 157

Page 179: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

158 C A PITU LO IV

valor de KÁ mínimo para arenas sueltas. Cuando d llegó a valer 0.0046 el relleno se deslizó en forma aparente. En arenas sueltas el valor de Ka pasó de 0.4, correspondiente al estado de reposo, a 0.3 para una d — 0.0003; a partir de esa deformación del muro en adelante, el valor de KA disminuyó algo, si bien en mucha menor proporción, al­canzando el valor de 0.23 para d = 0.007, que representa la máxima deformación en el experimento. Se llegó a ese valor sin que el relleno deslizase. La fricción entre el relleno y la estructura se des­arrolló por completo antes de que la fricción interna en el relleno lo hiciese. Debe notarse que las deformaciones del muro se ejecu­taron una vez que el relleno se colocó totalmente. Esto es, las deformaciones fueron efectivas. Esto es importante en la aplicación a tablestacas, porque gran parte de la deformación de ellas ocurre mientras se coloca el relleno y si se toma en cuenta que los rellenos no suelen compactarse y que la deformación total máxima de una tablestaca no suele exceder de unos cuantos milésimos de su altura, no se justifica pensar que la presión actuante sea la activa.

Valones de d = Y/H

F IG . IV-k.l. Presiones medidas en modelos de muros con rellenos de arena (se­gún Tersaghi)

Page 180: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Otro punto de discordancia en la aplicación de las Teorías clási­cas, calculando presiones de tierra por el método de Coulomb, por ejemplo, se tiene al considerar planas las superficies de falla corres­pondiente a los estados activo y pasivo. Tanto teorías posteriores como las pruebas indican, de hecho, que tales superficies de falla son curvas y el considerarlas planas, si bien casi satisfactorio en el caso activo, conduce, en el caso pasivo, a empujes que van siendo mucho menores que' los reales, cuando el ángulo S de fricción entre la tablestaca y el suelo sobrepasa los 15°. Estas diferencias son mayores a mayor ángulo de fricción en el suelo, <j>. En la fig. IV-k.2 pueden verse gráficas, debidas a Terzaghi, que muestran cuantitativamente las variaciones a que se ha hecho referencia.

MECANICA DE SUELOS (II) 159

(o)

FIG. IV-k.2 Efecto de la hipótesis de falla plana (Coulomb) en el valor del coeficientede presión activa

IV-k.2. Efecto de las presiones de agua no balanceadas

Cuando, como es tan frecuente, las tablestacas están a la orilla del mar se producen sobre ellas, por efecto de las mareas, presiones hidrostáticas desequilibradas, a causa de que el nivel del agua libre a un lado de la estructura es menor que el nivel que el agua alcanza en el relleno. Otro tanto sucede en orillas de ríos o lagos cuando las aguas descienden rápidamente o tras fuertes lluvias.

Si los coeficientes de permeabilidad de los materiales de relleno son conocidos, la presión en desequilibrio puede calcularse trazando la correspondiente red de flujo y realizando en ella los cálculos que se detallarán en el Volumen III de esta obra. Si el relleno es homogéneo, en lo que se refiere a su permeabilidad, podría decirse que en el lado interior de la tablestaca obra una presión desbalan­ceada igual a

Pío — yw Hw (4-k. 1)donde H w es la diferencia de alturas de agua en los lados interior

C oefic ien te de presión p a s ivo , K ,

Page 181: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

y exterior de la tablestaca. En la zona en que la tablestaca queda enterrada por sus dos lados, pw va disminuyendo linealmente hasta reducirse a cero en el extremo inferior.

En todos estos casos existe flujo de agua y, por lo tanto, el efecto de las fuerzas de filtración deberá ser calculado por los pro­cedimientos descritos en el Volumen III de esta obra.

IV-k.3. Efecto de sobrecargasAntes de disponer de mediciones sobre estructuras reales ya se

contaba con métodos para tomar en consideración el efecto de las sobrecargas lineales; con base en la Teoría de Coulomb, se decía que la magnitud y posición del empuje producido por la sobrecarga dependía de los ángulos <j> y 8, con el sentido ya mencionado mu­chas veces.

En épocas más recientes Gerber 16 y Spangler 17 realizaron medi­ciones para determinar tanto la magnitud de la presión producida por la sobrecarga lineal sobre la tablestaca, como su distribución. El relleno utilizado por Gerber fue arena uniforme de río, con tama­ños entre 0.2 y 1.5 mm; el elemento de soporte fue prácticamente rígido y consistió en un muro de concreto de 78 cm de altura. Span­gler utilizó como relleno una grava con 13% de finos; el muro fue de concreto, en voladizo, de unos 2 m de altura y 15 cm de espe­sor; este muro podía girar en torno a la arista exterior de la losa de cimentación. Aún cuando existieron diferencias en las condiciones de las pruebas, los resultados de ambos investigadores fueron esen­cialmente iguales. La distribución de la presión horizontal actuante sobre el soporte correspondió a una línea curva, más o menos para­bólica, con máximo cerca del tercio superior de la altura H de la estructura, para cargas lineales no muy cerca de la corona del muro. Hasta una distancia de 0.4 H a partir de la corona del muro, los empujes medidos fueron prácticamente constantes; posiciones más lejanas de la sobrecarga producen empujes cada vez menores. Muy cerca del muro la ley de distribución de presiones se aleja mucho de la parabólica aproximada, con el máximo muy desplazado hacia arriba.

Los datos anteriores resultaron incompatibles con los resultados de la aplicación de la Teoría de Coulomb al problema, pero se acercan más a los valores que se obtienen aplicando la Teoría de Boussinesq.

Según esta teoría, el esfuerzo horizontal, ax, producido en un medio semiinfinito por una sobrecarga lineal vale, a la profundidad nH y en una sección vertical a mH de la sobrecarga (ver fia.IV -k .3):

160 CAPITULO IV

Page 182: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 161

Ahora bien, al aplicar este resultado al caso real de una tablestaca debe ha- cerse la consideración de que este elemento es rí­gido y restringe los des­plazamientos horizontales. Si una sobrecarga lineal simétrica a la real obrase del otro lado de la sección a-c en el medio semiinfini' to, el esfuerzo horizontal en el elemento considerado seria el doble del dado por la ec. 4-k.2 y la tendencia al desplazamiento horizon­

tal del elemento sería nula. En el caso real de la tablestaca podría considerarse que prevalece esta condición de deformación y, por lo tanto, la presión horizontal sobre ella puede tomarse como:

Fie. IV-k.3. Sobrecarga lineal actuante sobre una tablestaca anclada

_ 4g m2nPh~ W (m*"+ñ*p

(4-k.3)

Esta fórmula está bastante acorde con las observaciones ya cita­das, para valores de m mayores de 0.4; para m < 0.4 las discrepan­cias se hacen fuertes. Para estos últimos valores de m se encontró que la distribución de las presiones observadas mostraba mayor similitud con la calculada para m = 0.4, determinada por la ecuación:

P* = i0.203 n

H (0.16 -I- n2)2 (4-k.4)

Para m > 0.4 el empuje, E, por unidad de longitud de tables­taca es:

= í" «IphH dn = —it m8 + l (4-k.5)

Para m < 0.4, de acuerdo con lo arriba dicho, conviene conside­rar m = 0.4 y, por lo tanto:

2 q( M é V i ) = 03511

H-k.6)

12—Mecánica de Suelos II

Page 183: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Todas estas expresiones son más bien conservadoras respecto a las observaciones realizadas. Ha de tenerse en cuenta que en la Teoría de Boussinesq la sobrecarga lineal es de longitud infinita, en tanto que en las pruebas naturalmente no lo fue; además, la teoría está afectada de una serie de hipótesis tales como la elasticidad per­fecta del medio, etc., que ya han sido mencionadas antes en este volumen. Ante todo esto, la concordancia entre teoría y observa­ción es muy razonable. También es aceptable pensar que el margen de seguridad de los cálculos teóricos justifique su uso en condi­ciones de campo diferentes a las prevalecientes en las pruebas experimentales mencionadas.

Gerber, Spangler y Feld18 estudiaron también experimentalmen­te las presiones horizontales producidas sobre una tablestaca por efecto de cargas puntuales actuantes en el relleno horizontal. Como carga puntual utilizaron placas circulares de pequeño diámetro co­locadas a distancias variables de la cresta de la tablestaca; los relle­nos fueron también “friccionantes”. La presión resultó máxima en la traza con el respaldo del muro de un plano vertical a éste, trazado por la carga concentrada. En esta línea (ab en la fig. IV -k .3), la presión se distribuye en la acostumbrada forma parabólica, con máxi­mo a una profundidad del orden de la distancia entre el muro y la carga concentrada. El empuje total E T causado por la carga pun­tual P es máximo para m — 0 y disminuye constantemente para valo­res crecientes de ese parámetro (m indica ahora la posición de la carga concentrada P ) . Los valores experimentales encontrados para E t corresponden a los dados por la ecuación empírica

e ' = p T t t £ f <4'k-7>basada en los datos reportados por Gerber. La ecuación está formada de modo que los valores del empuje corresponden a los mayores observados.

Ninguna de las teorías hoy en uso concuerda satisfactoriamente con la distribución de presiones horizontales producidas por una carga concentrada. Para valores de m > 0.4 estas presiones corres­ponden aproximadamente a los valores de la expresión empírica:

_ , P m2 n2 p* - L 77W (m. + n*)* (4' L8)

Para m < 0.4 resulta más aproximado, usando la expresión4-k.8, mantener m = 0.4, con lo que:

Pk = 0.28 (4-k.9)

162 CAPITULO IV

Page 184: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Las ecs. 4-k.8 y 4-k.9 dan una aproximación buena en la prác­tica a los datos experimentales hoy disponibles.

IV-k.4. Distribución de la presión de tierras

Tanto la teoría como la observación permiten afirmar que la dis­tribución de presiones horizontales en el respaldo de una tablestacano es la que corresponde a la ley de Coulomb, sino que dependegrandemente del modo de deformarse que la estructura presenta.

En la fig. IV-k.4 se presentan esquemáticamente los resultados de las observaciones hechas por distintos investigadores sobre mode­los para el caso de tres tipos de desplazamiento de la estructura de soporte.

MECANICA DE SUELOS (II) 163

FIG. IV-k.4. Distribuciones de presión observados para diferentes nrodos de deformarseel soporte

En el caso a) ocurre un giro en torno al pie de la estructura y como consecuencia la magnitud y distribución de las presiones co­rresponde a la ley lineal de Coulomb. En el caso b) la estructura se hizo girar en torno a su corona y la distribución de presiones se apartó ya de la lineal, transformándose a la forma seudopara- bólica. En la parte c) se muestra la distribución de presiones obte­nidas en una estructura con el desplazamiento impedido en su pie y corona, pero con posibilidad de flexión en su parte central; tampo­co ahora la distribución sigue la ley lineal.

Como puede observarse en las distribuciones de las partes b) y c). la presión tiende a bajar en las partes cedentes y a aumentar en las fijas; esto es una consecuencia del fenómeno de arqueo ya discutido.

El caso c) representa también resultados obtenidos para la dis­tribución de presiones en tablestacas dragadas. En estas estructuras Rowe encontró que si el anclaje cedía 0.1% de H la distribución c) se modificaba bastante, acercándose a la ley lineal de la presión activa según Coulomb, sin que, por otra parte, se modifique sensi­

Page 185: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

blemente el empuje total. Este hecho justifica que, en este tipo de tablestacas, se considere en la práctica a la ley de Coulomb como buena para representar las presiones realmente actuantes.

En la fig. IV-k.5 se muestran esquemáticamente los resultados de pruebas realizadas por G. P. Tschebotarioff entre los años 1944 y 1948 sobre tablestacas de relleno.

164 CAPITULO IV

FIG. IV-lc.5. Distribución de presiones sobre tablestacasa) relativamente rígidasb) relativamente flexibles

Cuando la tablestaca utilizada como modelo era relativamente rígida (deformación máxima 0.1% de H en este caso) se encontra­ron curvas de distribución comprendidas en la zona rayada de la fig. IV-k.5.a, en las cuales la magnitud de la presión puede llegar a ser mayor que la correspondiente a la tierra "en reposo”, que, en este caso, correspondió a un valor del coeficiente de presión K0 = 0.4. Nótese que, en general, la presión fue mayor que la activa.

En pruebas con modelos más flexibles (fig. IV-k.5.b) con defor­mación horizontal máxima del orden de 0.5%, los diagramas de presión encontrados mostraron presiones de menor intensidad, acer­cándose más, por lo menos en magnitud, a las dadas por la Teoría de Coulomb (la línea KÁ = 0.23 representa la presión activa según la Teoría de Coulomb, calculada con <¡> = 34° y 8 = 25°, valores supuestos en las pruebas).

Las curvas 1 y 2 se obtuvieron con el mismo relleno arenoso, en el primer caso colocado en forma natural y en el segundo después de sometido a una compactación por vibración; nótese aue dicha vi­bración hizo aumentar notablemente las presiones sobre la tablestaca.

Page 186: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 165

Otro punto de interés puesto de manifiesto por las pruebas fue el referente a la influencia de la colocación del relleno arenoso. Las curvas de distribución de presiones 3 y 1 ponen de relieve esta in­fluencia. La curva 3 se obtuvo con un relleno construido colocando la arena del respaldo de la tablestaca hacia atrás; la 1 se obtuvo con un relleno construido depositando la arena de atrás hacia el respaldo de la tablestaca.

Los resultados anteriores correspondieron a pruebas efectuadas en terrenos de cimentación constituida por arena compacta; si ésta es suelta, se observó para el caso de la curva 3, que las presiones aumentaron un poco a lo largo de toda la altura de la tablestaca.

Para el caso de rellenos heterogéneos, compuestos por una zona de arcilla y una cuña de arena en contacto con el respaldo de la tables­taca se observó que, si la cuña parte del pie de la tablestaca hacia el relleno la distribución de presiones es prácticamente la dada por un relleno homogéneo de arena. Si la cuña parte de la corona de la tablestaca hacia el interior del relleno, la curva de presiones medidas sobre la tablestaca se aleja más del respaldo a lo largo de toda la altura, respecto a la del relleno de arena homogénea correspondiente.

. 0 .^5 H

/ A

í K ÍPlaco rígida

/ i 8/A REN A V !SU ELTA \ __

(o)

d * Q.005 H

^ !— ' "Kp /

. i Placa rígido

A REN ACOMPACTA

(b) le)

Ancloje

(Apoyo libro)

/iliii

AnclOjt j 1 1 1 1 1

l

Ancla jo

■;.v; i-.-.-;.-..;; " i • V- v; .'VA R EN A i : - \ ' • A R EN AS U E L T A ' ; . ■ \ COMPACTA

(Apoyo libro ) (Apoyo fijo)

(e) (f)Id)F IS . IV-k.6. Influencia de las condiciones del suelo on la presión pasiva desarrollada

en tablestacas y en e l tipo de deformación de la estructura

Nótese que todas las pruebas muestran un máximo de la presión en algún nivel comprendido entre el anclaje y el piso de la cara exte­rior de la tablestaca. También se puso de manifiesto que las presio­

Page 187: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

nes medidas dependen del procedimiento seguido para formar el relleno, hecho que no es tomado en cuenta por ninguna teoría de presión de tierra.

Con el fin de obtener datos respecto a la presión pasiva (fig.IV-k.6) que se produce en la cara exterior enterrada de una tables­taca, Rowe 19 realizó pruebas con una placa rígida que giraba en torno a su extremo interior (fig. IV-k.6, a y b) que permiten dedu­cir para la tablestaca que nunca tiene lugar un crecimiento lineal de la presión pasiva, como el que se obtiene con la Teoría de Coulomb y que, en general, las presiones reales son menores, tendiendo a valores pequeños en el extremo inferior de la estructura, siempre y cuando la flexibilidad sea suficiente como para que el extremo infe­rior pueda considerarse eje de rotación, de modo que la situación sea similar a la de las pruebas. Cuando Rowe hizo girar una placa rígida enterrada en tomo al punto correspondiente al nivel del piso, se obtuvo una presión pasiva creciente hacia abajo tal como la que se muestra en la fig. IV-k.6.c.

Las condiciones del terreno en que está hincada la tablestaca influyen sobre el tipo de deformación de ésta e influyen también en el tipo de apoyo que debe considerarse a la estructura. Por ejemplo, una tablestaca hincada en turba podrá ceder y resultará de apoyo libre; por otra parte, el hincado en arena compacta producirá segura­mente una condición de apoyo fijo, mientras que en la arena suelta se presentará una condición intermedia entre la turba y la arena compacta. En la fig. IV-k.6, parte d), e) y f) se presentan esque­máticamente estas condiciones.

IV-k.5. Influencia de la rigidez a la flexión en el momento flexionante

De acuerdo con las teorías clásicas utilizadas para diseño de ta­blestacas, mencionadas al principio de este anexo, las condiciones del apoyo enterrado y, por lo tanto el máximo momento flexionante en la tablestaca, son independientes de la rigidez de la estructura a la flexión; según aquellas teorías, el momento flexionante máximo disminuye cuando la penetración de la tablestaca aumenta, cual­quiera que sea su rigidez a la flexión. Estas afirmaciones no pueden sostenerse a la luz del conocimiento actual de las relaciones entre los desplazamientos horizontales de la estructura y las reacciones del suelo. Baumann 20 puso, por vez primera, de manifiesto las irre­gularidades de aquellas suposiciones, pero fueron las experiencias de Rowe las que aportaron las primeras evidencias respecto a las importantes relaciones mencionadas. Usando modelos metálicos de tablestacas, con rellenos granulares en estado suelto y compacto. Rowe midió las deformaciones verticales ocurridas en estructuras con diferentes alturas. En todas las pruebas obtuvo el esfuerzo en

166 CAPITULO IV

Page 188: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

las fibras extremas de la placa metálica a lo largo de la altura, el módulo de elasticidad, el momento de inercia de la sección recta del muro, la profundidad del anclaje y otros datos de interés. Las lec­turas obtenidas permitieron conocer el momento flexionante en la tablestaca en cada una de las pruebas. La condición de similitud entre el modelo y el prototipo es satisfecha por Rowe con ideas que involucran la suposición de que el módulo de elasticidad de las arenas crece linealmente con la profundidad, lo cual es sólo aproxi­madamente correcto en arenas sueltas; en arenas compactas, el mó­dulo de elasticidad, hasta donde sea posible hablar de este concepto en suelos, parece variar más bien con la raíz cuadrada de la profun­didad. Por ello, si la tablestaca se hinca en arenas compactas, las condiciones del apoyo inferior serán menos favorables que las de los modelos de Rowe en los que se hayan usado arenas con la misma compacidad. Rowe define para la tablestaca un número de flexi­bilidad :

_ H*9 ~ El

Las investigaciones permiten llegar a las siguientes conclusiones im­portantes. En tablestacas muy rígidas, el momento flexionante máxi­mo, M, es independiente prácticamente del número de flexibilidad, p, y es igual al valor calculado con la hipótesis de apoyo inferior libre para la estructura; sin embargo, si p excede un cierto valor, M dis­minuye cuando p aumenta y finalmente, tiende a un tercio del máximo momento en tablestaca de apoyo libre. El valor crítico, pc, en que M comienza a descender, aumenta cuando la compacidad relativa de la arena disminuye. El valor de pe es prácticamente independiente de la profundidad de hincado y del nivel a que actúe el anclaje.

Si la tablestaca fuera perfectamente rígida y el punto en que se ancla fuese inmóvil, el movimiento de la estructura sería un giro en torno a dicho anclaje y la distribución de la presión pasiva sería similar a la curva c) de la fig. IV-k.6, con punto de aplicación del empuje total inferior a D /3, contado a partir del extremo inferior de la tablestaca (D, profundidad enterrada). Esta condición correspon­de al apoyo libre ideal. Cuando la flexibilidad aumenta, el extremo inferior de la tablestaca se traslada cada vez menos y la distribución de la presión pasiva se acerca a la de las curvas a ) o b) de la misma figura, mientras la tablestaca tiende a girar en torno a su extremo inferior. El punto de aplicación del empuje pasivo pasa entonces a ser mayor que D/2; el "claro libre”, entre el anclaje y el punto de aplicación del empuje pasivo disminuye y, por ende, el máximo momento flexionante también decrece. Cuando el extremo inferior de la tablestaca permanezca totalmente inmóvil, se habrá llegado a la condición de apoyo fijo.

MECANICA DE SUELOS (II) 167

Page 189: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Cuando una tablestaca se hinca en limo o en arcilla, existe una restricción inicial fuerte para el movimiento del extremo inferior y esto puede producir temporalmente una condición de apoyo fijo; la consolidación del material hace, sin embargo, que al cabo de un tiempo el suelo ceda inclusive más de lo que lo haría una arena suelta; durante esta cedencia el máximo momento flexionante aumenta. Una condición permanente de apoyo fijo es difícil de lograr en arcillas, a no ser que estén fuertemente preconsolidadas.

IV-k.6. Fuerza de anclaje

Cuando la tablestaca pasa de una condición de apoyo libre a otra de apoyo fijo, por incrementarse su flexibilidad, el máximo momento flexionante disminuye. Si la parte inferior de la tablestaca está fija, los extremos fijos de la misma quedan bajo la acción de momentos que soportan parte de la presión lateral y, en consecuencia la tensión en el anclaje disminuye; por lo tanto la tensión del anclaje disminuye, cuando la flexibilidad de la estructura aumenta. Siguiendo un razo­namiento análogo puede afirmarse que la tensión de anclaje será menor cuanto más compacto sea el suelo en que se hinque la tables­taca y será también menor a mayor profundidad de hincado. Otro factor que influye en la tensión de anclaje es la profundidad a que dicho anclaje se construya. También se ha observado que si el an­claje cede, la tensión en él disminuye.

IV-k.7. Diseño de tablestacas ancladas

Para realizar un diseño económico y seguro de una tablestaca anclada deberán tenerse en cuenta todas las consideraciones gene­rales hasta aquí mencionadas que hacen posible eliminar los errores más serios de los métodos tradicionales. Actualmente la más impor­tante dificultad con que un método de diseño se encuentra se refiere a la complejidad estructural de los suelos, que se contrapone a la inevitable y usual hipótesis de homogeneidad de los mismos, con base en constantes y elementos de cálculo obtenidos de pruebas realizadas sobre muestras representativas.

Los pasos a que debe ajustarse un método de diseño de tables­tacas ancladas son los siguientes:

a) Valuación de las fuerzas actuantes en la superficie interiorb) Determinación de la profundidad de penetraciónc) Cálculo del máximo momento flexionanted) Valuación de la fuerza de tensión en el anclajee) Determinación de los esfuerzos admisibles en los distintos

elementos de acuerdo con las incertidumbres que se hayan tenido en la valuación de las fuerzas actuantes.

168 CAPITULO IV

Page 190: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

A R E N A

F i g . I V - k . 7 F u e r z a s a c t u a n t e s s o b r e u n a t a b l e s t a c a a n q

Page 191: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

i

R ELLEN O ARTIFICIAL DE A R E N A

Ka= 0 .3 5

SUPERFICIE DEL SUELO//7WW7SW

M u — ►

A R C ILL AD U R A

L I N E A DE D R A G A D O

L A D A DE APOYO U B R E .

Page 192: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 193: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

a) Valuación de las fuerzas actuantes en la superficie inte- rior de la tablestaca

Para exponer el método general de valuación de las fuerzas que actúan sobre una tablestaca se recurrirá a dos casos, uno en el que la tablestaca se supone hincada en terreno arenoso y otro en arcilla. Se supondrá que en ambos casos, se construye un relleno de arena, del terreno natural hasta el punto más alto de la tablestaca. En la fig. IV-k.7 se muestran ambos casos.

En la figura se mencionan cuatro zonas numeradas I, II, III y IV que corresponden a

I. Presión activa de tierra debida al peso del suelo tras la tablestaca

II. Presión activa debida a la sobrecarga uniforme qIII. Presión hidrostática no balanceadaIV. Presión horizontal causada por la sobrecarga lineal q'.

Para calcular estas presiones y las fuerzas resultantes que produ­cen deben calcularse los pesos específicos saturado y sumergido de los diferentes materiales y sus coeficientes de presión activa. Los valores de este coeficiente supuestos para la exposición que sigue se anotan en la fig. IV-k.7. En general, por estar depositados en agua, los rellenos artificiales quedan más bien sueltos y la tablestaca no se deforma lo suficiente como para que se desarrolle toda la resistencia al corte en el suelo; por ello, los valores de KÁ de cálculo suelen ser mayores que los de los mismos materiales en estado natural cuando obran tras una tablestaca de dragado. Los valores de KA para suelos friccionantes pueden estimarse, dentro de la Teoría de Coulomb, con los de <f> y S correspondientes. Como quiera que el empuje activo total equilibra al empuje pasivo y a la tensión en el anclaje, aquél será mayor que dicho empuje pasivo; por lo tanto, para un ángulo 8 dado, la resultante de las fuerzas de fricción en la tablestaca tenderá a hacer que ésta baje; si el punto extremo inferior de la estructura estuviese rígidamente apoyado soportaría tal resultante, pero esto está lejos de suceder-en la realidad, por lo que la tablestaca se asienta ligeramente hasta que la fricción en la cara interior se hace similar a la que actúa en la cara exterior enterrada. A causa de estos hechos el valor de 8 en los casos de presión activa se debe de consi­derar menor que en los de presión pasiva. Terzaghi recomienda valores de 8 = <j>/2 en la región bajo presión activa, y 8 = 2<f>/3 en zonas bajo presión pasiva.

Las arenas limosas suelen tener valores de KA mayores que las limpias de misma compacidad relativa, debido a que su ángulo de fricción interna es algo menor y su compresibilidad es mayor. En el caso de rellenos naturales el valor de K¿ podrá determinarse siguien­do las teorías usuales, pero en rellenos artificiales la sobrecarga

MECANICA DE SUELOS (II) 169

Page 194: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

uniforme q produce una presión horizontal igual a K¿ veces el propio valor de q.

La primera etapa para valuar la presión, hidrostática no balan­ceada es determinar correctamente la altura H,0; ésto puede hacerse conociendo los datos hidrográficos locales. Si el suelo tras la tables­taca es homogéneo en lo referente a la permeabilidad, la ec. 4-k.l permite calcular la presión no equilibrada. El área III de la fig.IV-k.7 se ha dibujado esquemáticamente con esta hipótesis. Para evitar un aumento brusco del valor H w, por ejemplo por fuertes lluvias, es recomendable el uso de drenaje superficial en el relleno.

Cuando el relleno de la tablestaca no se consolida durante la construcción, por ejemplo cuando es una arcilla suave, el nivel de agua inicial en el relleno está en la superficie del mismo; en estos materiales KA = 1. Ahora la presión horizontal del suelo y agua combinados contra la tablestaca es ymz, siendo ym el peso específico del material saturado.

El efecto de cargas lineales estacionarias puede tomarse en cuenta con las ecs. 4-k.3 y 4-k.4, ya analizadas; las cargas concentradas actuantes pueden ser fijas o móviles. Las ecs. 4-k.8 y 4-k.9 pro­porcionan las presiones horizontales correspondientes. Si la carga es fija la presión actúa en una zona específica; si es móvil, toda la tablestaca ha de ser capaz de soportarla. Desde luego, el relleno ha de ofrecer capacidad de carga suficiente para soportar las sobre­cargas; en caso contrario éstas se apoyarán en pilotes y ya no ejer­cerán efecto sobre la tablestaca. En el análisis de sobrecargas el valor de la altura H debe tomarse como la distancia vertical entre la línea de dragado y la superficie del relleno; con esto se trata de tomar en cuenta el hecho de que las presiones calculadas son mayo­res que las reales en las zonas profundas del tablestaca.

b) Determinación de la profundidad de penetración

La experiencia ha probado (Rowe) que existe muy pequeña ven­taja en hincar la tablestaca abajo de un nivel que garantice que no se producirá una falla por movimiento hacia afuera de la parte ente­rrada y que garantice también un desplazamiento convenientemente pequeño del extremo inferior de la estructura. Como quiera que la longitud de hincado se refleja en forma importante en la economía de la obra, se sigue la conveniencia de determinar con buena aproxi­mación la profundidad de hincado conveniente.

La resistencia de un material friccionante al movimiento hacia el exterior de la zona hincada depende de su peso específico y de su coeficiente de empuje pasivo. Si el material es cohesivo, la resisten­cia al movimiento mencionado depende para fines prácticos de la resistencia a la compresión simple.

170 CAPITULO IV

Page 195: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Cuando exista un flujo de agua del relleno hacia el lado exterior de la tablestaca será necesario tomar en cuenta la reducción del peso específico efectivo por fuerzas de filtración asociadas al flujo ascendente en dicho lado exterior. En el Volumen III de esta obra se darán criterios apropiados para tales cálculos.

Para los coeficientes de presión pasiva, Tarzaghi recomienda usar los valores que se muestran en la Tabla 4-k.l.

MECANICA DE SUELOS (II) 171

TABLA 4-k.l

Material Coeficiente de presión pasiva

Arena limpia compacta 9.0Arena limpia medianamente compacta 7.0Arena limpia suelta 5.0Arena limosa compacta 7.0Arena limosa medianamente compacta 5.0Arena limosa suelta 3.0

Limo y arcilla l + ^ - C )P + yz

(*) p representa la presión efectiva en la frontera superior del estrato de que se trate y yz la presión efectiva debida al peso propio de dicho estrato, a la profundidad considerada.

Los valores anteriores son conservadores y naturalmente podrán modificarse para cada caso, cuando los valores de y S se obtengan de pruebas confiables en muestras representativas: para ello podrán usarse las gráficas de la fig. IV-k.2. En el caso no frecuente en que la parte inferior de la tablestaca se soporte no por hincado, sino por un relleno artificial de arena, podrá asignársele a éste un valor Kp = 3. Las arenas limosas muy sueltas, por su alta compresibilidad, no darán un soporte adecuado a la zona hincada de la estructura, por lo que será aconsejable evitarlas cuando sea posible.

La distribución real observada de la presión pasiva en tablestacas de apoyo libre es aproximadamente trapecial, con máximo en el extre­mo inferior de la estructura, pero el considerarla asi complica los cálculos bastante por lo que, en este caso, se mantienen las ideas de Coulomb de distribución lineal, lo cual produce poco error y del lado de la seguridad. Para estar en condiciones de seguridad práctica, el valor de Kp del suelo situado en el lado exterior de la tablestaca se maneja dividido por un factor de seguridad F g > 1: en el caso en que el suelo sea limoso o arcilloso, el factor F> divide la resistencia a la compresión simple. Más adelante se tratarán los valores numé­ricos del coeficiente F„.

Page 196: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

172 CAPITULO IV

En la fig. IV-k.7, los puntos Oí, O2 y 03 representan los centroides de las áreas de presión sobre la tablestaca. Oj es el centroide del área de presión activa sobre la línea de dragado, 02 de la misma bajo la línea de dragado y 03 el del área de presión pasiva. Los empujes correspondientes serán E lt £ 2 y E s y sus posiciones están definidas por las distancias Lx, L-¿ y L¡. El valor de D debe satisfacer la con­dición de que la suma de los momentos de todas las fuerzas en tomo al punto A, de anclaje, sea nula:

E\ U + E 2 (Ha + L¿) = E¡¡ (Ha + L3) (4-k.lO)E 2, E 3, L2 y L¡ pueden expresarse en términos de D, con lo cual,

a partir de la expresión 4-k.lO, puede plantearse una ecuación de tercer grado en D, que proporciona este valor.

c) Cálculo del máximo momento flexionanteSi la tablestaca se hinca en terreno errático o si no se dispone

de datos seguros del mismo, el momento flexionante máximo en la estructura se calcula con la hipótesis de apoyo libre. Las fuerzas a considerar son las mostradas en la fig. IV-k.7.

Si la tablestaca se hinca en un estrato homogéneo de arena lim­pia con compacidad conocida, el momento flexionante máximo calcu­lado con la hipótesis de apoyo libre puede a veces reducirse, con base en las investigaciones ae Rowe ya mencionadas 19 615. Para tal efecto, después de calcular el máximo momento flexionante para la condición de apoyo libre y la sección de la tablestaca requerida, debe calcularse el número de flexibilidad correspondiente. Este núme-

■ ro dependerá del material usado en la tablestaca y del máximo esfuerzo admisible que se asigne a aquél. Si el número de flexibilidad calculado es menor que el valor crítico correspondiente a las condi­ciones del suelo en que la tablestaca esté hincada (gráficas de Rowe) no será posible hacer ninguna reducción al momento flexio- nante máximo y con éste deberá proyectarse. En caso contrario sí será factible hacer una reducción al momento máximo para obtener el de proyecto: esto redundará en una sección más económica para la tablestaca.

Se explicó atrás que el apoyo de una tablestaca hincada en limo compresible o arcilla es en un principio fijo, pero según el tiempo pasa aquella condición va tendiendo a la de apoyo libre; en este caso, en ninguna circunstancia se aceptará una reducción al máximo mo­mento flexionante que haya resultado.

d) Valuación de la tensión, en el anclajeLa fuerza de tensión que se produzca en el anclaje de una tables­

taca libremente apoyada está determinada por la condición de que la suma de todas las fuerzas horizontales actuantes en la estructura debe ser nula. Por lo tanto:

Page 197: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Ar = (E , + E 2 - E 3) l (4 -k .ll)donde l es el espaciamiento entre anclajes. La tensión en el anclaje disminuye cuando el número de flexibilidad de la tablestaca aumen­ta, pero la disminución no es tan importante como la que ocurre, según se dijo, en el momento flexionante máximo. La tensión en el anclaje debe calcularse con la hipótesis de apoyo libre.

IV-k.8. Requisitos de seguridadEn general las incertidumbres, envueltas en el proyecto de las

tablestacas ancladas dejan amplio campo de acción al criterio del proyectista, por lo cual puede ser antieconómico o inseguro el aceptar normas rígidas en lo que se refiere a la valuación de los factores de seguridad a utilizar en el proyecto. En lo que sigue se dan algu­nas normas generales de criterio que deberán tenerse en cuenta en todo proyecto de la naturaleza aquí tratada; estas normas son debi­das, al igual que el conjunto de este anexo, a la experiencia del Dr. Karl Terzaghi.

En lo que se refiere al coeficiente de seguridad F „ para calcu­lar la presión pasiva -en la parte enterrada de la tablestaca, un valor de 2 o 3, dependiendo del grado de precisión con que se hayan calculado las fuerzas actuantes en el lado interior de la misma es satisfactorio para estructuras hincadas en arenas limpias o en arena limosa; estos valores podrán hacerse descender a 1.5 o 2, respectivamente, en limos o arcillas, pues en este caso los valores calculados de Kp están del lado de la seguridad.

Los valores calculados de la profundidad de hincado deberán incrementarse siempre en un 20%, para compensar posibles excesos en la profundidad de dragado, socavación o la existencia, no reve­lada por los sondeos, de bolsas de material débil delante de la parte enterrada de la tablestaca; en este caso, el máximo momento flexio­nante y la tensión en los anclajes deben calcularse con base en la profundidad de penetración no incrementada.

Los máximos esfuerzos permisibles debidos a la flexión de una tablestaca de acero con relleno artificial de arena limpia pueden to­marse a lo menos como los dos tercios del esfuerzo de fluencia; esto vale también para tablestacas dragadas que soporten arenas deposi­tadas naturalmente en el lugar. Si el relleno es de arena limpia o arena limosa y se construye por un método de sedimentación en agua, el esfuerzo anterior no debe pasar los dos tercios del esfuerzo dé fluencia; cuando, en este caso, el relleno sea arcilloso y se le haya asignado un valor K a — 1 podrán tomarse esfuerzos de flexión igua­les al de fluencia, pues ahora la presión de tierras no puede llegar a ser mayor que la supuesta.

Las tensiones en los anclajes pueden ser mayores que las calcu­ladas como se dijo atrás, cuando la distribución de la presión de

MECANICA DE SUELOS (II) 173

Page 198: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tierras sobre la tablestaca sea muy diferente de la correspondiente a la ley de Coulomb; también aumenta esta tensión cuando el suelo, en el lado exterior de la parte enterrada de la tablestaca, cede, por ejemplo por efecto de la consolidación, en tanto que la parte alta del relleno permanece indeformable o cuando dos anclajes vecinos ceden cantidades diferentes. A causa de todo lo anterior, las barras o elementos de anclaje deben calcularse sobre la base de los esfuer­zos más pequeños que se hayan usado para el diseño de la estruc­tura en general.

En general, es vital evitar durante la construcción condiciones de carga no previstas en el proyecto; en este sentido es necesario tener muy presente que la actual teoría no proporciona, probable­mente, armas para prever todas las eventualidades susceptibles de presentarse en un caso real, por lo que resulta necesario hacer uso constante de normas de experiencia y de sentido común que cubran las inevitables deficiencias de los proyectos. La posibilidad de soca­vación en el frente expuesto, con el correspondiente aumento de la H libre, es un peligro del tipo mencionado, para cuya previsión hoy hay muy poco más que la experiencia del proyectista; otro peligro análogo es la posibilidad de fugas del relleno por las juntas estruc­turales de la tablestaca. En rellenos compresibles existe la posibilidad de transmitir acciones verticales a las barras de anclaje cuando éstas no se encierran en elementos tubulares amplios y flexibles, que sigan los movimientos del suelo sin interferir con el funcionamiento de dichas barras.

Todas las fallas observadas en tablestacas pueden, según Ter­zaghi, atribuirse a dos causas: mala estimación de las propiedades de resistencia del suelo o ignorancia, por deficiencia en las explora­ciones y sondeos, de la existencia de algún estrato o bolsón de suelo de características especialmente desfavorables. Por ejemplo, el uso del concepto "ángulo de reposo” como definidor de las cualidades de re­sistencia y empuje de los suelos ha sido particularmente desdichado.

Algunas tablestacas en arena han fallado por movimiento hacia fuera de la tablestaca y el relleno, por la existencia de un estrato de arcilla blanda bajo la arena, que no cumplió su misión de sostener la rjarte enterrada de la estructura. En otras ocasiones se han repor­tado fallas de taludes en suelos sumergidos con superficie de falla desarrollada bajo el anclaje y la tablestaca; en el Capítulo V se darán criterios para tomar en cuenta este tipo de fallas.

En general, todas las fallas reportadas hasta el presente se hu­bieran podido evitar contando con un buen programa de exploración y muestreo y realizando sobre las muestras representativas algunas pruebas sencillas y adecuadas, cuya interpretación fuese correcta.

NOTA. Este Anexo ha sido elaborado teniendo en cuenta muy principalmente la reí. 15.

174 CAPITULO IV

Page 199: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

REFEREN C IA S

1. Coulomb, Ch. A. — Essai sur une Application des régles des máximes et mini­mes a quelques problémes de statique relatifs a l'architecture — Memoires — Académie Royale — Vol. VII — París— 1776.

2. Rankine, W . J. M. — On the stability of loose earth — Philosophical Tran- sactions — Vol. 147— 1857.

3. Collín, A. — Recherches experimentales sur les glissements spontanés des ierres argileux — Carilian — Goeury et Dalmont — París— 1846.

4. Skempton, A. W . — Alexander Collin, pioneer in Soil Mechanics — Trans- actions Newcomen Soc.—-Vol. X X V —-1946.

5. Darwin, G. H. — On the horizontal thrust of a mass of sand — Minutes of Proceedings — Inst. C. E. — Vol. LXXI — 1883.

6. Huntington, W . C. — Earth Pressures and Retaining walls — John Wiley and Sons— 1957.

7. Rebhann, C. — Theorie des Erddruckes und der Futtermavern — Viena— 1871.8. Poncelet, V. -— Mémoire sur la stabilité des revetements et de leur foundations

— Mem. de l’Officier du génie — Vol. 13 — 1840.9. Culmann, K. — Die Graphische Statik — Zurich 1866.

10. Engesser, F. — Geometrische Erddrucktheorie — A. Bauwesen — Vol. 30 — 1880.

11. Terzaghi, K. — Theoretical Soil Mechanics — Cap. V — John Wiley and Sons— 1956.

12. Terzaghi, K .— Stress distribution in dry and in saturated sand above the yielding trap-door — Memoria del 1er. Congreso Internacional de Mecánica de Suelos — Cambridge, Mass. — Vol. I -— 1936.

13. Terzaghi, K. — La Mecánica de Suelos en la Ingeniería Práctica — Trad. O. Moretto — Art. 48 — Ed. El Ateneo— 1955.

14. Terzaghi, K .—X¿g¿monU¡rmelsuQ ^j^¿—-Capítulo 4 de Rock tunneling with steel supports — K. V. Froctor y T. L. White — The Commcrcial Shearing and Stamping Co. — 1956.

15. Terzaghi, K. — Anrhnred Bulkheads — Trans. Am. Soc. of Civ. Eng. — Ar­ticulo N ' 2720.

16. Gerber, E. — Untersuchungen ñber die Druckverteilung im órtlich belastcten Sand — Zurich — 1929.

17. spanaler, M. G. — H nnznrfalP^.yires nn retainina uralls diie tn rqpcen- frn/ed si,rfare- Innds — K n lc U n INI» 141)— In w a K i n . K s t a f in n — F.F.. I I I I .

18. Feld, J. — Lateral earth pressure: the accourate experimental determination of the lateral earth pressure together with a resume of previous experiments— Trans. ASCE — Vol. LXXXVI — 1923.

19. Rowe, P. W . •—Anchored sheet-oile walls — Proc. Inst. of C. E. — Vol I — Londres — 1952.

20. Baumann. P. — Analusis of shcct-pilc bulkheads — Trans. ASCE — Vol. 100- 1935. ------ ------- ----------------------------

MECANICA DE SUELOS (II) 175

BIBLIOGRAFIA

J La Mecánica de Suelos en la Ingeniería Práctica — K. Terzaghi y R. B. Peck — / Trad. O. Moretto — Ed. El Ateneo— 1955.

* Theoreticat Soil Mechanics — K. Terzaghi — John Wiley and Sons— 1956.Earth Pressures and Retainina Walls — W . C. Huntington — John Wiley and

J Sons— lio/./Fundamentáis of Soil Mechanics—W . Taylor—John Wiley and Sons—1956. Foundation Engineering — Ed. por G. A. Leonards — Cap. 5 — McGraw — Hill

Book Co.— 1962.A

Page 200: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

'yMecánica del Suelo — J. A. Jiménez Salas — Ed. Dossat — 1954.J Soil Mechanics, Foundations and Earth Structures — G. P. Tschebotarioff —

McGraw-Hill Book Co. — 1957. ^ ^Sflfltaesdaa §SÍm — P- L. Capper y W . F. Cassie — E. and

r . N. Spon— 1957.•'Principies oi Engineering Geologg and Geotechnics — D. P. Krynine y W . K.

Judd — McGraw-Hill Book Co — 1957.Rock Tunnelino with Steel Suoooris— R. V. Proctor y T . L. White — Commer-

cial Shearing and Stamping Co — 1956. , _ , . , _r'.. >•?.*» Pressu re C.fdculation — J. Brinch Hansen — Danish Technical Press — Co-

penhaaen— 1953.j Traite de Mécanique des Sois — A. Caquot y J. Kerisel — Gauthier-ViUars Ed. —

J. Verdeyen y V. Roisin — Eyrolles Ed. — 1955.<¡nf/ lUerkanir* — H. R. Reynolds y P. Protopapadakis — and Son. Ltd. — 1956.

176 CAPITULO IV

1956.Teu&s — SZfi

Crosby Lockwood

Page 201: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO V

ESTABILIDAD DE TALUDES

V-l. Generalidades

Se comprende bajo el nombre genérico de taludes cualesquiera superficies inclinadas respecto a la horizontal que hayan de adoptar permanentemente las estructuras de tierra, bien sea en forma natural o como consecuencia de la intervención humana en una obra de ingeniería. Desde este primer punto de vista los taludes se dividen en naturales (laderas) o artificiales (cortes y terraplenes).

Aun cuando las laderas naturales pueden plantear y de hecho plantean problemas que pueden llegar a ser de vital importancia, en este capítulo se tratarán en forma predominante los taludes artifi­ciales, pero se mencionarán las características más importantes que pueden ser fuente de preocupación ingenieril en las laderas naturales.

El moderno desarrollo de las actuales vías de comunicación, tales como canales, caminos o ferrocarriles, así como el impulso que la construcción de presas de tierra ha recibido en todo el mundo en los últimos años y el desenvolvimiento de obras de protección contra la acción de ríos, por medio de bordos, etc., han puesto al diseño y construcción de taludes en un plano de importancia ingenieril de primer orden. Tanto por el aspecto de inversión, como por el de consecuencias derivadas de su falla, los taludes constituyen hoy una de las estructuras ingenieriles que exigen mayor cuidado por parte del proyectista.

Es obvio que la construcción de estas estructuras es probable­mente tan antigua como la misma humanidad; sin embargo, durante casi toda la época histórica han constituido un problema al margen de toda investigación científica; hasta hace relativamente pocos años, los taludes se manejaron con normas puramente empíricas, sin ningún criterio generalizador de las experiencias adquiridas. La expansión del ferrocarril y el canal primero y de la carretera después, provo­caron los primeros intentos para un estudio racional de este campo; pero no fue sino hasta el advenimiento de la actual Mecánica de Suelos cuando fue posible aplicar al diseño de taludes normas y cri­terios, que sistemáticamente tomasen en cuenta las propiedades mecánicas e hidráulicas de los suelos constitutivos, obteniendo expe­riencia sobre bases firmes y desarrollando las ideas teóricas que permiten conocer cada vez más detalladamente el funcionamiento13—Mecánjcs de Socios II

177

Page 202: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

particular de estas estructuras. La historia del desarrollo de la técni­ca constructiva de presas de tierra y de los métodos de análisis de las mismas es uno de tantos ejemplos en apoyo de la afirmación anterior; hoy, gracias a los aportes de la Mecánica de Suelos al aná­lisis de taludes, entre otras razones, se construyen doquiera presas que hace apenas 30 o 40 años se estimarían imposibles de realizar.

Por principio de cuentas es necesario dejar establecido el hecho de que la determinación del estado de esfuerzos en los diferentes puntos del medio material que constituye un talud es un problema no resuelto en general en la actualidad, ni aún para casos idealiza­dos, como serían los de suponer el material elástico o plástico. Esto hace que los procedimientos usuales de análisis de estabilidad estruc­tural no pueden utilizarse, por lo que ha de recurrirse a métodos que, por lo menos en la época en que comenzaron a usarse, eran de tipo especial. En rigor estos métodos se encasillan hoy entre los de “Aná­lisis Límite”, que cada día van siendo más frecuentes en todos los campos de la Ingeniería. En esencia estos métodos consisten todos en imaginar un mecanismo de falla para el talud (la forma específica de este mecanismo se busca frecuentemente en la experiencia) y en aplicar a tal mecanismo los criterios de resistencia del material, de manera de ver si, con tal resistencia, hay o no posibilidad de que el mecanismo supuesto llegue a presentarse. En taludes siempre se ha imaginado que la falla ocurre como un deslizamiento de la masa de suelo, actuando como un cuerpo rígido, a lo largo de una super­ficie de falla supuesta. Al analizar la posibilidad de tal desliza­miento se admite que el suelo desarrolla en todo punto de la super­ficie de falla la máxima resistencia que se le considere.

En el campo del estudio de los taludes existen pioneros de labor muy meritoria. Collin (1845) 1,2 habló por vez primera de super­ficies de deslizamiento curvas en las fallas de los taludes e imaginó mecanismos de falla que no difieren mucho de los que actualmente se consideran en muchos métodos prácticos de diseño. Desgraciada­mente sus ideas, obtenidas de una observación muy objetiva de la realidad, se vieron obstaculizadas por opiniones anteriores y con­trarias de Ch. A. Coulomb3 quien preconizó la falla plana de los taludes, hipótesis mucho menos fecunda, según se demostró en el desarrollo posterior del campo y vio impuestas sus ideas quizá por el hecho de su mayor prestigio y autoridad. Las ideas de superficie de deslizamiento no plano fueron resucitadas en Suecia (1916) por Pet- terson, quien al analizar una falla ocurrida en el puerto de Gottem- burgo dedujo que la ruptura había ocurrido en una superficie curva y fueron impulsadas principalmente por W . Fellenius (1927), uno de los investigadores más importantes del campo de los taludes. La escuela sueca propuso asimilar la superficie de falla real a una cilin­drica cuya traza con el plano del papel sea un arco de circunferencia; con esto se busca sobre todo facilidad en los cálculos, pues desde un

178 CAPITULO V

Page 203: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

principio se reconoció que la llamada falla circular no representa exactamente el mecanismo real. Actualmente reciben el nombre ge­nérico de Método Sueco aquellos procedimientos de cálculo de esta­bilidad de taludes en que se utiliza la hipótesis de falla circular. En 1935 Rendulio propuso la espiral logarítmica como traza de una superficie de deslizamiento más real, pero Taylor en 1937 puso de manifiesto que esta curva, que complica bastante los cálculos., propor­ciona resultados tan similares a la circunferencia, que su uso prác­tico probablemente no se justifica.

En la actualidad, la investigación está muy lejos de haber resuelto todos los aspectos del análisis de los taludes y se están estudiando en muchas partes otras teorías y métodos de cálculo.

La Teoría de la Elasticidad y la Plasticidad ofrecen perspectivas de interés, que también están probándose con los mismos fines.

Es preciso hacer una distinción de importancia. Mientras los pro­blemas teóricos de la estabilidad de los taludes distan de estar re­sueltos y constituyen un reto para los investigadores de la Mecánica de Suelos, los aspectos prácticos del problema están mejor definidos; hoy se construyen taludes muy importantes con factores de seguridad muy bajos, lo cual es indicativo de que los métodos actuales, si bien poco satisfactorios teóricamente, funcionan bastante bien en la prác­tica; es más, cuando tales métodos se han aplicado cuidadosamente, tras haber investigado correctamente las propiedades de los suelos, la posibilidad de una falla de consecuencias ha demostrado ser realmente muy pequeña.

MECANICA DE SUELOS (II) 179

V-2. Tipos y causas de falla más comunes

Los tipos de falla más frecuentes en taludes son los que se men­cionan en lo que sigue:

a) Falla por deslizamiento superficialCualquier talud está sujeto a fuerzas naturales que tienden a

hacer que las partículas y porciones del suelo próximas a su frontera deslicen hacia abajo; el fenómeno es más intenso cerca de la superficie inclinada del talud a causa de la falta de presión normal confinante que allí existe. Como una consecuencia, la zona mencionada puede quedar sujeta a un flujo viscoso hacia abajo que, generalmente, se desarrolla con extraordinaria lentitud. El desequi­librio puede producirse por un aumento en las cargas actuantes en la corona del talud, por una disminución en la resistencia del suelo al esfuerzo cortante o, en el caso de laderas naturales, por razones de conformación geológica que escapan a un análisis local detallado.

El fenómeno es muy frecuente y peligroso en laderas naturales y, en este caso, generalmente abarca áreas tan importantes que cual-

Page 204: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

180 CAPITULO V

D es lizam ien to s u p e rf ic ia l d e g ran des p ro p o rc io n es (c a r r e te r a H u ix t la -M o to z in t !a . E l p r o ­b le m a fu e e v ita d o con c a m b io d e tra z o )

D es lizam ien to s u p e rf ic ia l. N ó te s e los in d ic io s d e co rrim ie n to s re c ien tes en los c a n tile s d e l fo n d o (c a r re te ra d ire c ta T iju a n a -E n s e n a d a )

quier solución para estabilizar una estructura alojada en esa zona escapa de los límites de lo económico, no quedando entonces más recurso que un cambio en la localización de la obra de que se trate, que evite la zona en deslizamiento. El fenómeno se pone de mani­fiesto a los ojos del ingeniero por una serie de efectos notables, tales como inclinación de los árboles, por efecto del arrastre produ­cido por las capas superiores del terreno en que enraizan; inclinación de postes, por la misma razón; movimientos relativos y ruptura de bardas, muros, etc.; acumulación de suelos en las depresiones y valles y falta de los mismos en las zonas altas, y otras señales del mismo tipo.

Page 205: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 181

En la actualidad es muy difícil llegar a establecer por un proceso analítico la velocidad y la consideración que llegue a tener el fenó­meno. Los factores envueltos son tantos y tan complejos y actúan en períodos de tiempo tan impredecibles que cualquier análisis teó­rico se hace prácticamente imposible.

b) Falla por movimiento del cuerpo del talud

En contraste con los mo­vimientos superficiales lentos, descritos en el inciso ante­rior, pueden ocurrir en los taludes movimientos bruscos que afectan a masas conside­rables de suelo, con super­ficies de falla que penetran profundamente en su cuerpo.Estos fenómenos reciben co­múnmente el nombre de des­lizamiento de tierras. Dentro de éstos existen dos tipos cla­ramente diferenciados. En primer lugar, un caso en el cual se define una superfi­cie de falla curva, a lo largo de la cual ocurre el movi­miento del talud; esta super­ficie forma una traza con el plano del papel que puede asimilarse, por facilidad y sin ertor mayor, a una circunfe­rencia. Estas son las fallas llamadas por rotación. En se­gundo lugar, se tienen las fa­llas que ocurren a lo largo de superficies débiles, asimilables a un plano en el cuerpo del talud o en su terreno de cimentación. Estos planos débiles suelen ser horizontales o muy poco inclinados respecto a la horizontal. Estas son las fallas por traslación.

Las fallas por rotación pueden presentarse pasando la superficie de falla por el pie del talud, sin interesar el terreno de cimentación o pasando adelante del pie, afectando al terreno en que el talud se apoya (falla de base). Además pueden presentarse las llamadas fallas locales, que ocurren en el cuerpo del talud, pero interesando zonas relativamente superficiales. En la fig. V -l se presentan estos tipos de fallas, así como la nomenclatura usual en taludes simples.

Deslizamiento superficial. Nótese la inclinación del arbolado

Page 206: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

182 CAPITULO V

Page 207: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 183

FIG. V -l. N o m e n c la tu ra y fa lla s en e l cuerpo de ta lu desa) Nomenclaturab) Fallas por rotación

I LocalII Por el pie del talud

III De basec) Falla por traslación sobre un plano débil

c) Fallas por erosiónEstas son también fallas de tipo superficial provocadas por arras­

tres de viento, agua, etc., en los taludes. El fenómeno es tanto más notorio cuanto más empinadas sean las laderas de los taludes. Una manifestación típica del fenómeno suele ser la aparición de irregu­laridades en el talud, originalmente uniforme. Desde el punto de vista teórico esta falla suele ser imposible de cuantificar detallada­mente, pero la experiencia ha proporcionado normas que la atenúan grandemente si se las aplica con cuidado.

d) Falla por licuaciónEstas fallas ocurren cuan­

do en la zona del desliza­miento el suelo pasa rápida­mente de una condición más o menos firme a la corres­pondiente a una suspensión, con pérdida casi total de resistencia al esfuerzo cor­tante. El fenómeno puede ocurrir tanto en arcillas ex- trasensitivas como en arenas poco compactas.

e) Falla por }alta de ca­pacidad de carga en el terre­no de cimentación

Estas fallas se tratarán preferentemente en capítulos 5f e c fo j e /D erosión en un ta lu d (c a r re te ra subsecuentes de esta obra. C o m p o s te la -P u e río V a l la r ía )

Page 208: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

V-3. Taludes en arenasLa estabilidad de un talud homogéneo con su suelo de cimentación,

construido con un suelo “puramente friccionante”, tal como una arena limpia, es una consecuencia de la fricción que se desarrolla entre las

§ articulas constituyentes, por lo cual, para garantizar estabilidad astará que el ángulo del talud sea menor que el ángulo de fricción

interna de la arena, que. en un material suelto seco y limpio se acercará mucho al ángulo de reposo. Por lo tanto, la condición límite de estabilidad es, simplemente:

a = <¡> (5-1)Sin embargo, si el ángulo a es muy próximo a <¡>, los granos de

arena próximos a la frontera del talud, no sujetos a ningún confi­namiento importante, quedarán en una condición próxima a la de deslizamiento incipiente, que no es deseable por ser el talud muy fá­cilmente erosionable por el viento o el agua. Por ello es recomendable que en la práctica a sea algo menor que <j>. La experiencia ha demos­trado que si se define un factor de seguridad como la relación entre los valores de a y <f>, basta que tal factor tenga un valor del orden de 1.1 ó 1.2 para que la erosionabilidad superficial no sea excesiva.

V-4. E l Método SuecoComo ya se ha dicho, bajo el título genérico de Método Sueco

se comprenden todos los procedimientos de análisis de estabilidad respecto a falla por rotación, en los que se considera que la superficie de falla es un cilindro, cuya traza con el plano en el que se calcula es un arco de circunferencia. Existen varios procedimientos para aplicar este método a los distintos tipos de suelo, a fin de ver si un talud dado tiene garantizada su estabilidad. En lo que sigue se men­cionarán los procedimientos para resolver el problema con cada tipo de suelo de los que se consideran.

a) Suelos “puramente cohesivos” (<j> = 0; cy^O)Se trata ahora el caso de un talud homogéneo con su suelo de

cimentación y en el cual la resistencia al esfuerzo cortante puede expresarse con la ley:

s = cdonde c es el parámetro de resistencia comúnmente llamado cohe­sión. El caso se presenta en la práctica cuando se analizan las con­diciones iniciales de un talud en un suelo fino saturado, para el cupl la prueba triaxial rápida representa las condiciones críticas.

E s este caso el método puede aplicarse según un procedimiento sencillo debido al Dr. A. Casagrande, que puede utilizarse tanto

184 CAPITULO V

Page 209: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

para estudiar la falla de base como la de pie del talud. La descrip­ción que sigue se refiere a la fig. V-2.

MECANICA DE SUELOS (II) 185

FIG . V-2. Procedimiento de A . Casagrande p a n aplicar el Método Sueco o un talud puramente "cohesiro"

Considérese un arco de circunferencia de centro en 0 y radio R como la traza de tina superficie hipotética de falla con el plano del papel. La masa de talud que se movilizaría, si esa fuera la superficie de falla, aparece rayada en la fig. V-2. Puede considerarse que las fuerzas actuantes, es decir, las que tienden a producir el deslizamiento de la masa de tierra, son el peso del área ÁBCDA, (nótese que se considera un espesor de talud normal al papel de magnitud unitaria y que bajo esa base se hacen todos los análisis que siguen) más cualesquiera sobrecargas que pudieran actuar sobre la corona del talud. El momento de estas fuerzas en tomo a un eje normal a través de 0 según la fig. V-2, en la que no se consideran sobrecargas, será simplemente:

Mm = Wd (5-2)que es el llamado momento motor.

Las fuerzas que se oponen al deslizamiento de la masa de tierrason los efectos de la “cohesión” a lo largo de toda la superficie dedeslizamiento supuesta. Así:

Mr =■ cLR (5-3)es el momento de esas fuerzas respecto a un eje de rotación normal al plano del papel, por O (momento resistente).

En el instante de falla incipiente:Mm — M r

por lo tanto, en general:XWd = cLR

Page 210: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

186 CAPITULO V

donde el símbolo E debe interpretarse como la suma algebraica de los momentos respecto a O de todas las fuerzas actuantes (pesos y sobrecargas).

Si se define un factor de seguridad:

F - = m (5-4)podrá escribirse:

F- = <5-5>La experiencia permite considerar a 1.5 como un valor de F,

compatible con una estabilidad práctica razonable. Debe, pues, de cumplirse para la superficie hipotética seleccionada, que:

F , > 1.5Por supuesto, no está de ningún modo garantizado que la super­

ficie de falla escogida sea la que represente las condiciones más criticas del talud bajo estudio (círculo crítico). Siempre existirá la posibilidad de que el factor de seguridad resulte menor al adoptar otra superficie de falla. Este hecho hace que el procedimiento descrito se torne un método de tanteos, según el cual deberán de escogerse otras superficies de falla de diferentes radios y centros, calcular su factor de seguridad asociado y ver que el mínimo encontrado no sea menor que 1.5, antes de dar al talud por seguro. En la práctica resulta recomendable, para fijar el F , mínimo encontrar primera­mente el circulo crítico de los que pasen por el pie del talud y después el critico en falla de base; el circulo crítico del talud será el más crítico de esos dos.

En el Anexo V-a se presentan ideas complementarias debidas a Taylor de gran interés práctico para el análisis sin tanteos de taludes simples en suelos "cohesivos” homogéneos.

Nótese que en el procedimiento anterior, aparte de la falla circular, se está admitiendo que la resistencia máxima al esfuerzo cortante se está produciendo a la vez a lo largo de toda la superficie de deslizamiento. Esto, en general, no sucede, pues a lo largo de la superficie de falla real la deformación angular no es uniforme y, por lo tanto, los esfuerzos tangenciales, que se desarrollan de acuerdo con ella, tampoco lo serán. Esto implica que la resistencia máxima del material se alcance antes en unos puntos de la superficie que en otros, lo cual conduce a una redistribución de esfuerzos en las zonas vecinas a los puntos en que se alcanzó la resistencia, dependiendo esta redistribución y la propagación de la falla en estos puntos, de la curva esfuerzo-deformación del material con que se trabaje. Si ésta es del tipo plástico llegarán a tenerse zonas, a lo largo de la superficie de falla, en las que se haya alcanzado la máxima resistencia, pero

Page 211: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 187

ésta se mantendrá aun cuando la deformación angular progrese; por ello, en el instante de falla incipiente es posible aceptar que, a lo largo de toda la superficie de falla, el material está desarrollando toda su resistencia. Por el contrario, en un material de falla frágil típica, aquellos puntos de la superficie de falla que alcancen la deformación angular correspondiente a su máxima resistencia ya no seguirán cooperando a la estabilidad del talud; esto puede producir zonas de falla que, al propagarse pueden llegar a causar la falla del talud (falla progresiva). Como se discutió en efCapítulo XII del Vo­lumen I de esta obra, la prueba de esfuerzo cortante directo presenta este efecto de falla progresiva y algunos investigadores admiten que el valor menor de la resistencia al corte que con ella se obtiene representa un mejor valor para el análisis de la estabilidad de un talud que el obtenido de una prueba triaxial. Sin embargo, la opinión más general es que el fenómeno de falla progresiva no es en un talud tan acentuado como en una prueba directa de esfuerzo cortante, por lo que la resistencia del suelo en esta prueba puede resultar conser­vadora. Estos últimos especialistas consideran preferible usar en un cálculo real de la estabilidad de un talud un valor de la resistencia intermedio a los obtenidos en prueba directa y triaxial. La experiencia y criterio de cada proyectista resultan decisivos en este punto para definir la actitud de cada uno,

b) Suelos con " cohesión” y “fricción (cyí= 0 ; <¡>=£0 )Bajo el anterior encabezado han de situarse aquellos suelos que,

después de ser sometidos a la prueba triaxial apropiada, trabajando con esfuerzos totales, y después de definir la envolvente de falla de acuerdo con el intervalo de presiones que se tenga en la obra real, tienen una ley de resistencia al esfuerzo cortante del tipo

s = c +con parámetro de “cohesión” y de “fricción”.

De todos los procedimientos de aplicación del Método Sueco a este tipo de suelos, posiblemente el más popular y expedito sea el de las “dovelas”, debido a Fellenius (1927), que se expone a conti­nuación.

En primer lugar, se propone un círculo de falla a elección y la masa de tierra deslizante se divide en dovelas, del modo mostrado en la fig. V-3.a.

El número de dovelas es, hasta cierto punto, cuestión de elección, si bien, a mayor número, los resultados del análisis se hacen más confiables.

El equilibrio de cada dovela puede analizarse como se muestra en la parte b) de la misma fig. V-3. W¡ es el peso de la dovela de espesor unitario. Las fuerzas Ni y Ti son las reacciones normal

Page 212: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

188 CAPITULO V

y tangencial del suelo a lo largo de la superficie de deslizamiento ALi. Las dovelas adyacentes a la i-esima, bajo estudio, ejercen ciertas acciones sobre ésta, que pueden representarse por las fuerzas normales Pi y P2 y por las tangenciales jTi y T2.

En el procedimiento de Fellenius se hace la hipótesis de que el efecto de las fuerzas Pi y P2 se contrarresta; es decir, se considera que esas dos fuerzas son iguales, colineales y contrarias. También se acepta que el momento producido por las fuerzas Ti y T2, que se consideran de igual magnitud, es despreciable. Estas hipótesis equivalen a con­siderar que cada dovela actúa en forma independiente de las demás y que Ni y T» equilibran a W¡.

El cociente Ni/ALi se considera una buena aproximación al valor de cr¡, presión normal actuante en el arco AL», que se considera constante en esa longitud. Con este valor de o\ puede entrarse a la ley de resistencia al esfuerzo cortante que se haya obtenido (verparte c) de la fig V-3) y determinar ahi el valor de s¡, resistenciaal esfuerzo cortante que se supone constante en todo el arco AL».

Puede calcularse el momento motor debido al peso de las dovelas como

Mn = RL\Ti\ (5-6)Nótese que la componente normal del peso de la dovela, Ni, pasa

por 0, por ser la superficie de falla un arco de circunferencia, y por lo tanto no da momento respecto a aquel punto. Si en la corona del talud existiesen sobrecargas su momento deberá calcularse en la forma usual y añadirse al dado por la expresión 5-6.

El momento resistente es debido a la resistencia al esfuerzo cor­tante, s¡, que se desarrolla en la superficie de deslizamiento de cada dovela y vale;

Mfí = R ls iA L i (5-7)Una vez más se está aceptando que la resistencia máxima al

esfuerzo cortante se desarrolla al unísono en todo punto de la super­ficie de falla hipotética, lo cual, como ya se discutió, no sucede realmente debido a las concentraciones de esfuerzos que se producen

Page 213: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 189

en ciertas zonas, las que tienden a generar más bien fallas progre­sivas, antes que las del tipo que aquí se aceptan.

Calculados el momento resistente y el motor puede definirse un factor de seguridad:

M r l£ á S i/ \L , \ I K

m ~-ir 15 1F e =

La experiencia ha demostrado que una superficie de falla en que resulte F , ^ 1.5 es prácticamente estable. El método de análisis con­sistirá también en un procedimiento de tanteos, en el cual deberán fijarse distintos círculos de falla, calculando el F , ligado a cada uno: es preciso que el F , m(n no sea menor de 1.5, en general, para garan­tizar en la práctica la estabilidad de un talud. El criterio del proyectista juega un importante papel en el número de circuios ensa­yados, hasta alcanzar una seguridad razonable respecto al F a min: en general es recomendable que el ingeniero no respaldado por muy sólida experiencia no regatee esfuerzo ni tiempo en los cálculos a efectuar.

El procedimiento arriba descrito habrá de aplicarse en general a círculos de falla de base y por el pie del talud.

La presencia de flujo de agua en el cuerpo del talud ejerce im­portantísima influencia en la estabilidad de éste y ha de ser tomada en cuenta por los procedimientos descritos en el Volumen III de esta obra.

En el Anexo V-b se tratan algunos trabajos que complementan lo aquí escrito.

c) Suelos estratificadosFrecuentemente se presentan en la práctica taludes formados por

diferentes estratos de suelos distintos, que pueden idealizarse en for­ma similar al caso mostrado en la fig. V-4.

FIG . V-4. Aplicación dpi Método Sueco a taludes en suelos estratificados

Ahora puede realizarse una superposición de los casos tratados anteriormente. En la figura se suponen tres estratos: el I de material puramente "friccionante”, el II de material "friccionante" y “cohe-

Page 214: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

190 CAPITULO V

sivo” y el III, formado por suelo puramente "cohesivo”. Puede consi­derarse a la masa de suelo deslizante, correspondiente a un círculo supuesto, dividida por dovelas, de modo que ninguna base de dovela caiga entre dos estratos, a fin de lograr la máxima facilidad en los cálculos.

Un problema especial se tiene para obtener el peso de cada dovela. Ahora debe calcularse en sumandos parciales, multiplicando la parte del área de la dovela que caiga en cada estrato por el peso específico correspondiente.

Las dovelas cuya base caiga en los estratos I y II, en el caso de la fig. V-4 deberán de tratarse según el método de Fellenius, apli­cando las expresiones 5-6 y 5-7 y trabajando en cada caso con la ley de resistencia al esfuerzo cortante del material de que se trate. Así se obtienen momentos motores y resistentes parciales.

La zona correspondiente al estrato III, siempre con referencia a la fig. V-4, debe tratarse con arreglo a las normas dadas en el incisoa) de esta sección, aplicando las fórmulas 5-2 y 5-3. Así se obtienen otros momentos motor y resistente parciales.

Los momentos motor y resistente totales se obtienen, natural­mente, como suma de los parciales calculados y con ellos puede calcularse el F s correspondiente al círculo de falla elegido; usando otros arcos de circunferencia se podrá llegar al F„ mi-n que no debe ser menor de 1.5, al igual que en los casos anteriores.

d) Resumen de hipótesis• Las hipótesis utilizadas en los párrafos anteriores pueden resu­

mirse como sigue;

1) Falla circular2 ) El análisis es bidimensional, respondiendo a un estado de

deformación plana3) Es válida la ley de resistencia de Mohr-Coulomb4) La resistencia al esfuerzo cortante se moviliza por completo

y al mismo tiempo en toda la superficie de deslizamiento5) En su caso, las hipótesis ya comentadas referentes al manejo

de las dovelas (no existe interacción entre ellas)6) El factor de seguridad se define como la relación entre la

resistencia promedio al esfuerzo cortante a lo largo de la su­perficie de falla y los esfuerzos cortantes actuantes medios en dicha superficie.

e) Procedimiento de cálculo con el círculo de fricciónKrey4 proporcionó hacia 1936 las ideas que permitieron a los

doctores G. Gilboy y A. Casagrande desarrollar un método especial de análisis de estabilidad de taludes respecto a fallas por rotación,

Page 215: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

conocido con el nombre de procedimiento del círculo de fricción o, abreviadamente, círculo <¡>.

El procedimiento acepta también que la superficie de desliza­miento de los taludes puede considerarse un cilindro cuya traza con el plano de los cálculos es un arco de circunferencia (círculo de falla). La secuela ya ha sido aplicada en este volumen a problemas de empuje de tierras (ver capítulo IV ).

Considérese el talud mostrado en la fig. V-5, con un círculode falla escogido; con centro en 0, del círculo de falla, puedetrazarse el círculo de fricción de radio

r = R sen <j> (5-9)

donde <f> es el ángulo de fricción del material constituyente del talud.Si f es la resultante de la reacción normal y de fricción en un

elemento de arco de la superficie de falla supuesta, formará con la normal a esta superficie un ángulo <f> y, por lo tanto, será tangente al círculo de fricción, según se desprende evidentemente de la fig.

El equilibrio de la masa de suelo deslizante bajo estudio depende de la acción de las siguientes fuerzas:

W, peso de la masa de suelo, que pasa por el centro de gra­vedad de dicha masa.

MECANICA D E SU ELO S (II) 191

Page 216: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

C, fuerza total de cohesión desarrollada a lo largo de toda la superficie de deslizamiento y generada por la "cohesión” del suelo.

F, resultante total de las reacciones normales y de fricción.Se supone que no actúan fuerzas de filtración ni sobrecargas;

las primeras de éstas se tomarán en cuenta, según se dijo, con los métodos descritos en el Volumen III de esta obra; las segundas con procedimientos que se desprenden evidentemente de lo que sigue.

La fuerza C puede calcularse, en magnitud, con la expresión

C = c J J (5-10)

donde ce es la “cohesión” del suelo requerida para el equilibrio y L' la longitud de la cuerda del arco de deslizamiento supuesto. La línea de acción de la fuerza C debe ser paralela a la cuerda AB (fig. V -5), puesto que esta cuerda es la línea que cierra el dinámico de las fuerzas de cohesión que se desarrollan a lo largo de la super­ficie de falla supuesta. Tomando momentos respecto al punto 0 podrá escribirse

ce L R — ceL'x

donde x es el brazo de momento correspondiente a la fuerza C,que fija la línea de acción de ésta.

Por lo tanto:

* = J tR (5-11)

Nótese que el valor de x es independiente de ce. La fuerza F es la resultante total de las fuerzas / que son tangentes al círculo de fricción; estas fuerzas / no constituyen pues un sistema concu­rrente y la fuerza F no será tangente al círculo de fricción (en la sección IV-10, sin embargo, se consideró tangente, cometiéndose un pequeño error de escasas consecuencias que, por supuesto, puede corregirse en parte adoptando los procedimientos aquí descritos). La posición F respecto a 0 puede definirse por la expresión

d = K R sen $ (5-12)donde

d = distancia de 0 a FK ~ un factor de proporcionalidad mayor que 1, que depende

de la distribución de esfuerzos a lo largo del arco AB (fig. V -5) y del ángulo central AOB = 26

R,<f> = los sentidos usuales.

192 CAPITULO V

Page 217: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Taylor7 da una gráfica en que puede encontrarse el valor de K en función del ángulo central AOB = 26; la gráfica aparece en la fig. V-6 y está constituida con la hi­pótesis de una distribución senoi­dal de esfuerzos normales a lo largo del arco AB, con valor nulo para el esfuerzo en los puntos Ay B,

Con las líneas de acción de W y C puede encontrarse su punto de concurrencia, por el cual ha de pasar la fuerza F, pues si la masa deslizante ha de estar en equilibrio, W, C y F han de ser concurrentes.

Con esto se define la línea de acción de F, que pasa por el mencio­nado punto de concurrencia de C y e s tangente a una circun­ferencia con centro en 0 y radio KR sen <¡>.

Conocidas las líneas de acción de F y C puede construirse con W, conocido en magnitud y posición, un triángulo de fuerzas en el cual puede determinarse la magnitud de C necesaria para el equi­librio.

La “cohesión” del material constituyente del talud es conocida por pruebas de laboratorio y vale c; el valor necesario del parámetro para que el talud sea estable según el cálculo, es decir, para tener la condición de equilibrio de las fuerzas actuantes es, según la expre­sión 5-10

_ C c * ~ J J

que puede ya calcularse. Por ello, puede determinarse la relación

Fc = ~ (5-13)CeCon lo cual se obtiene un factor de seguridad asociado al círculo

escogido en términos de la "cohesión”.Si el valor de <f> con el cual se construyó el círculo de fricción

es el real del suelo, la expresión 5-13 proporciona un factor de segu­ridad del talud, el que estaría trabajando, pudiera decirse, en con­dición límite respecto a la fricción.

Cuando se desea que el talud trabaje con seguridad no sólo respecto a la “cohesión” sino también a la fricción puede aplicarse el método del círculo <j> con un valor de <f> menor que el real del sudo; se define as! un factor de seguridad respecto a la fricción514—Mecánica de Suelos D

MECANICA DE SUELOS (II) 193

Fl©. V-6. Gráfica para obtener e l valor de K (Taylor)

Page 218: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

194 CAPITULO V

F* = tg 4>tg <!>e

( 5- 14)

donde <f> es el valor real del suelo y <¡>e el escogido para aplicar el método, menor que el anterior. En estas condiciones se obtendrá para el mismo talud un valor de F c distinto y menor que si el <¡>e elegido hubiese sido igual a <¡>.

Existen así infinitas combinaciones posibles de valores de F c y F<¡> asociados a un talud dado.

Si se desea que F c — F<¡, — F¡, donde F s es el factor de seguridad respecto a la resistencia al esfuerzo cortante del suelo, para manejar un solo factor de seguridad ligado a un círculo dado, puede proce- derse como sigue (Taylor):

Usense varios valores lógicos de <¡>e en la aplicación del método del círculo <¡>. A cada valor está ligado un F<p y para cada valor puede obtenerse un F c. Grafíquense esos valores de F c y F<p corres­pondientemente, como se muestra en la fig. V-7.

La curva obtenida corta a una recta a 45° en un punto en queF c = F f = F ,

Ese punto indica un valor de F<¡, y F c al que corresponde un cierto valor de <f>e que es con el que tendría que haberse aplicado el método del círculo para obtener directamente factores de seguridad iguales respecto a “cohesión" y “fricción”, en el círculo de falla tentativo que se esté estudiando.

FIG . V-7. Método de Taylor para fí¡ar el factor de seguridad deun talud.

Puede demostrarse que en un suelo homogéneo sin fuerzas de filtración y con círculo crítico de falla de base, una vertical tangente al círculo de fricción pasa por el punto medio del talud. (Anexo V -a).

Page 219: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

V-5. Grietas de tensión

Es un hecho experimental que antes de ocurrir un deslizamiento de tierras en el cuerpo de un talud que no sea puramente friccio­nante aparecen en la corona grietas más o menos longitudinales; esto es indicativo de la existencia de un estado de tensiones en esa zona.

La aparición de las grietas causa, en general, los siguientes efectos:

MECANICA DE SUELOS (II) 195

y sy

‘ ■. 3 . * | ■

c

*

- > , - '

Grieta típica en la corona de un talud en estado de falla incipiente

a) Una reducción en la longitud de la superficie de desliza­miento, con la correspondiente disminución en el momento resistente, fig. V-8.

b) Una disminución del momento motor, que se reduce en el peso de la cuña eje .

c) Una generación de empujes hidrostáticos causados por el agua de lluvia cuando se almacena en la grieta. Estos empujes son desfavorables a la estabilidad del talud.

Terzaghi ha indicado que los dos últimos efectos señalados tienden, en general, a contrarrestarse, por lo que su influencia neta en la estabilidad del talud es despreciable y sólo el primer efecto mencionado ha de ser tomado en cuenta. Para ello el propio Ter­zaghi ha propuesto, en suelos puramente “cohesivos", substituir la “cohesión” del suelo, obtenida de pruebas de laboratorio, por un valor, ca, corregido según la relación (fig. V-8)

r\be1 ,r-

Page 220: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

196 CAPITULO V

De esta manera puede hacerse el análisis por los métodos ya indicados, como si no existiese grieta.

La posición de la grieta ha de determinarse previamente a la aplicación de la relación 5-15. Cuando el círculo más crítico posible pasa por el pie del talud, la experiencia indica que la grieta se locali­za casi siempre a una distancia del borde del talud mayor que la mitad de la porción de la corona interesada por el círculo ( fig. V -8) y puede considerarse, para efectos de análisis, que llega hasta dicho círculo (Dc). Cuando el círculo más crítico posible corresponde a falla de base, la grieta suele localizarse en la práctica a partir del hecho también experimental de que la profundidad máxima observada no sobrepasa H / 2 . Este valor es pues conservador y una vez defi­nido, la grieta puede ser localizada con ayuda del círculo critico (fig. V-81.

Si se desea tomar en cuenta en los cálculos el efecto del empuje hidrostático del agua almacenada en las grietas, podrá usarse la ecuación

A M m = j z 20Yud (5-16)

donde z0 es la profundidad de la grieta y d es la distancia al centro del círculo, 0, del empuje hidrostático, que actúa en el tercio inferior de la profundidad agrietada.

V-6. Fallas por traslación

Como ya se ha indicado, las fallas por traslación de una masa de tierra que forma parte de un talud, ocurren cuando dentro del terreno de cimentación y a relativamente poca profundidad existe un

Page 221: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 197

estrato paralelo a la superficie del terreno o casi paralelo, cuya resistencia sea muy baja. El fenómeno es particularmente frecuente cuando el terreno natural constituye una ladera inclinada, con el plano débil guardando una inclinación similar. En la naturaleza los planos débiles típicos son estratos delgados de arcilla muy blanda o de arena, más o menos fina, sujeta a una subpresión que dismi­nuya los esfuerzos efectivos y rebaje mucho la resistencia del manto al esfuerzo cortante.

En la fig. V-9 se muestra una falla de la naturaleza en estudio.

FIG . V-9. Superficie da falla compuesta correspondiente a una falla de traslación

Si se supone que la masa de suelo movilizada es aquélla de fronteras abcd, puede admitirse que la cuña abf ejerce un empuje activo sobre la parte central bcef; bajo tal empuje esta parte trata de deslizarse, oponiéndose a ello una reacción (F ) a lo largo de la superficie cb y el empuje pasivo desarrollado en la cuña cde.

Los valores de los empujes activo (P¿) y pasivo (Pp) pueden calcularse ya sea por la Teoría de Coulomb o por la de Rankine, expuestas en el Capítulo IV; conviene considerar horizontales los empujes, lo cual resulta sencillo y ligeramente dentro de ta seguridad.

Si el suelo del estrato débiles puramente "cohesivo”, el valor de la fuerza P es simplemente cb.c, donde c es la "cohesión" del material. Si el estrato débil es arenoso y está sujeto a una subpresión que reduzca la presión normal efectiva correspondiente al peso de la masa ecbf en una cantidad importante, la fuerza F deberá calcularse a partir de ese valor deducido de la resistencia, con la presión normal efectiva igual a la total menos la neutral. En el Volumen III de esta obra se darán los métodos para determinar los valores de u.

El factor de seguridad asociado a la superficie compuesta ana­lizada puede definirse como:

a

(5 - 1 7 )

Page 222: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

198 CAPITULO V

V-7. Otros métodos de análisis

Rendulic6 ha propuesto, como ya se indicó, el uso de la espiral logarítmica como curva de falla más representativa que la circular. En este caso se tiene la ventaja de que las fuerzas de reacción re­sultantes de los esfuerzos normales y de fricción pasan por el centro de la espiral; a la vez se tienen desventajas que emanan del hecho de que, en general, la curva espiral es más complicada en su manejo que la circunferencia. Taylor7 ha demostrado que este método de la espiral logarítmica proporciona prácticamente los mismos resultados que el Método Sueco y conduce a superficies de falla de ubicación parecida. Por todo ello, el uso de la espiral en los problemas prácti­cos es restringido, dado que su aplicación resulta en definitiva más complicada. En el Anexo V-c se insiste más en estos puntos.

En épocas recientes se han aplicado a los análisis de taludes ecua­ciones e ideas de tipo elasto-plástico. Entre estos trabajos destacan las aplicaciones de las ecuaciones de Kotter, originalmente obtenidas por este investigador para el caso de un material puramente "fric­cionante” (c = 0) y generalizadas por Carrillo y Jaky para el caso

0, <j>yt08’9. Estas ecuaciones representan una condición gene­ral que deben satisfacer los esfuerzos a lo largo de cualquier super­ficie de deslizamiento, en condición de falla incipiente.. En el AnexoV-c se trata también este tema con mayor amplitud.

V-8. Fallas por licuación

Según ya se mencionó en el volumen I de esta obra, las condi­ciones para que una masa de arena pueda entrar en licuación son que el material esté saturado y en estado más bien suelto y sea some­tido a un efecto dinámico rápido; en estas condiciones ya se discutió el cambio que puede ocurrir en la distribución interna de presiones efectivas y neutrales, sin que se modifique la condición exterior de cargas.

En general, se supone que cualquier talud arenoso, independien­temente de su inclinación, puede ser fácilmente licuable cuando su relación de vacíos sea mayor que la crítica; esta condición es relati­vamente frecuente en presas de relleno hidráulico y en otros lugares en que la arena es depositada en forma muy suelta, pero es relativa­mente fácil de evitar en terraplenes y formaciones artificiales, cons­truidas con un proceso de compactación.

En formaciones arcillosas se han presentado en ocasiones fallas bruscas similares a las de licuación en arenas, que han sido general­mente atribuidas a dos causas diferentes. La primera, por la dismi-

Page 223: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

nucíón grande de la “cohesión aparente” del material, cuando éste aumenta mucho su humedad. La segunda, por la pérdida de resisten- cia que tiene lugar en arcillas sensibles a causa de la deformación bajo esfuerzo cortante o por cualquier otra degradación estructural que pueda tener lugar, aun sin cambio en el contenido de agua.

En cualquier caso, el análisis teórico del problema es, aún hoy, muy difícil y tosco, por lo que se hace preciso recurrir casi por com­pleto a conclusiones de la experiencia. En el capítulo XI se vuelve a tratar con mayor detalle este importante problema.

En general, se admite que la expansión con absorción de agua es causa de falla mucho más frecuente que las degradaciones estruc­turales, a no ser que la sensibilidad de la arcilla sea extrema. Aunque la arcilla es muy poco permeable existen innumerables circunstancias por las que puede absorber agua en un caso dado.

Las fallas rápidas por licuación tienen lugar casi siempre en taludes naturales; no se tiene noticia de que estas fallas se hayan presentado en terraplenes y bordos eficientemente compactados.

Un reconocimiento geológico de la región en que se ubicarán los taludes es fundamental para poder predecir la posibilidad del tipo de fallas bajo estudio; si en la región se presentan deslizamientos de laderas naturales de diferente inclinación podrá pensarse que el pro­blema es probable.

V-9. Algunos métodos para mejorar la estabilidad de taludes

A continuación se indican algunos métodos que han comprobado su valor práctico para mejorar la estabilidad de taludes cuyas con­diciones originales no sean satisfactorias.

a) Tender taludesA primera vista quizá pudiera pensarse que esta solución sea la

más obvia y sencilla en la práctica. Sin embargo, ha de tomarse con el debido cuidado desde el punto de vista teórico y muchas veces es irrealizable prácticamente hablando.

Si el terreno constituyente del talud es puramente friccionante la solución es indicada, pues, según se vio, la estabilidad de estos suelos es fundamentalmente cuestión de inclinación en el talud; ten­diendo a éste convenientemente, se adquiere la estabilidad deseada. En suelos “cohesivos”, por el contrario, la estabilidad del talud está condicionada sobre todo por la altura del mismo y la ganancia al tender el talud es siempre escasa y, en ocasiones, nula (ver AnexoV -a). En suelos con “cohesión” y “fricción”, el tender el talud producirá un aumento en la estabilidad general.

Por otra parte, muchos requisitos prácticos, tales como invasión de zonas urbanas, condiciones económicas emanadas del movimien­

MECANICA DE SUELOS (II) 199

Page 224: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

to de grandes volúmenes de tierra, etc., hacen imposible al proyec­tista el pensar en tender los taludes de los terraplenes, bordos, cortes y demás obras similares, en gran cantidad de casos prácticos.

b) Empleo de bermas laterales o frontales

Se denominan bermas a masas generalmente del mismo material aue el propio talud, que se colocan adecuadamente en el lado exterior del mismo a fin de aumentar su estabilidad. En la fig. V-10 se mues­tra en esquema una de estas estructuras.

En general una berma produce un incremento en la estabilidad por dos motivos. Uno, por su propio peso, en la parte que queda hacia fuera de la vertical que pasa por el centro del círculo de falla, dis­minuyendo el momento motor (parte bcef de la fig. V -10). Otro,

3ue aumenta el momento resistente, por el incremento en la longitud el arco de falla por efecto de la propia berma.

200 CAPITULO V

Otro efecto importante de las bermas, a veces de gran utilidad, estriba en la redistribución de esfuerzos cortantes que su presencia produce en el terreno de cimentación. En efecto, en ciertas zonas de éste se producen concentraciones de tales esfuerzos que pueden ser muy perjudiciales, sobre todo en terrenos arcillosos altamente sensi­bles; la presencia de la berma hace que la distribución de esfuerzos sea más favorable y que un mayor volumen del terreno de cimenta­ción coopere a resistir tales esfuerzos.

En los cálculos prácticos ha de tenerse en cuenta que la presen­cia de la berma modifica la ubicación de la superficie de falla crítica, por lo que su colocación exige un nuevo cálculo de la estabilidad del nuevo talud protegido por la berma. La experiencia ha demostrado que es una buena base para los tanteos el suponer un ancho de berma del orden de la mitad de la base del terraplén y una altura tal que el peso de la berma dé un momento igual al requerido para alcanzar en el talud original el factor de seguridad deseado. A partir de este principio se procederá por tanteos hasta fijar la berma minima que cumpla su cometido.

Page 225: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 201

Berma utilizada en e l camino directo México-Puebla para corregir una falla ocurrida durante la construcción

c) Empleo de materiales ligerosSe trata ahora de colocar como material de terraplén suelos de

peso específico bajo que, por lo tanto, den bajos momentos motores. El tezontle, de origen volcánico, con peso específico del orden de 1 a 1.2 ton/m3 ha sido muy empleado para este fin. Otras solu­ciones, tales como substitución de parte del terraplén con tubos, cajones de concreto hueco, etc., en general resultan muy costosas y, por ello, su uso ha sido muy limitado.

d) Consolidación previa de suelos compresiblesCuando los suelos de cimentación de terraplenes sean mantos

compresibles saturados de baja resistencia al esfuerzo cortante, puede inducirse un proceso de consolidación, acelerado en lo posible, que aumente la resistencia del material.

Al construir terraplenes es frecuente y económico recurrir a cons­truir la estructura por partes, no erigiendo una mientras la anterior no haya producido una consolidación suficiente.

En el Capítulo X del Volumen I de esta obra se ha presentado un método para acelerar el proceso de consolidación por medio de drenes verticales cilindricos de arena. Desgraciadamente este proce­dimiento, eficiente por otra parte, suele resultar bastante costoso en la práctica.

El procedimiento para estimar el aumento de la resistencia al esfuerzo cortante que tiene lugar según el proceso de consolidación

Page 226: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

progresa está basado en ideas expuestas y discutidas en los Capítu­los X y XII del Volumen I de esta obra.

Supóngase que se trata de un terraplén que se construye sobre un suelo compresible, normalmente consolidado, cuya resistencia no garantiza la estabilidad de la estructura, por lo que se ha decidido erigir la mitad de su altura, esperando para completarla a .que el suelo se haya consolidado parcialmente hasta que el aumento de su resistencia sea suficiente.

Bajo carga rápida, supuesto que el terraplén se construye en poco tiempo, la resistencia del suelo de cimentación estará represen­tada por la envolvente de la prueba Rápida Consolidada, obtenida trabajando con esfuerzos totales. Analizando esta envolvente puede verse que la resistencia, s, al esfuerzo cortante es proporcional a la carga con que se haya consolidado al material (fig. V - l l ) ,

202 CAPITULO V

*c = P0 <rc = p0+ A p

F IS . V - l l . Aumento de la resistencia rápida con carga de con solidación

En el manto compresible normalmente consolidado, la resistencia bajo carga rápida será, por lo tanto, proporcional a la profundidad. Al construir la mitad del terraplén se inducirá un proceso de conso­lidación en el terreno de cimentación, como consecuencia del cual las presiones efectivas aumentarán en todo punto del mismo. La resistencia final en cualquier punto del suelo de cimentación, una vez logrado el 100% de consolidación bajo la nueva carga, puede deter­minarse a partir de las nuevas presiones efectivas existentes al fin del proceso de consolidación, calculables por los métodos expuestos en el capítulo III. Así, si es la resistencia inicial de un punto de la masa consolidada bajo la presión efectiva por peso propio, p¡T, la resistencia final bajo carga rápida s/, será la correspondiente a la nueva presión de consolidación pó + Api donde Ap representa el incremento de presión efectiva que ha producido la mitad primera­mente construida del terraplén.

La resistencia en un punto correspondiente a un porcentaje de consolidación entre 0 y 100% tendrá un valor intermedio entre s¡ y Sf, el cual podrá interpolarse linealmente entre esos dos, según se desprende obviamente de la fig. V - l l .

Page 227: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 203

Si el suelo de cimentación fuera preconsolidado, el problema podrá tratarse como el anterior, pero considerando la envolvente Rc incluyendo el intervalo de preconsolidación.

En ocasiones se ha recurrido en la práctica a algunos otros pro­cedimientos esencialmente equivalentes al arriba expuesto para esti­mar el aumento de resistencia rápida del suelo por consolidación (Hvorslev10, Rutledge11).

e) Empleo de materiales estabilizantes

El fin de la solución en estudio es mejorar las cualidades de resis­tencia de los suelos mezclándoles algunas substancias que al produ­cir una cementación entre las partículas del suelo natural o al mejo­rar sus características de fricción aumenten su resistencia en los problemas prácticos. Las substancias más empleadas han sido ce­mentos, asfaltos y sales químicas. Sin embargo, en la práctica estos procedimientos resultan costosos, por lo que su uso es limitado.

f) Empleo de muros de retención

Cuando un talud es en sí inestable, se ha recurrido con cierta frecuencia a su retención por medio de un muro. La solución, "cuando se aplica con cuidado, es correcta aunque, en general, costosa.

Sin embargo, muchas son las precauciones que han de tomarse en cuenta para el proyecto y construcción de los muros. En el capí­tulo IV se ha tratado el problema general de estas estructuras por lo que aquí sólo se mencionarán algunas precauciones de carácter especial.

En primer lugar ha de cuidarse que la cimentación del muro quede bajo la zona de suelo movilizada por la falla hipotética del talud, pues se han reportado casos en que el muro, en falla por rotación por ejemplo, se moviliza en conjunto con el suelo, resultando totalmente inútil.

En segundo lugar, es preciso tomar precauciones muy especiales en lo referente al drenaje, dotando al muro en su paramento interno de filtros de material permeable, que canalicen a las aguas hacia las salidas que se proyecten a través del muro. En suelos con contenido apreciable de finos plásticos es preciso tener muy presente la posi­bilidad de que el material del talud se sature, en cuyo caso disminuirá fuertemente su ‘‘cohesión aparente”, aumentando correspondiente­mente los empujes que produce contra la estructura. Esta ha sido posiblemente, la principal causa de fallas en muros de retención usados en vías terrestres, canales, etc.

En general, el muro de retención como elemento estabilizador de taludes, constituye una de las estructuras más delicadas en lo refe­

Page 228: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

204 CAPITULO V

rente a su proyecto y construcción y es recomendable que ambas etapas sean muy cuidadosamente supervisadas por un especialista. Esto, por supuesto, es tanto más cierto cuanto más altas sean las es­tructuras que se requiera construir y cuanto más plástico sea el suelo por retener.

D e s liia m ie n to p o r ro ta c ió n causado p o r la p é rd id a d e res istencia d e b id a a la sa tu ración d e los suelos

T u b e ría p e r fo ra d a p a r a d re n a je in te rn o d e un co rte d e una c a rre te ra

Page 229: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELO S (II) 205

g) Precauciones de drenajeLa principal y más frecuente causa de problemas derivados de

la estabilidad de taludes en obras de ingeniería es, sin duda, la pre­sencia de agua y su movimiento por el interior de la masa de suelo. Estos efectos y el modo de cuantificarlos se detallarán en las partes correspondientes del Volumen III de esta obra, pero es obvio desde este momento que la saturación y el desarrollo de fuerzas de filtra­ción que tiene lugar durante el flujo de agua afectan decisivamente la estabilidad de las masas de suelo.

Salvo el caso especial de las presas de tierra, en donde el flujo es un factor inevitable cuya presencia siempre ha de tomarse en cuenta, en la mayoría de las obras de ingeniería resulta más econó­mico proyectar obras de drenaje que eliminen filtraciones y flujo que proyectar los taludes para soportar esta condición tan desfavo­rable. Las estructuras comu­nes, tales como cunetas, con­tracunetas, alcantarillas, etc., debidamente proyectadas y construidas han demostrado hoy ser indispensables y no es buena la técnica ingenieril que regatee inversión o es­fuerzos en esta dirección. En otras ocasiones será preciso pensar en estructuras especia­les del tipo de pantallas de drenes protectores, tubería perforada que penetre conve­nientemente en la masa de suelo y otras muchas.

En este punto se toca un aspecto que ha sido y sigue siendo muy debatido entre los ingenieros de todo el mundo.Se trata de definir si resulta más conveniente proyectar una obra vial, por ejemplo, con todas las precauciones dedrenaje en cada lugar, a fin Trinchera de drenaje para la zona central da una de evitar futuras fallas enea- autopista modernareciendo fuertemente la cons­trucción o, por el contrario, si resulta mejor construir con las precauciones elementales e indispensables, ateniéndose al riesgo de falla futura en algún lugar aislado en que las condiciones de filtración y flujo resulten imprevisiblemente críticas. Este último criterio traerá

Page 230: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

206 CAPITULO V

O tr a v ista de drenes h o rizo n ta les p a ra c a p ta c ió n d e a g u a en e l in te ­r io r d e los cortes d e los cam inos

U n e je m p lo d e una so lución es p e c ia l p a r a e s ta b il iz a r ta lu d e s en ro ca : co lo ca c ió n d e b arras d e a n c la je

en los b loq ues sueltos

trastornos en la operación de la obra y acarreará, quizá, riesgos hipo­téticos a sus usuarios, por la posibilidad de derrumbes localizados bruscos. Apenas puede dudarse que este último criterio resulta más apropiado para ser usado en países de economía restringida, pues siempre será más barato y económico arreglar fallas en algunos pun-

Page 231: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SU ELO S (II) 207

Otra solución especial a un problema de estabilidad de taludes en roca: el medio viaducto

tos que proteger contra esas fallas cada kilómetro de un camino, por ejemplo. De todas maneras, por sus implicaciones económicas y aún morales, el asunto se presta a toda clase de disquisiciones.

Combinación de soluciones a base de muros de retención y medio viaducto (carretera escénica en Acapulco, Gro.)

Page 232: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

208 CAPITULO V

En taludes en excavaciones, el bombeo o los métodos electros- móticos (ver Volumen III de esta obra) se usan hoy comúnmente y los segundos parecen prometedores en los problemas de taludes en general.

h ) Soluciones especiales

Además de las soluciones que se han mencionado, existen muchas otras y puede decirse que este es un punto en que el ingenio del

proyectista guiado por un buen criterio tiene amplio campo de ac­ción. En caminos, por ejemplo, el uso de terraplenes en diente de sierra ha sido muy socorrido para rebajar altura de terraplenes por concepto de sobreelevación en cur­va y así eliminar riesgos de falla (fig. V-12). En otros casos sobre,

todo en cortes en roca fracturada, los bloques se cosen materialmente con varillas de acero, pretensadas o no, colocadas en barrenos relle­nados con mortero.

C o rr il iz q u ie r d o C a r ril d e re c h o

FIG. V-12. Terraplenes en diente de sierra

Un problema especial: el echado de las rocas favorece su deslizamiento hacia un camino

Page 233: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 209

ANEXO V-a

Consideraciones respecto al análisis de taludes en material “cohesivo” homogéneo en él cnerpo del talud

y en el terreno de cimentación

V-a.l. Talud “cohesivo” y terreno de cimentación homogéneo con él y semi-infínito

Los análisis de estabilidad de taludes en suelos "cohesivos” ho­mogéneos en el cuerpo del talud y en el terreno de cimentación handemostrado (Taylor) que la "cohesión” necesaria para garantizar la estabilidad de un talud de inclinación dada sigue la ley de propor­cionalidad

c ° ° y n H (5-a.l)donde:

ym = peso específico del suelo que forma el talud y el terreno de cimentación

H — altura del talud.«

La relación anterior puede escribirse:c = N ey„H (5-a.2)

FIG . V-a.l. Literales usadas en el análisis de taludes homogineos"cohesivos"

15— Mecánica de Suelos II

Page 234: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

210 CAPITULO V

Donde Ne se denomina número de estabilidad del talud de que se trate. N e es función de la inclinación, $, del talud (fig. V-a.l) , cuan­do el círculo más crítico posible pase por el pie del talud. La posibi­lidad de falla de base se analizará más adelante en esta misma sección.

El sentido de las letras citadas aparece en la fig. V-a.l.Puede demostrarse que el valor 3 — 53° es una frontera de inte­

rés, de modo que si 3 53° la superficie de falla más crítica posiblepasa siempre por el pie del talud y si 3 < 53° el círculo más crítico se presenta adelante del pie del talud, produciéndose una falla de base.

En efecto, considérese la fig. V-a.2 en la cual se muestra un talud en falla de base con una superficie de falla circular cualquiera, que genera las secciones marcadas con números romanos.

Para encontrar el círculo más crítico posible es preciso buscar aquel que dé un factor de seguridad (Ft) mínimo. Para ello se analizará en primer lugar lo que sucede cuando el centro del arco seleccionado se mueve sobre una trayectoria horizontal, después cuando varíe el radio, fijo el ángulo central, 29 y, finalmente, cuando varía el ángulo central, 29, únicamente

o

FIG. V-a.2. Esquema de un talud de material "cohesivo", homo­géneo con el terreno de cimentación, para determi­

nar el circulo critico de falla de base

Si el punto 0 se mueve sobre una horizontal (véase fig. V-a.2) la longitud del arco hipotético de falla no varía, pues los puntos A y C no abandonan sus respectivas horizontales. Por lo tanto se man­tiene constante el momento resistente que corresponde al producto cLR. Si se considera ahora como momento motor la expresión HWd.

Page 235: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

como se hizo en el cuerpo de este capítulo, por permanecer constante el momento resistente, el F a mínimo se tendrá, simplemente, cuando el momento motor sea máximo.

Pero:Mm ~ Mi + Mu + Mui + Miv

Mi es el momento del peso de la tierra correspondiente a lasección I de la fig. V-a.2 y vale cero, pues el centroide delárea del sector está siempre en la vertical que pasa por 0.

Ma es el momento del peso de la tierra correspondiente a lacuña triangular D EF y vale, según la figura mencionada:

M n = ~y b H ym (a — m) (5-a.3)

Mm es el momento, respecto a 0, del peso de la tierra correspon­diente al área DEBG y vale:

vM / n \ u R sen £ -f" a , ¡- ,,Mm = {R sen e — a) H ym ------- (5"a-4 )

cü momento del peso de la tierra correspondiente al área CBG, M iv. no varía cuando el centro del arco de circunferencia escogido se mueve horizontalmente a partir de 0; su valor es constante, por lo tanto, y se representará por K.

Teniendo en cuenta las expresiones anteriores podrá escribirse:

Mm = -^-b H ym (a — m) + (R2 sen2 £ — a2) + K (5-a.5)

Interesa el valor máximo de esta función cuando 0 se mueve ho­rizontalmente y este movimiento puede referirse a la variación de a; por lo tanto interesa la condición:

^ J"- - b H y™ (a — m) + (R2 sen2 e — a2) + k J = 0

de donde:± b H y m + ^ ( - 2 a) = 0

b _ ny ~2 a — 0

o sea: a ~ ~ 2 (5-a.6)

Así pues, respecto al movimiento del centro del circulo escogido a lo largo de la horizontal, el círculo de falla más crítico respecto a falla de base, será aquél cuyo centro esté en la vertical que pase por el centro del talud.

MECANICA DE SUELOS (II) 211

Page 236: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

212 CAPITULO V

Si ahora se fija el ángulo central 26 y se mueve el centro sobre la vertical que pase por 0, el valor del radio variará y también el momento motor y el momento resistente. El valor de R que corres­ponde al círculo más crítico para esta condición es bastante compli­cado de obtener y el proceso poco añade, conceptualmente hablando, al panorama general, por lo cual aquí se proporcionará simplemente el resultado final del análisis, según el cual el radio del círculo más crítico resulta ser infinito.

Para que el círculo más crítico posible quede totalmente defini­do y así poder calcular teóricamente la “cohesión" necesaria para el equilibrio será preciso encontrar el ángulo central 29 que hace míni­mo el factor de seguridad. Como se ha aceptado que el círculo crítico corresponde a radio infinito, para cualquier ángulo central, 29, dis­tinto de cero, las distancias del talud a que el círculo de falla intercepte la superficie del terreno serán infinitas a ambos lados. Pa­ra hacer el análisis que permita encontrar el valor de 29 corres­pondiente al círculo crítico con­viene considerar un radio finito muy grande, al cual posteriormen­te se hará tender a oo, encontrando los resultados en ese límite. Te­niendo esto en mente, podrá es­cribirse (ver fig. V-a.3).

W = ymH R sen 9 También podrá escribirse:

, R sen 9 d = — 2—

y, desde luego:L = 2 9R

En falla incipiente: Wd = cLR por lo tanto

Wd ~2 *fm H R2 se n ® 0c = ■

FIS. V-a.3. Talud en material "cohesivo", homogéneo con e l terreno de cimentación. Yar¡ación del

ángulo central 29

(5-a.7)

de donde:LR 2 9 R2

__ YmH sen2 9 (5-a.8)

El valor más crítico posible de 9 será el que haga que la c reque­rida para mantener la estabilidad sea máxima. Por lo tanto interesa estudiar la condición:

Page 237: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

= 0 (5-a.9)

MECANICA DE SUELOS (II) 213

d T sen2 9d ó i ~ T ~ .

de donde:2 6 sen 6 eos 9 — sen2 9 _ _

_

y29 sen 9 eos 6 — sen2 6

de donde se obtiene finalmente la ec.:6 = ^ (5-a.lO)

De la ec. 5-a.lO se deduce que un valor de 0 = 66°45', o sea29 = 133°30' corresponde al círculo más crítico posible. Si este valorde 9 se lleva a la ec. 5-a.8 se obtiene:

YmH sen2 66°45' „ _ .c = J - j ---------------- *— = 0.181 y» H (5-a.ll)66°45' 360c

Si se compara esta expresión con la (5-a.2), podrá verse que, para el caso de radio infinito, 29 — 133°30', centro del círculo sobre la vertical media del talud y talud "cohesivo” y homogéneo con el terre­no de cimentación, el número de estabilidad del talud resultaría igual a 0.181.

Taylor ®«7 y Fellenius 12 realizaron gran volumen de investigación en este terreno tendiente a evitar a los proyectistas el trabajo largo y tedioso de los tanteos. Taylor dibujó una gráfica relacionando los valores del ángulo del talud, 3, con los números de estabilidad obte­nidos para ellos, N e; así obtuvo el primer tramo curvo de la gráfica superior de la fig. V-a.4, que corresponde a círculos de falla por el pie del talud. Se ha visto que el número de estabilidad para los círcu­los más críticos posibles que corresponden a la falla de base (R = oo) es 0.181: este valor define el tramo recto de la misma gráfica en la misma figura. La intersección de los tramos recto y curvo B se produce en un valor del ángulo 3 igual a 53°. A mayor número de estabilidad el círculo es más crítico por lo que la parte recta repre­senta al valor de 2V« para los círculos más críticos, posibles, que son de falla de base con un ángulo de talud, 8, comprendido entre 0o y 53°. Para valores de 3 mayores de 53° la parte curva rige y los círculos más críticos posibles pasan por el pie del talud.

Fellenius observó que para 3 = 60° el ángulo a de la fig. V-a.l resulta igual a 9 y la tangente a la circunferencia de falla que pase por el pie del talud, trazada en ese punto, es horizontal, y que para 53° < 3 < 60° los círculos más críticos posibles que desde luego pasan por el pie del talud, interesan al terreno de cimentación: fallas únicamente en el cuerpo del talud ocurren sólo si 3 > 60°.

Page 238: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

214 CAPITULO V

FIG* V-a.4. Gráfica de Tayhr para determinar los números de estabilidad en taludes en materiales "cohesivos", homogéneos con el terreno de cimentación

V-a.2. Talud “cohesivo” con terreno de cimentación homogéneo con él y limitado por un estrato horizontal resistente

Es muy frecuente que en la naturaleza aparezcan estratos re­sistentes a una cierta profundidad dentro del terreno de cimentación

cohesivo y homogéneo con el cuerpo de un talud; en lo que sigue se considerará que estos estratos son horizontales, lo cual, por otra parte no está lejos del caso real normal.

Cuando la inclinación del talud es menor de 53°, de la discusión realizada en la sección anterior de este anexo respecto a los círculos de falla de base, se deduce que el círculo crítico tiende a profundi­zarse, pues siempre existirá un círculo a mayor profundidad al que corresponda un número de estabilidad mayor, si bien éstos tienden asintóticamente a 0.181 con la profundidad. De esto se deduce que, para estos taludes, el círculo crítico será siempre tangente al estrato resistente. Para fines prácticos, cuando el estrato resistente se en­cuentra a una profundidad mayor que tres veces la altura del talud propiamente dicho, el número de estabilidad del circulo crítico es muy cercano a 0.181, y sólo se justifica su cálculo para aquellos

Page 239: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 215

casos en que el estrato resistente está a profundidad comprendida entre 0 y 3H.

Cuando el estrato resistente corresponde al nivel del terreno y 3 < 60°, la superficie crítica de deslizamiento sigue siendo tangente a dicho estrato resistente y se desarrolla como se muestra en la fig. V-a.5.

FIG. V-a.5. Circulo de falla en talud en material "cohesivo" cuando el terreno de cimentación está constituido

por un material resistente

Para analizar las condiciones de estabilidad de un talud en material “cohesivo” con un estrato resisten.e localizado en el terreno de cimentación a una profundidad comprendida entre 0 y 3 H, a partir del nivel del terreno (H altura del talud), se utiliza el con­cepto de factor de profundidad, D, definido según se desprende de la fig. V-a.6.

FIG. V-a.6. Esquema para definir los conceptos de factor de profundidad, D, y factor de alejamiento, n.

Desde luego, para un cierto talud el número de estabilidad dis­minuye si el factor de profundidad va disminuyendo, es decir si el estrato firme está más próximo al nivel del terreno.

Con base en los cálculos realizados, Taylor pudo trazar las cur­vas que aparecen en la fig. V-a.7, en la cual se consideran ángu-

Page 240: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO V

* 2 3 4F a c t o r do p r o f u n d i d a d , D.

FIG . V-a.7 Gráficas de Taylor p o n defe/minar e l número de estabilidad y el factor de alejamiento en circuios tangentes a un estrato

resistente

Page 241: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

los de talud desde 53° hasta 7.5°. Entrando con el valor de D y usando la curva de 3 correspondiente puede obtenerse el valor de N e y el de n, factor de alejamiento, interpolado entre las curvas mostradas.

En la fig. V-a.8 se muestra un círculo de falla de base cuyo centro cae en la vertical por el punto medio del talud y que es tangente a un estrato resistente situado a la profundidad DH.

MECANICA DE SUELOS (II) 217

FIG . V-a.8 Circulo con falla de base tangente a un estratoresistente

La superficie de falla aflora a una distancia horizantal nH ade­lante del pie del talud. Para círculos tangentes al estrato resistente y con centro en la vertical media, el valor n determina la posición del círculo respecto al talud; estos valores pueden obtenerse del mis­mo gráfico mostrado en la fig. V-a.7. Obsérvese que, como era de esperar para una inclinación del talud dada (curvas llenas de la figura), n aumenta cuando aumenta D; es decir, cuando el círculo de falla se profundiza más, aflora a mayor distancia del pie del talud.

Puede observarse que en la práctica hay casos en los que el des­arrollo de la superficie de falla se ve forzado a pasar por el pie del talud; en la parte inferior de la fig. V-a.7 se muestra un caso de éstos, en el que el número de estabilidad será menor que si la restric­ción no existiese (y por lo tanto el talud más estable). Los números de estabilidad correspondientes se calcularán en la misma figura recurriendo a las líneas discontinuas de segmentos largos.

ANEXO V-b

Consideraciones respecto al análisis de taludes homogéneos en materiales con cohesión y fricción

Existen numerosos trabajos de mérito cuya finalidad es, a la vez, ahorrar tiempo a los calculistas de estabilidad de taludes y arrojar mayor luz sobre el comportamiento de éstos y sobre las conclusiones que pueden extraerse de los distintos métodos de análisis. De todos

Page 242: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

esos, cuya simple mención es imposible en este lugar, se glosan a con­tinuación aquellos que han alcanzado mayor popularidad. Desde lue­go las conclusiones de estos trabajos son aplicables a taludes homo­géneos, en falla por el pie del talud o de base (en cuyo caso se supone que el material constitutivo del terreno de cimentación es el mismo del cuerpo del talud propiamente dicho) y se refieren única­mente a la posibilidad de falla de rotación.

a) Trabajos de FelleniusFellenius ha extraído algunas conclusiones de carácter general

como resultado de un gran número de aplicaciones del procedimiento de las dovelas. En varias de las referencias citadas en este capítulo podrán verse distintas alusiones a sus trabajos. En la Tabla 5-b.l, aparece un aspecto de las investigaciones de Fellenius; en dicha Tabla se definen algunos círculos críticos por el pie del talud en suelos puramente “cohesivos", correspondientes a ángulos de talud, 3, frecuentes en la práctica. Las letras tienen el sentido que se des­prende de la fig. V-b.l.

0

218 CAPITULO V

FIG. V-b. I . Posición del centro del circulo critico por el pie del talud; trabajo de Fellenius (<fi ^ 0, c 0)

TABLA 5-b.l

Suelos puramente “cohesivos” (c ^ 0; <f> = 0)Talad P a, a-

---— 0 0 0

1:0.58 60 29 401:1.00 45 28 371:1.50 33.8 26 351:2.00(o mayor) 26.6(o menor) 25 35

Ha de insistirse que las posiciones tijadas por la Tabla 5-b.l se refieren a círculos críticos por el pie del talud; para su aplicación

Page 243: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 219

práctica será necesario en cada caso, comparar los factores de segu­ridad con los obtenidos estudiando la falla de base.

b) Trabajos de Taylor5Siguiendo un procedimiento análogo al expuesto en el Anexo

V-a para suelos puramente "cohesivos”,, Taylor estudió también los materiales con "cohesión" y "fricción”. En la fig. V-b.2 se presen­tan curvas que relacionan el ángulo de talud, P, con el número de estabilidad, N e, en función del ángulo de fricción interna del suelo, <j>, en círculos críticos correspondientes a falla por el pie del talud.

Las gráficas son de uso muy simple: entrando con un valor de P de proyecto, que se desea verificar y el valor de <j>, obtenido en pruebas de laboratorio, se obtiene un valor de N e correspondiente; según la definición del número de estabilidad usada por Taylor, puede escribirse:

F s = - ^ 4 r (5-b.l)Y' H

Donde F a es el factor de seguridad del talud analizado en tér­minos de la "cohesión”, que como ya se discutió, no es un verdadero factor de seguridad. Así pues, las gráficas de la fig. V-b.2 propor-

f lG .

Valores del a'ngulo del talud <£V-b.2. Gráfica de Taylor para determinar el número de

estabilidad de un talud, <P ^ 0, c ^ 0

Page 244: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

220 CAPITULO V

FIG. V-b.3. Números de estabilidad asociados a círculos críticos por el pie del talud,según N . Jambo

Page 245: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

cionan sólo una primera aproximación al problema de la estabilidad en círculos por el pie del talud; además, será preciso estudiar la posibilidad de falla de base para llegar al círculo más crítico posible.

c) Trabajos de Jambu 13Para taludes simples y homogéneos Jambu expresa el factor de

MECANICA DE SUELOS (II) 221

FI&. V-b.4. Coordenadas de los centros de circuios críticos por e l pie del talud, segúnN. Jambo

Page 246: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

seguridad asociado a círculos correspondientes a falla por el pie del talud, por la fórmula:

F> = - — 7 7 (5-b .2)Y mtiDonde Ne es un número de estabilidad que puede obtenerse de

la fig. V-b.3, a condición de conocer el valor del parámetro Xc , elcual puede calcularse con la expresión:

X ^ I ^ t g 4. (5-b.3)

También proporciona (fig. V-b.4), los parámetros x0 y y o que definen la posición de los centros de los círculos críticos de pie del talud por medio de las relaciones

x = x0H( 5-b.4)

y - y0 H0.2

222 CAPITULO V

FIG. V-b.5. Contribución de la "fricción" y la "cohesión" al factor de seguridad, segúnN. Jambu

Page 247: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Por último, en la fig. V-b.5 se da una gráfica en la que puede verse qué fracción del factor de seguridad total asociado a un círculo dado se refiere a la “cohesión” del suelo y cual a la fricción del mismo.

Huelga decir que las gráficas y fórmulas anteriores se refieren solamente a taludes en que no hay presiones neutrales de agua en el interior del suelo. Cuando éstas existan, el problema de la estabi­lidad se atacará con las normas que se establecen en el Volumen III de esta obra.

ANEXO V-c. Otros métodos de análisis de taludes

V-c.1. Método de la espiral logarítmicaAl aplicar el Método Sueco es preciso introducir una hipótesis

simplificativa respecto a la distribución de esfuerzos a lo largo de la superficie de deslizamiento; de otro modo el problema resulta estáticamente indeterminado. Rendulic6 evita esta situación no desea­ble utilizando como superficie de falla hipotética un arco de espiral logarítmica, de ecuación

r = r0e<,tí (5-c.l)Donde el sentido de las letras es el indicado en la fig. V-c.l y <j>

es el ángulo de fricción interna del suelo. Como ya se mencionó en otra ocasión, la propiedad que hace útil a la espiral en los análisis de estabilidad es que su radio vector en cualquier punto forma pre­cisamente el ángulo <f> con la normal a la curva en dicho punto. Así,

MECANICA DE SUELOS (II) 223

FIG. V-c.l. Método de la espiral logarítmica

Page 248: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

todas las fuerzas resultantes de las reacciones normales y de fricción actuantes en los elementos de línea sobre la curva pasan por el centro de la curva 0.

Considérense los siguientes cuatro parámetros, con objeto de simplificar el planteamiento matemático del método.

m = eycts*n ____________1_____________ to_

sen a +m 2 — 2 m eos yc Hsen yc ”1

224 CAPITULO V

e = a + ang senrV i + m® —2m eos yc.i] = ir — ye — e

Donde yc y a se han tomado como los dos parámetros necesarios para definir la espiral.

Considérense también las siguientes fuerzas que actúan en el talud

W = peso de la tierra deslizante.C = fuerza de cohesión total desarrollada a lo largo de la su­

perficie de deslizamiento.P = fuerza total resultante de los efectos normales y de fricción

a lo largo de la superficie de deslizamiento.Sean:M t = momento en tomo a O de la masa de tierra representada

por el área O A C B O Mt — momento en torno a O de la masa de tierra representada

por el área O A F O Ma — momento en torno a O de la masa de (ierra representada

por el área B D F B Entonces el momento motor del peso W vale:

Mn = Mr - M 2 - Ma (5-C.2)En la fig. V-c.l puede verse que:

Mi = y \ v cos(6 + -n)cí9 = —3 (9 t g ^ -I- 1)

X [ ( m3 sen s — sen -q) — 3tg<j> ( m3 eos e + eos iq) ](5-C.3)

Ma = -g- Y9a H 3 sen3 T)(ctg2 tj — ctg2 e) (5-C.4)

Ma = -g- Y H3[ctg2 3 — ctg2 e — 3mg eos e(ctg 0 — c tg e) ] (5-C.5)

Page 249: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Si Mw es el momento de la fuerza W, M c el de la fuerza C y Mv el de la P (nulo por pasar esta fuerza por 0), se tendrá

Mw + Mc = 0

Introduciendo un factor de seguridad F e, respecto a la cohe­sión", podrá escribirse:

+ T f2- = 0 (5-c.6)* C

en la fig. V-c.l puede ahora verse que

Si se substituyen las expresiones 5-c.7, 5-C.3, 5-c.4 y 5-C.5 en las (5-C.2) y (5-C.6) se obtiene

c - W v F ^ F ~ 3 g 2(m2- 1 )A

, r v { (m3 sen e — sen q) — 3 tg</>(ms eos e + cosí])}X L ’ 9 tg2<£ + 1+ g3 sen8 K](ctg2 e — ctg2 t]) 4- 3mg eos s(ctg 3 ctg e)

— ctg2 3 + ctg2e j (5-c.8)

La ec. 5-C.8 se aplica cuando la superficie de falla pasa por elpie del talud (caso a de la fig. V -c .l) . , ,

Cuando la falla es de base, (fig. V-c.l.b), la condición mas des­favorable ocurre cuando el centro de la espiral está en la vertical por el punto medio del talud y entonces

tí — mg eos e — — ctg 3 (5-C.9)2

Respecto al caso de falla por el pie del talud hay ahora un incre­mento de momento motor que vale

— yrfH* = (mgeos t — - ^ - c t g 3 ) 2 (5 -c . lO )2 2 ¿

Esto hace que la ec. 5 -C. 8 se modifique para falla de base a la forma16—Mecánica de Suelos II

MECANICA DE SUELOS (II) 225

Page 250: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

c _ tg <f>F cyH 3g2 (m2 — 1)

. , r 2^ { ( m3 sen e — sen tj) — 3 tg<¡>(m3 eos z + eos i) ) }X L 9 tg2<j> + 1+ g3 sen8 ri(ctg2 z — ctg2 t\) + 3 mg eos2 z{mg — cosec z) —

- \ ctg2 P + ct9* e] (5 -c .ll)

Para cualquier valor de los ángulos central y« Y a escogidos, pueden valuarse m, g, z y tj, después de lo cual puede calcularse n con la expresión 5-c.9. Si n resulta negativa, la falla a esperar será por el pie del talud y deberá usarse la expresión 5-c.8; si n resulta positiva, se usará la (5 -c .ll) . Así se obtiene un número de estabilidad máximo definido por Taylor, para el talud en estudio.

N e = c

Este debe ser comparado con el obtenido aplicando la anterior expresión, calculada con los valores del suelo real y del talud en cuestión.

V-c.2. Estadios basados en las ecuaciones de Kotter

Como se dijo en el cuerpo de este capítulo, Kotter obtuvo rela­ciones elasto-plásticas para los esfuerzos desarrollados a lo largo de una superficie de deslizamiento cualquiera, en un talud en estado

226 CAPITULO V

de falla incipiente. Estas ecuaciones son, para un suelo “cohesivo” y "friccionante" y particularizadas para falla circular: (ver fig. V-c 2)

Page 251: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

dx—— = 2tg <f> • t — y R sen sen (« — 4>)da.d ( 5 - C . 1 2 )

= 2c + 2ff tg <¡> — y R cos<¡> sen(a — <£)aa

MECANICA DE SUELOS (II) 22?

dondet = esfuerzo tangencial que actúa a lo largo de la superficie

de deslizamiento circular en el elemento sujeto a análisis cr — esfuerzo normal que actúa a lo largo de la superficie de

deslizamiento circular en el elemento sujeto a análisis <f> = parámetro de fricción o ángulo aparente de fricción interna

del suelo, c = cohesión aparente del suelo Y — peso específico del suelo

K — radio de la superficie circular de deslizamiento a = ángulo que determina la posición del elemento en estudio

sobre el arco circular, con respecto a la vertical.

Se ha probado (ver, por ejemplo, la ref. 14), que para el caso de suelos puramente '‘cohesivos" un análisis por el Método Sueco implica una hipótesis de distribución de esfuerzos sobre la superficie de deslizamiento que no satisface las ecuaciones de Kotter. El aná­lisis puede generalizarse (ver, por ejemplo, ref. 15) para suelos con “cohesión” y “fricción”, verificándose que el Método Sueco no satis­face tampoco en este caso las condiciones de Kotter y que los valores de la "cohesión” requerida para el equilibrio del talud resultan mayo­res usando el Método Sueco que usando las ecuaciones de Kotter directamente; esto último indica que el Método Sueco resulta más conservador que los directamente derivados de integrar las ecuaciones de Kotter a lo largo de la superficie circular.

En la obra de J. B. Hazen que se menciona en la Bibliografía de este capítulo podrá hallarse más amplia información sobre estos temas de tantas y prometedoras posibilidades.

R E F E R E N C I A S

1. Collin, A. — Recherches experimentales sur les glissements spontanés des ierres argileux — Carilian, Geoury et Dalmont — París— 1846.

2. Skempton, A. W. — Alexander Collin, pioneer in Soils Mechanics — Transac- tions Newcomen Soc. — Vol. XXV — 1946.

3. Coulomb, Ch. A. — Essai sur une application des> regles des máximes et minimes a quelques problemes de statique relatifs a 1‘architecture — Memorias — Académie Royale — Vol. VII — París— 1776.

4. Krey. H. — Erddruck, Erdwiderstand und Tragfahigkeit des Baugrundes — Emst Ed. — Berlín — 1936.

Page 252: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

5. Taylor, D. W . — Fundamentáis of Soil Mechanics— Capitulo 16 — John Wiley and Sons, Inc. 1956.

6. Rendulic, L. — Ein Beitrag sur Bestimmung der gleitsicherheit — Der Bauin- genieur— No. 19-20— 1935.

7. Taylor, D. W . — Stabilitu of earth slooes — Contribution to Soil Mechanics— Boston Society of Civil Kngineers— 1925-1940.

8. Carrillo, N. — Perfil de un talud plástico de resistencia uniforme — Anua­rio de la Comisión Impulsora y Coordinadora de la Investigación Científica— México — 1943.

9. Jaky, J. — Stabilitu of Earth slopes — Proc. del I Congreso Internacional de Mecánica de Suelos y Cimentaciones — Vol. II — 1936.

10. Capper, P. L. y Católe, W. F. — Tk^Mechanics^of Enaineering Soíls — Ca­pitulo 6 - E . y F. N. Spon — 1960 “

11. Rutledge, P. C. — Resultados de la investigación sobre compresión triaxial — Publicación original de Waterways Experiment Station, traducida por R. J. Marsal y M. Mazarí en Contribuciones de la Mecánica de Suelos al diseño y construcción de presas de tierra — Secretaría de Recursos Hidráulicos — México— 1961.

12. Fellenius, W . — Erdstatische Bershnungen mit Reibung und Kohásion, Adhá- sion, und unter annahme Kreiszylindrischer gleitflachen — Emst Ed. Berlin — 1939.

13. Jambu, N. — Stabilitu Analusis of slopes with dimensionless parameters— Harvard Soil Mechanics Series r>r 4b — Universidad de Harvard— lyoTT

14. Juárez-Badillo, E. — La ecuación de Kotter en el análisis de estabilidad de taludes simples formados por suelos "cohesivos" — Memoria del VII Congreso Panamericano de Carreteras — Panamá — 1957 — Revista Ingeniería — Vol. 28— N’ 2 — 1958.

15. Rico, A. — Analgsis o f Slope Stability. Elasto-plastic Considerations — V Congreso Internacional de Mecánica de Suelos y Cimentaciones — París — 1961.

228 CAPITULO V

BIBLIOGRAFIA

,Fundamentáis of Soil Mechanics— D. W. Taylor—John Wiley and Sons— 1956. vTheoretical Soil Mechanics — K. Terzaghi — John WUey and Sons— 1956.

Rnsir Snih — R K. Hough — Ronald Press Co. — 1957.J Principies of Engineering Geology and Geotechnics — D. P. Krynine y. W . R. , Judd — McGraw HiU Book Co. — 1957.

v La Mecánica de Suelos en la Ingeniería Práctica — K. Terzaghi y R. B. Peck — (Trad. O. Moretto)— Ateneo Ed. — 1955.

anfi^P^nnineerin Practice — Hiohwav Research Board Special Report

F.arth—Prg;..,rg fifl/ciftbWons — T. Brinch Hansen — Danlsh Technical Press — Copenhagen — 1953.

The. S ^ ñ Ó G íJd JS ^ B sS ím . Soils — P. L. Capper y W . P. Cassie — E. y

¿ Mecánica del Suelo — J. A. Jiménez Salas — Ed. Dossat— 1954.JTraité de Mecanique des sois — A. Caquot y J. Kerisel — Gauthier-Villars Ed.

—■ 1956.Stahilif* «ja. ferro*.— J. Verdeyen y V. Roisin — Eyrolles Ed. — 1955.Practical Problems in Soil Mechantes — H. R. Reynolds y P. Protopapadakis—

Crosby Lockwood and Son — 1956.

Page 253: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO VI

INTRODUCCION AL PROBLEMA DE LA CAPACIDAD DE CARGA EN SUELOS

VI-1. GeneralidadesEn este capítulo se presentan, desde un punto de vista puramente

teórico, los métodos más generales y principales que se han desarro­llado hasta hoy para resolver el fundamental problema de determinar la capacidad de carga de los suelos para fines de Ingeniería Civil. Estos métodos teóricos se fundamentan solamente en las Matemáticas Aplicadas y en la Mecánica del Medio Continuo y a ellas pertenecen; están afectados por todas las hipótesis y limitaciones frecuentes en aquellos campos y, por lo tanto, son de difícil aplicación directa a la realidad de las obras de ingeniería. Con base en tal Metodología, la Mecánica de Suelos ha podido seleccionar convenientemente y desarrollar sus propias teorías con vistas a resolver su problema específico; éstas se presentan en el Capítulo VII.

Las recomendaciones y prácticas que el sentido común y la expe­riencia de años han añadido al cuerpo teórico en la práctica corriente de la construcción de cimentaciones (principal aplicación de las Teorías de Capacidad de Carga), son el cuerpo básico de los capítu­los V III y IX. A lo largo de todo este estudio, el lector podrá ir viendo cómo, desde una solución puramente matemática, seleccionada tenien­do en mente las necesidades de la Mecánica de Suelos, se llega a criterios constructivos prácticos, que hoy son una superposición de reglas empíricas, fundadas en la experiencia y muchas veces respal­dadas por la propia teoría, sobre las soluciones fundamentales, pro­porcionadas por las Matemáticas Aplicadas y la Mecánica del Medio Continuo, gracias al desarrollo de un cálculo fundado en un grupo de hipótesis, a veces bastante poco satisfactorias.

Para visualizar objetivamente el problema de la Capacidad de Carga en suelos resulta útil el análisis del modelo mecánico que se presenta a continuación, debido a Khristianovich1. Considérese una balanza ordinaria, cuyo desplazamiento está restringido por fricción en las guías de los platillos, tal como se muestra en la fig. V I-1.

Si un peso suficientemente pequeño se coloca en un platillo, la balanza permanece en equilibrio, pues la fricción en las guías puede

229

Page 254: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

neutralizarlo; en cambio, si el peso colocado es mayor que la capaci­dad de las guías para desarrollar fricción, se requerirá, para el equilibrio, un peso suplementario en el otro platillo. Se entenderá por equilibrio crítico de la balanza, la situación en que ésta pierde su equilibrio con cualquier incremento de peso en uno de sus platillos, por pequeño que éste sea. Una balanza muy ligera, en comparación con los pesos manejados, representará un medio sin peso propio; una balanza relativamente pesada respecto a los pesos de sus platillos representará un medio también pesado.

230 CAPITULO VI

pv _

J l

M

( a ) (b)FI&. VI-I. Modelo de KhristianoY'ich1

La estabilidad de cimentaciones puede ilustrarse con el siguiente problema planteado en la balanza. En el platillo derecho existe P y se requiere conocer Q, que debe colocarse en el platillo izquierdo, para tener la balanza en equilibrio crítico. Es evidente que este pro­blema tiene dos soluciones; una corresponde a un Q < P y la otra, por lo contrario, a un Q > P. Las alternativas del equilibrio en estos dos casos ocurren con movimientos diferentes, ilustrados en los casosa) y b ) de la fig. VI-1.

Considérese ahora el caso de una cimentación. Un cimiento de ancho, B, está desplantado a una profundidad D, dentro de un medio continuo, fig. VI-2.

El problema de una cimentación sería encontrar la carga q, máxi­ma, que puede ponerse en el cimiento, sin que se pierda la estabilidad del conjunto. La correspondencia con la balanza puede visualizarse, haciendo coincidir un platillo con el cimiento, tal como se ve en la fig. VI-2. El otro platillo está dentro del terreno natural. Es evidente que la presión q que puede ponerse en el platillo izquierdo es ma­yor que la carga del otro platillo, p = y D, puesto que la resistencia del suelo, representada en el modelo por la fricción en las guías, está trabajando a favor del g. Este caso corresponde entonces al de la fig. V l-l.b , en aue Q > P.

El caso a) de la fig. VI-1, en que Q < P, corresponde al de una excavación. Ahora q es nulo, pero conforme se profundiza la exca­vación las cosas suceden como si se bajase el nivel de la balanza de la fig. VI-2, con la consecuencia del aumento de la presión p. Es evidente que existirá una profundidad critica tal que, al tratar de

Page 255: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 231

aumentar la excavación, el fondo de ésta se levantará como el platillo de la balanza lo haría. Este es el fenómeno de falla de fondo, fre­cuentemente reportado en las obras reales.

Un suelo muy resistente equivale a unas guías con mucha fricción y recíprocamente. Los casos límites estarían representados por una roca sana, en la cual, con referencia al caso de la cimentación,

3 podría ser muy grande en comparación de p y por un líquido, e resistencia nula al esfuerzo cortante, en el que el máximo q que

puede ponerse es igual a p (principio de flotación). Una cimenta­ción en la que q sea igual a p se denomina en Mecánica de Suelos totalmente compensada.

¡ J i ü ü i j j 1-------

777731 07777 HT77K VTW///J//Á I tu u ¿t iU llÁ XtllLLLU

1 J r - - J•uTTTTTni

P=8D

F IS . VI-2. Correspondencia de un cimiento con la batana de Khristianovich.

Tras visualizar objetivamente el problema que plantea una ci­mentación, en los párrafos que siguen se discute brevemente la apli- cabilidad y la metodología de las dos disciplinas de la Mecánica del Medio Continuo que se han usado principalmente hasta hoy para resolver teóricamente el problema; estas dos disciplinas son las Teorías de la Elasticidad y de la Plasticidad.

VT-2. Metodología de la Teoría de la Elasticidad2

La Teoría de la Elasticidad se aplica a los problemas de cimen­taciones en forma análoga al diseño estructural; es decir, primera­mente se encuentran los esfuerzos que un cierto sistema de cargas exteriores produce en los puntos de la masa de suelo; en segundo lugar se encuentra la resistencia del suelo a ese tipo de esfuerzos. Una comparación entre ambos conceptos indicará si la masa de suelo

Page 256: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

puede resistir sin que se produzca la falla u ocurran deformaciones excesivas que pongan en peligro la función estructural. El suelo, como cualquier otro material, puede sufrir deformaciones de dos tipos: deformaciones volumétricas y distorsiones. Las primeras son debidas tanto a la acción de esfuerzos normales como a la de esfuer­zos cortantes. Las distorsiones son cambios sólo de forma y se deben fundamentalmente a la acción de los esfuerzos tangenciales. En materiales ideales linealmente elásticos (obedientes a la ley de Hoo- ke) son nulos los cambios de volumen debidos a esfuerzos tangen­ciales, por lo que, en ese caso, la deformación volumétrica se debe a los esfuerzos normales únicamente.

Como ya se indicó en el Volumen I de esta obra la resistencia a la tensión de los suelos es muy pequeña, al grado de ser difícilmente aprovechable por el ingeniero, por lo que éste procura que este tipo de esfuerzos o no aparezca o no sea de importancia en las estructuras para las que utiliza al suelo. Por ello, los análisis de estabilidad ligados a estructuras reales tienen siempre que ver con los esfuerzos cortantes actuantes en la masa de suelo y con la resistencia de éstos al esfuerzo cortante.

La determinación de los esfuerzos en los puntos de la masa de suelo es un problema teórico para el cual la Teoría de la Elasticidad es útil, aún cuando, por la magnitud de las hipótesis que involucra, rinde frecuentemente soluciones que no son muy apropiadas a los problemas a que se aplican. La determinación de la resistencia del suelo para fines de comparación es un problema complejo, que com­prende aspectos teóricos y muchos de carácter puramente práctico, tales como exploración, muestreo, pruebas de laboratorio, etc. En el Volumen I de esta obra se describió este problema en forma suficiente.

Si al efectuar la comparación resulta que la resistencia del suelo es en todo punto del medio superior a los esfuerzos cortantes indu­cidos, la respuesta al problemq de estabilidad es evidente y la estruc­tura de suelo soportará, dentro del marco de validez del análisis realizado, las cargas impuestas. Por otra parte, puede ocurrir que la resistencia resulte inferior a los esfuerzos inducidos en algún punto o zona del medio; este punto o zona fallará elásticamente hablan­do. Pero si este punto o zona están confinados en la masa de suelo y rodeados de material con capacidad adicional de resistencia, no necesariamente existe peligro de deslizamiento general. Lo que sucede es que esa zona cuya resistencia elástica ha sido superada, fluye algo y transmite los esfuerzos que no puede resistir al material vecino.

Lo anterior produce que el esquema de esfuerzos original deje de ser correcto y en la masa de suelo aparece una zona plástica. Sin embargo, la estabilidad general de la masa sigue garantizada. Si las cargas exteriores aumentan, la zona plástica crecerá correspondiente­mente, hasta el deslizamiento general cuando la resistencia última

232 CAPITULO VI

Page 257: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

del medio continuo sea excedida, por ejemplo, en todo punto de una superficie de deslizamiento posible. Así, no sólo será necesario conocer el máximo esfuerzo cortante actuante sobre la masa de suelo, sino que también será preciso conocer las circunstancias en que se pre­senta, donde ocurre y las consecuencias que puede acarrear. Sólo en los casos en que sea posible la verificación de un mecanismo de falla progresiva (ver Capítulo X II del Volumen I de esta obra), en que el esfuerzo actuante supere a la resistencia al esfuerzo cor­tante en un punto o una zona conducirá a una [alia general.

La Teoría General de la Elasticidad ha sido, hasta hoy, poco aplicada a los suelos, quizá debido a lo incompleto aún de su campo, en plena etapa de investigación; a las dificultades matemáticas que su aplicación encierra y, sobre todo, a las limitaciones de la propia Teoría, que vuelven relativamente escépticos a muchos especialis­tas en suelos. Casi todas las aplicaciones clásicas de la Teoría de la Elasticidad a suelos han correspondido a la Teoría Lineal de la Elasticidad, que presupone que el suelo es un material continuo, li­nealmente elástico (que obedece la Ley de Hooke), homogéneo e isótropo; además, esta teoría es instantánea, es decir, que no toma en cuenta el factor tiempo, o sea, presupone la inexistencia de las deformaciones diferidas (tales como, por ejemplo, las debidas fe con­solidación). Es obvio que este conjunto de hipótesis no se satisface en los sueíos reales y ésta, es la razón principal por la que las solu­ciones basadas en la Elasticidad Lineal han caído hoy en relativo descrédito. Es de notar, sin embargo, que en algunos casos particu­lares, esta Teoría ha proporcionado soluciones bastante satisfactorias en la práctica; la solución de Boussinésq, ya estudiada en el Capítulo II o la conocida Teoría de los Centros de Tensión, desarrollada para el análisis de un problema específico de asentamientos debidos a bombeo para extracción de petróleo, en la zona de Long Beach, Cal. EE. UU., por el doctor Nabor Carrillo, son ejemplos típicos de ello.

En el Capítulo VII se mencionarán brevemente algunas de las soluciones clásicas de la Elasticidad Lineal al problema de las ci­mentaciones.

MECANICA DE SUELOS (II) 233

VI-3. Análisis basados en la Teoría de la Plasticidad

Otro intento para resolver teóricamente los problemas de la Mecá­nica de Suelos está fundado, como ya se dijo, en la Teoría de la Plasticidad. Puede decirse que esta Ciencia ha sido más fértil en su aplicación a suelos que la Elasticidad: el número de problemas prácticos para los que da un enfoque razonable es mayor y los pro­blemas, en sí, son de mayor importancia. Sin embargo, no debe olvidarse que el aceptar para los suelos un comportamiento plástico equivale a substituir el suelo real de una obra por un ente ideal, cuyas

Page 258: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

características de comportamiento frecuentemente son bien distintas a las del material real.

Se considera comúnmente que un material tiene un comportamien­to plástico cuando se comporta elásticamente hasta un cierto nivel de esfuerzos, a partir del cual (comportamiento plástico propiamente dicho), sigue las leyes de la fig. VI-3.a (comportamiento idealmente plástico), o las de la VI-3.b (comportamiento plástico, con endureci­miento por deformación). Hasta llegar al nivel de esfuerzos correspon­diente al comportamiento plástico, suele considerarse en la literatura la posibilidad de que el material pueda tener o no deformación elástica; en el primer caso se tiene un comportamiento elasto-plástico; en el segundo, rígido-plástico; en este último caso, el comportamiento plástico también puede ser perfecto o con endurecimiento por defor­mación, (figs. V I - 3 . C y VI-3.d).

Al aceptar la Teoría de la Plasticidad como base de análisis teóricos en la Mecánica de Suelos surgen dos cuestiones que han de ser consideradas3:

234 CAPITULO VI

a) Grado de validez de la hipótesis realizadab ) Implicaciones de tales hipótesis

!c) € (d)FIG. VI-3. Comportamientos plásticos

a) Elasto-plástico perfectobj Elasto-plástico, con endurecimiento por deformaciónc) Rigido-plásfico perfectod) Rigido-plástico, con endurecimiento por deformación

En lo que sigue se analizan brevemente las hipótesis más impor­tantes contenidas en la Plasticidad, tratando de visualizar esas dos cuestiones:

Page 259: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

1. El material es homogéneo e isótropoEsta hipótesis, común por otra parte a la Teoría de la Elasticidad

tal como suele aplicarse a los suelos, tiene su origen en la búsqueda de la simplicidad matemática y física en las aplicaciones de la Teoría; al prescindir de ella, lo cual puede hacerse en muchos casos particu­lares, los análisis se complican. En la práctica, algunos suelos se acercan más a la hipótesis que otros; los suelos estratificados o aquellos cuyas propiedades en dirección vertical y horizontal difieren mucho son los que se separan más de la suposición.2. No se consideran efectos en el tiempo

Esta hipótesis también es común a la Teoría de la Elasticidad, tal como comúnmente se aplica.

En las arenas, la hipótesis es bastante satisfactoria, tanto en lo referente a compresibilidad como a resistencia y aún en lo referente a las curvas esfuerzo-deformación. En las arcillas, el efecto del tiempo es de mayor importancia, tal como se desprende de lo estu­diado en el Volumen I de esta obra, en sus partes alusivas.

La influencia del tiempo en el comportamiento de los suelos es de gran importancia tanto teórica como práctica y ha merecido última­mente bastante atención por parte de los investigadores. Los trabajos de Casagrande y Shannon4, parecen confirmar lo arriba asentado para arenas. Ha sido más difícil establecer conclusiones definitivas en lo que se refiere a arcillas. En los trabajos publicados por Habib y Hvorslev5’ 6 se podrá ver parte del ideario que hoy se maneja, pudiéndose observar que la investigación actual permite llegar a conclusiones contradictorias, lo cual habla por sí solo de las incerti- dumbres que aún subsisten en estos aspectos. Sin embargo, parece cierto que en las aplicaciones prácticas el estudiar las condiciones más desfavorables de la vida de la estructura, para tomarlas como criterio de proyecto, proporciona una norma que permite superar sin peligro mucho de la ignorancia que hoy se siente.3. No se consideran fenómenos de histéresis en la curva esfuerzo-

deformaciónEl aceptar esta hipótesis en los suelos conduce, aparentemente,

a fuertes desviaciones de la realidad; sin embargo, en la práctica, la situación se arregla considerando en una curva esfuerzo-deforma­ción que contenga tramos de carga y descarga, una ley particular para el primero y otra, diferente, para el segundo. Esto es posible y aceptable dado que los casos prácticos más frecuentes, en la Mecá­nica de Suelos aplicada, corresponden o bien a un problema de carga, o bien a uno de descarga, bien definidos.4. No se consideran efectos de temperatura

Dada la pequeña variación de temperatura que afecta a lossuelos reales, se considera hoy que esta hipótesis no introduce ningu-

MECANICA DE SUELOS (II) 235

Page 260: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

na desviación seria en los análisis. Algunos casos especiales, tales como la acción de helada, son objeto de estudio específico en la Mecánica de Suelos actual.

Las hipótesis anteriores implican, al ser aceptadas algunas carac­terísticas de comportamiento de los materiales plásticos que, al no ser cumplidas estrictamente por los suelos, transforman la teoría subsecuente en una doctrina referente, una vez más, a un material ideal que ya no es el suelo de las obras de ingeniería.

Puede demostrarse en Teoría de la Plasticidad (ver, por ejemplo, la ref. 3), que en los materiales plásticos friccionantes todo proceso de deformación plástica debe de ir acompañado de un aumento de volumen. Esta implicación, que es la más importante desde el punto de vista práctico de todas las predeterminadas por las anteriores hipótesis, se confirma experimentalmente, según se vio en el Capítulo XII del Volumen I de esta obra, en el caso de arenas compactas con relación de vacíos inferior a la crítica, pero en el caso de arenas sueltas sucede lo contrario, por lo que, en este caso, no son aplicables los criterios de análisis a partir de la Teoría de la Plasticidad; por extensión, resulta comprometida aún la aplicación de tales criterios a las arenas compactas, pues puede sospecharse que la coincidencia de comportamientos sea fortuita.

Otras implicaciones de las hipótesis anteriores pueden consultarse en la mencionada ref. 3.

VI-4. Algunos conceptos fundamentales de la Teoría de la Plasticidad de aplicación a suelos

Las aplicaciones de la Teoría de la Plasticidad a la Mecánica de Suelos realizadas hasta el presente y aquellas que conducen al establecimiento de las Teorías de Capacidad de Carga son un ejemplo de ello, han considerado al suelo una relación esfuerzo-deformación del tipo de la mostrada en la fig. VI-3.c; es decir, un comportamiento rígido-plástico.

La hipótesis de rigidez inicial, supuesto un comportamiento plás­tico para el suelo, no implica grave error, pues es un hecho que, en la mayoría de los casos prácticos, las deformaciones de los suelos previas a la falla (deformaciones elásticas) son muy pequeñas y pueden despreciarse.

También se ha aplicado siempre a los suelos la Plasticidad considerando la Teoría Lineal de la Deformación; es decir, conside­rando que la geometría de la masa no sufre cambios durante el proceso de deformación. Esto implica que los resultados teóricos sólo serán presumiblemente aplicables en el instante mismo del colapso, durante el cual se producirán ya deformaciones grandes.

236 CAPITULO VI

Page 261: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La aplicación de la Teoría de la Plasticidad a un problema prác­tico requiere aceptar para el material de que se trate un criterio de fluencia; es decir, se precisa establecer de antemano un nivel de esfuerzos para el cual se admite que ocurrirá la fluencia indefinida de dicho material. En Mecánica de Suelos ha sido usual aceptar como criterio de fluencia la misma ley de Mohr-Coulomb; es decir, el suelo fluye indefinidamente en todo punto en que el esfuerzo cortante alcance el valor

i = s = c + <rtg<f>a no ser que exista alguna restricción en la vecindad del punto o zona plastificada, en cuyo caso la fluencia indefinida puede ser impedida. (Estado Plástico Contenido.)

En el Capítulo XI del Volumen I de esta obra se demostró que el plano en el cual ocurre la falla de un elemento prismático del material forma un ángulo de 45 + <¡>/2 con el plano en el que obra el esfuerzo principal mayor y un ángulo de 45 — <¡>/2 con aquél en que obra el esfuerzo principal menor.

En el caso más general de un elemento prismático, sujeto a un estado de esfuerzos tal que el esfuerzo principal intermedio, ff2, tiene un valor diferente tanto de ffi como de <r3, lo antes dicho es válido igualmente, con el resultado de que, en este caso, los planos poten­ciales de falla son los mostrados en la fig. VI-4.a, con ángulos entre ellos de 90 ± <¡>.

En un estado de esfuerzos no uniforme los conceptos anteriores pueden generalizarse aún más. Considérese, por ejemplo, un estado de deformación plana análogo al que se presenta en el relleno de un muro de retención o en un talud largos (nótese que estos casos

MECANICA DE SUELOS (II) 237

( a ) ( b )FIG . VI-.4 Lineas da falla

Page 262: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

corresponden a estados de esfuerzos no uniformes en el medio, pues éstos crecen con la profundidad por el peso propio del material). En este caso, se definen como líneas de falla a aquellas líneas ima­ginarias que son, en cada punto, respectivamente tangentes a los planos de falla que se definirían en un elemento prismático infinitesi­mal que se ubicara en dicho punto. De lo antes dicho, se desprende que por todo punto del material en estado de falla incipiente pasan dos líneas de falla que forman entre sí ángulos de 90 + <£ ó 90 — <£, según cual se considere y que forman ángulos de 45 — <¿>/2 y 45 + <¡>/2, respectivamente, con las direcciones de los esfuerzos prin­cipales máximo y mínimo ligadas al punto en cuestión (fig. VI-4.b).

Puede verse que si una familia de líneas de falla está formada por rectas paralelas, la segunda familia debe estar también formada por rectas paralelas que corten a las primeras en ángulos de 90 ± <f>. Análogamente, si una de las familias de líneas de falla está formada por un haz de rectas concurrentes en un punto, la segunda familia es un sistema de espirales logarítmicas (r = r0e9tB ) con polo en dicho punto de concurrencia, ya que tales curvas son las únicas que pueden cumplir con el haz la condición de intersección a 90 ± <}>.

En la Teoría de la Plasticidad es importante el estudio del campo de velocidades de desplazamiento de los puntos de un material, dentro de la zona en fluencia plástica; del estudio de la distribución de dichas velocidades y de acuerdo con las hipótesis de la Teoría es posible concluir que las líneas de falla gozan de la importante propie­dad de que la velocidad de deformación a lo largo de ellas mismas es nula. También tienen la característica de que a lo largo de ellas un desplazamiento tangencial implica un desplazamiento normal, ligados ambos por la relación de que el normal es igual al tangencial por tg<¡3. Estas condiciones, más la de dilatancia ya señalada, en unión a las condiciones de frontera del problema bastan para definir por completo el campo de distribución de velocidades de desplazamiento de los puntos del medio, siempre y cuando se conozca también la distribución de lasjíneas de falla.

Por último, se puede demostrar en la Teoría que un medio sólo puede sufrir movimientos de rotación o traslación como cuerpo rígido, cuando la superficie de deslizamiento y las líneas de falla sean rectas o espirales logarítmicas de ecuación igual a la arriba escrita (en un suelo puramente cohesivo la espiral se transforma en un arco de circunferencia). Estos tipos de movimientos son frecuentes en los mecanismos de falla utilizados en Mecánica de Suelos y concre­tamente en temas de Capacidad de Carga, por lo que puede preverse el uso de tales líneas de deslizamiento en dichos temas. Incidental- mente, es de notar que en el Método Sueco, usado en Estabilidad de Taludes (capítulo V ) se utiliza una curva de deslizamiento circu­lar asociada a un movimiento de rotación como cuerpo rígido de la

238 CA PITULO V I

Page 263: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

masa de suelo deslizante, lo cual no es congruente en Teoría de la Plasticidad, según lo arriba anotado.

En un material perfectamente plástico los niveles de esfuerzo no pueden aumentar sin límite al aumentar las solicitaciones externas; al alcanzarse la condición de fluencia las deformaciones aumentan a esfuerzo constante. Por lo tanto, un medio plástico sujeto a cargas crecientes debe llegar a una situación tal que un pequeño aumento en los esfuerzos produzca el flujo plástico. Tal condición crítica recibe el nombre de estado de colapso plástico y el sistema de cargas que la produce se llama sistema de cargas límite. La distri­bución de velocidades de deslizamiento en el momento del colapso plástico es el mecanismo de colapso o mecanismo de falla.

Se dice que un estado de esfuerzos es estáticamente admisible cuando satisface las condiciones de equilibrio, las de frontera impues­tas por el problema concreto de que se trate y cuando el nivel de esfuerzos en todo punto es tal que la condición de fluencia no se ve sobrepasada.

Se dice que un campo de velocidades de deformación es cinemá­ticamente admisible si proviene de un campo de velocidades de desplazamiento que satisfaga las condiciones de frontera, la relación entre los desplazamientos normales y tangenciales a lo largo de las líneas de falla antes mencionadas y la condición de que la velocidad de deformación a lo largo de las mismas líneas de falla sea nula.

En los anteriores conceptos se basan dos teoremas de interés fundamental en las aplicaciones de la Teoría de la Plasticidad a los suelos. Estos reciben el nombre de Teoremas de Colapso Plástico.

I. Primer TeoremaEntre todas las distribuciones de esfuerzos estáticamente admisi­

bles, la distribución real es la que corresponde al factor de seguridad máximo. Es decir, si se calcula un factor de seguridad igual o mayor que uno para un sistema de cargas actuantes sobre el suelo en estudio, haciendo uso de una cierta distribución de esfuerzos estáticamente admisible, el factor de seguridad real, correspondiente a la distribu­ción de esfuerzos real, será mayor que el calculado. Con mayor razón el mismo sistema de cargas, pero con magnitudes menores para éstas, conducirá a una situación estable.

II. Segundo TeoremaEntre todos los campos de velocidades de deformación cinemá­

ticamente admisibles, el campo real es el que corresponde al mínimo factor de seguridad. Es decir, si se calcula un factor de seguridad menor o igual que uno para un sistema de cargas actuantes sobre el suelo en estudio, haciendo uso de una distribución de velocidades de deformación cinemáticamente admisible, el factor de seguridad

MECANICA DE SUELOS (II) 239

Page 264: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

real correspondiente a la distribución de velocidades de deforma­ción real, será menor que el calculado. Con mayor razón, el mismo sistema de cargas, pero consideradas de mayor magnitud, conducirá a una situación inestable.

La demostración de estos enunciados puede verse en la ref. 7 ó en un tratado similar de Plasticidad.

El primer Teorema de Colapso Plástico permite calcular una cota’ inferior del sistema de cargas límite: es decir, permite calcular un valor límite del sistema de cargas tal que, para cualquier valor de las cargas menor que las calculadas, el sistema es estable.

Análogamente, el segundo Teorema de Colapso Plástico permite calcular un cota superior del sistema de cargas límite, o sea un sistema de cargas tal que cualquier otro con cargas mayores produce el colapso plástico de la estructura.

La combinación de los dos teoremas proporciona un método de diseño estructural muy sugestivo. En efecto, si ambos teoremas se aplican se tienen dos sistemas de cargas entre los cuales deberá estar ubicado el sistema crítico real que produce el colapso de la estructura en estudio. Este método, conocido como Análisis Límite, es frecuen­temente Visado en Mecánica de Suelos en forma más o menos explíci­ta: por ejemplo, un análisis de estabilidad de taludes es una aplicación incompleta del mismo, ya que lo que allí se obtiene es la cota superior del sistema de cargas límite, sin obtener la inferior. En problemas en que las cotas superior e inferior coincidan, el análisis límite condu­cirá a una solución definitiva del problema, en materiales idealmente plásticos. En cuestiones de Capacidad de Carga las soluciones por Análisis Límite son particularmente utilizadas.

Los Teoremas de Colapso Plástico tienen un significado que, en lenguaje simplista, podría expresarse como sigue: la naturaleza es muy sabia y si se encuentra analíticamente una manera de que el suelo pueda soportar una carga dada, la naturaleza se encargará de que el suelo la soporte con menor dificultad. Análogamente, si se encuentra analíticamente un modo de que la carga impuesta al suelo produzca su falla, la misma naturaleza se encargará de que esa falla ocurra con un mecanismo más simple.

240 CAPITULO VI

REFERENCIAS

1. Sokolovskl, V . V .—Statics of Soil Media.—Capítulo 2 (Trad. del ruso por D. H. Jones y A. N. Schofield)— Butterworths Scientific Publications, 1960’2. Jürgenson, L. — The application o f theories o[ Elasticity and Plasticity to Foundation Problema — Contributions to Soil Mechanics (1925-1940) — Bos­ton Sodety of Civil Engineers.

Page 265: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA D E SU ELO S (II) 241

3. Resendiz, D. — Algunos métodos de la Mecánica de Suelos basados en la Teoría de la Plasticidad — Tesis de Maestro en Ingeniería. — División del Doctorado, Facultad de Ingeniería — U.N.A.M. — México— 1962.

4. Casagrande, A. y Shannon, W . L. — Research in stress-de[ormation and strength characteristics oí soils and so[t rocks under trasient loading— Soil Mechanics Series N' 31 — Universidad de Harvard— 1948.

5. Habib, P. — La resistance au cisaillament des sois — Tesis Doctoral — Uni­versidad de París— 1952.

6. Hvorslev, J. Physical componente oí the Shear Strength oí Saturated clays — A.S.C.E. Research Conference of Shear Strength of Cohesive Soils — Boulder, Colorado— 1960.

7. W . Prager y Ph. G. Hodge. — Theory o[ Perfectly Plástic Solids — Capítulo 8 — John Wiley and Sons— 1961.

BIBLIOGRAFIA

^ T n d lPIaStÍC ~ W Prager Y Ph' G‘ Hod9e ~ John Wiley¿latics^o^^oil^M edia— V. V. Sokolovski (Trad. por D. H. Jones y A. N.

Schofield) — Butterworths Scientific Publications— 1960.Plasticité — A. A. Iliouchine (Trad. por A. Popof y P. Thomé) — Eyrolles Ed.—

1956.The Inelastic behavior o f Engineering Materials and Structures — A. M. Freuden-

thal — John Wiley and Sons — 1950.The Mathemattcal Theory of Plasticity — R. Hill — Oxford Clarendon Press —

Plasticity — A. Nadai — McGraw Hill Ed. — 1951.Introduction to the Theory of Plasticity for Engineers. — O. Hoffman y G. Sachs

— McGraw-Hill Ed. — 1953.

17—Mecánica de Suelos II

Page 266: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 267: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO VII

VII-1. Introducción

En este capítulo se trata de los principales esfuerzos teóricos realizados para resolver el problema de la Capacidad de Carga de los Suelos. Una buena parte de las teorías desarrolladas tienen su base en hipótesis simplificatorias del comportamiento de los suelos y en desarrollos matemáticos a partir de tales hipótesis; en algunas otras teorías, especialmente en las que corresponden a esfuerzos recientes, la observación y el empirismo juegan un papel mucho más impor­tante. Se puede decir que todas las teorias matemáticas tienen como punto de partida la solución de Prandtl al problema de la identación de un sólido rígido en un medio continuo, semi-infinito, homogéneo e isótropo bajo condiciones de deformación plana; esta solución, des­arrollada en el marco de la Teoría de la Plasticidad, supone al medio rígido-plástico perfecto.

Con el objeto de asentar las ideas que presiden estos estudios, se presentan al principio ilustraciones simples de la aplicación de los Teoremas Extremos (capítulo V I) a algunos casos sencillos de interés para lo que sigue. También, con el mismo objeto, se pre­sentan intentos de resolver el problema de capacidad de carga diferentes a los originados por los trabajos de Prandtl. En general, conviene reducir el problema a dos casos: la Capacidad de Carga de los suelos puramente “cohesivos” (cy^O; <j> = 0) y la de los sue­los puramente “friccionantes” (c = 0; <j> ^ 0 ). Algunas de las teorias más usadas hoy se presentarán, sin embargo, para el caso más amplio de suelos con "cohesión” y “fricción”.

En este capítulo no se ahondará en las virtudes y defectos de las distintas teorías para su aplicación a los diferentes casos prácticos. Para obtener información sobre tan fundamental cuestión, el lector deberá consultar los capítulos VIII y IX.

VII-2. Una aplicación simple del Análisis Límite al problema de la Capacidad de Carga en suelos puramente “cohesivos”

La teoría de la Elasticidad permite establecer la solución para el estado de esfuerzos en un medio semi-infinito, homogéneo, isó-

243

TEORIAS DE CAPACIDAD DE CARGA EN SUELOS

Page 268: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

244 CAPITULO VII

2 b

ü

tropo y linealmente elástico, cuando sobre él actúa una carga uni­formemente distribuida, sobre una banda de ancho 2 b y de longitud infinita (fig. V II-1).

En efecto, puede de­mostrarse1 que para la condición de carga mostrada los máximos esfuerzos cortantes in­ducidos en el medio vale q/iz y ocurren en puntos cuyo lugar geo­métrico es el semi­círculo mostrado, cuyo diámetro es 2 b .

Por ser una solución obtenida por la Teoría de la Elasticidad puede garantizarse que ese estado de esfuerzos satisface las condi­ciones de equilibrio y de frontera, por lo que la solución será un estado de esfuerzos estáticamente admisible, siempre y cuando el "Válor de Tmáx no sobrepase el valor de la resistencia del material, su­puesta igual a c (condición necesaria para que no haya fluencia en ningún punto del medio).

¿ LUGAR GEOMETRICO DE LOS ' PUNTOS DE MAXIMO 5 = -§ r

FIG. V ll-I. Esfuerzos coliantes máximos bajo una banda de longitud <x, según la teoría de la

Elasticidad

Si:

se sigue que:T m á x C — »

TZ

qw* = to (7-1)

lo cual fija el máximo valor de q.De acuerdo con el Primer Teorema de Colapso Plástico (capí­

tulo V I), la ec. 7-1 proporciona una cota inferior para el valor de carga última que puede colocarse sobre el medio, sin que ocurra

alia en ningún punto del mismo.En el Anexo V il-a se presenta un análisis más detallado de la

solución anterior.Por otra parte, según se desprende del citado Anexo, el análisis

en estudio no proporciona ningún mecanismo posible de falla general, a pesar de que, a primera vista, pudiera juzgarse que por constituir todos los puntos en que se llega al mismo tiempo a la falla incipiente un semicírculo, la masa de suelo deslizará con movimiento de cuerpo rígido sobre dicha superficie. Pero debe hacerse notar, una vez más, que dicho semicírculo no es una superficie de deslizamiento por no ser los esfuerzos cortantes de falla tangentes a él. Lo que suceda cuando la carga aumente ligeramente a partir del valor que produzca Tmix = c en todos los puntos del semicírculo está fuera del campo del análisis elástico,

Page 269: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Para completar la aplicación del análisis límite a los problemas de capacidad de carga en suelos puramente “cohesivos se necesita encontrar una cota superior para el valor de la carga última, q„. Para lograr tal fin considérese un análisis de capacidad realizado según los lincamientos de la fig. VII--2 que, básicamente, consiste en una aplicación del Método Sueco al problema de Capacidad de Carga. o.— zb

En efecto, considéra­se una superficie de fa­lla circular, con centro en 0. extremo del área cargada y radio 2b, igual al ancho del cimiento.El momento motor, que tiende a nroducir el airo FIG. VII-2. Análisis de capacidad de carga consi- del terreno de cimenta- derando '"’0 Süperfíc,'e de Mla e¡rcularción como cuerpo rígido sobre la superficie de deslizamiento, vale

m — q X 2b X b = 2 qb'2

El momento resistente, que se opone al giro, es producido por la "cohesión" del suelo y vale

R = 2tz b X 2 b X c — 4rtc b2

Comparando ambos se deduce que, para el círculo analizado, la carga máxima que puede tener el cimiento, sin falla, será:

q — 2-K.c — 6.28 c.

En realidad puede demostrarse (W . Fellenius) que el círculo analizado no es el más crítico posible. En efecto, si se escoge un centro en 0', sobre el borde del área cargada, pero más alto que 0, puede probarse que existe un círculo, el más crítico de todos, para el que

<7mii = 5.5 c (7-2)

representa la carga máxima que puede darse al cimiento, sin que ocurra el deslizamiento a lo largo del nuevo círculo.

Debe notarse que una superficie de falla, a lo largo de la cual ocurre una rotación de cuerpo rígido representa, según ya se. indicó, un campo de velocidades de deslizamiento cinemáticamente admisi­ble y, por lo tanto, un mecanismo posible de falla. Por ello y de

MECANICA DE SUELOS (II) 245

Page 270: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

246 CAPITULO V II

acuerdo con el 29 Teorema de Colapso Plástico, el valor dado por la ec. 7-2 es una cota superior de la carga última, qu, considerando el medio como idealmente plástico.

Así, la carga última real, qu, resulta acotada entre los valores

ite < q„ < 5.5. c (7-3)

La solución de Prandtl, ya mencionada, permite, con otro meca­nismo de falla, llegar a otra cota superior del problema que es menor que la obtenida por Fellenius, reduciéndose así aún más el intervalo teórico en que debe encontrarse la solución.

VII-3. La solución de Prandtl

Prandtl estudió en 19202 el problema de la identación de un medio semi-infinito, homogéneo, isótropo y rígido-plástico perfecto, por un elemento rígido de longitud infinita, de base plana. Conside­rando que el contacto entre el elemento y el medio era perfectamente liso, propuso el mecanismo de falla que se muestra esquemáticamente en ía fig. VII-3.

Se trata, naturalmente, de calcular la máxima pre­sión que se puede dar al elemento rígido sin que pe­netre en el medio semi-in­finito; a este valor particu­lar de la presión se le de-

F IS . VII-3. Solución de Prandtl nomina carga límite.

La superficie AB es un plano principal, por no existir en ella esfuerzos rasantes (plano liso). Las superficies AC y BD son super­ficies libres, exentas de todo esfuerzo y, por lo tanto, también son planos principales. Con base en lo anterior, más la intuición de que los esfuerzos normales horizontales a lo largo de AC y BD, inducidos por la presión del elemento, son de compresión, se deduce que para tener un estado de falla incipiente en la vecindad de dichas superficies se requerirá que el esfuerzo de compresión mencionado deba tener un valor de 2c. (En efecto, siendo el medio un sólido de resistencia constante igual a c, un elemento vecino a la superficie AC o BD está en condición análoga a la que se tiene en una prueba de com­presión simple, en la cual la resistencia es qu — 2c). Haciendo uso de la teoría de los cuerpos perfectamente plásticos3 se encuentra que la región ACE es una región de esfuerzos constantes, iguales a la compresión horizontal arriba mencionada; igualmente la región AGH

Page 271: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 247

es también de esfuerzos constantes. La transición entre ambas regio­nes es una zona de esfuerzos cortantes radial (A EH ). Con estos estados de esfuerzos, Prandtl calculó que la presión límite que puede ponerse en la superficie AB está dada por el valor

qc = (tc + 2)c (7-4)

Lo anteriormente expuesto parece indicar que en el momento del flujo plástico incipiente, el elemento rígido ejerce una presión uniforme igual a (1 1 + 2 ) 0 sobre el sólido plástico semi-infinito.

La solución anterior carecería de verosimilitud física si no se le pudiese asociar un mecanismo cinemático de falla posible, con un campo de velocidades cinemáticamente admisible. Prandtl logró esto3 considerando que la región ABH se incrusta como cuerpo rígi­do, moviéndose verticalmente como si formara parte del elemento rígido. En la región AEH las líneas de deslizamiento son círculos_con centro en A y con velocidad tangente a tales líneas igual a y/2 / 2 , constante en toda la región, supuesto que el elemento rígido desciende con velocidad unitaria. Finalmente, la región ACE se mueve como cuerpo rígido con la velocidad \/2/2, en la dirección de EC.

La anterior solución, debida a Prandtl, es la base de todas las Teorías de Capacidad de Carga que s'e han desarrollado para apli­cación específica a suelos.

FIS. VII-4. Solución de HUI

Page 272: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

248 CAPITULO VII

La solución de Prandtl. analizada atrás, no es la única posible para el problema planteado. En efecto, Hill presentó una solución alternativa4 que se describe brevemente a continuación.

En la fig. VII-4 se muestra el mecanismo de falla propuesto, en el que las regiones AGC y AFD son de esfuerzos constantes y la región AFG es de esfuerzos radiales. Otro tanto puede decirse de las zonas simétricas, en el lado derecho de la figura. Los esfuerzos en estas regiones son los mismos que se presentan en las correspondien­tes del mecanismo de Prandtl, pero las velocidades de desplazamiento son diferentes. Suponiendo también que el elemento rígido desciende con velocidad unitaria, puede demostrarse que la zona ACG debe desplazarse como cuerpo rígido con velocidad y/ 2 en la dirección de CG; análogamente los puntos de la región A FD se mueven con la misma velocidad x/2-en la dirección FD; la zona radial se mueve en todos sus puntos con la misma velocidad (\/2), tangente a los círcu­los de deslizamiento. Con base en su mecanismo de falla, Hill pudo también calcular la presión límite que el elemento rígido puede tras­mitir sin identarse en el medio, obteniendo el mismo valor que pro­

porciona la solución de Prandtl y que se muestra

VII-4. La solución de Hill

La expresión 7-5 tiene como límites qc = 2c, para 6 = 0, caso de una prueba de compresión simple y resultado en ella obtenido y qc — (ti + 2 )c, para 6 = 90°, que corresponde a superficie horizontal en el medio semi-infinito.

VTI-5. La teoría de Terzaghi

La teoría de Terzaghi es uno de los primeros esfuerzos por adaptar a la Mecánica de Suelos los resultados de la Mecánica del Medio Continuo atrás tratados. En lo que sique, se presenta suma­

Es interesante notar que si la superficie del medio semi-infinito no fuese hori­zontal, sino que adoptase la forma que aparece en la fig. VII-5, la presión lími­te toma el valór

en la expresión 7-4.

FIG . VII-5. Cuña truncada sujeta a identaciónqe = 2 c ( l + 9 ) (7-5)

Page 273: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 249

riamente en la forma original utilizada por el propio Terzaghi5. La Teoría cubre el caso más general de suelos con “cohesión y fricción” y su impacto en la Mecánica de Suelos ha sido de tal trascendencia

3ue aún hoy, es posiblemente la teoría más usada para el cálculo e capacidad de carga en los proyectos prácticos, especialmente en el

caso de cimientos poco profundos.La expresión cimiento poco profundo se aplica a aquél en el que

el ancho B es igual o mayor que la distancia vertical entre el terreno natural y la base del cimiento (profundidad de desplante, D¡). En estas condiciones Terzaghi despreció la resistencia al esfuerzo cor­tante arriba del nivel de desplante del cimiento, considerándola sólo de dicho nivel hacia abajo. El terreno sobre la base del cimiento se supone que sólo produce un efecto que puede representarse por una sobrecarga, q = y D¡, actuante precisamente en un plano hori­zontal que pase por la base del cimiento, en donde y es el peso específico del suelo (fig. V II-6).

( a ) ( b )

FIG . V I1-6. Equivalencia del suelo sobre e l nivel de desplante de un cimiento conuna sobrecarga debida a su peso

Con base en los estudios de Prandtl, atrás presentados para el caso de un medio "puramente cohesivo”, extendidos para un medio “cohesivo y friccionante”, Terzaghi propuso el mecanismo de falla

% %|

1 i 1 J M 1 1 M 1 1 )sH i'i i u V ^ / r A i i i I i 1 1 1 i i .1 t i

E \ M 5 - Í / 2 4 5 - ¿ M / AHE

I 0'

FIG . V I1-7. Mecanismo de falla de un cimiento continuo poco profundo según Tenaghi

Page 274: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

250 CAPITULO VII

que aparece en la fig. VII-7 para un cimiento poco profundo, de longitud infinita normal al plano del papel.

La zona I es una cuña que se mueve como cuerpo rígido con el cimiento, verticalmente hacia abajo. La zona II es de deformación tangencial radial; la frontera .AC de esta zona forma con la horizontal el ángulo <f>, cuando la base del cimiento es rugosa; si fuera ideal­mente lisa, dicho ángulo sería 45 + <j>/2. La frontera AD forma un ángulo 45 — <j>/2 con la horizontal, en cualquiera de los dos casos. La zona III es una zona de estado plástico pasivo de Rankine. En el Anexo V ll-b se dan algunos detalles adicionales sobre el mecanismo de falla propuesto por Terzaghi.

La penetración del cimiento en el terreno sólo será posible si se vencen las fuerzas resistentes que se oponen a dicha penetración; éstas comprenden al efecto de la cohesión en las superficies AC y la resistencia pasiva del suelo desplazado; actuante en dichas superficies. Por estarse tratando un caso de falla incipiente, estos empujes formarán un ángulo <¡> con las superficies, es decir, serán verticales en cada una de ellas.

Despreciando el peso de la cuña 1 y considerando el equilibrio de fuerzas verticales, se tiene que

qc B = 2 Pv + 2 C sen <¡> (7-6)

donde

qc — carga de falla en el cimiento, por unidad de longitud del mismo Pp = empuje pasivo actuante en la superficie AC C = fuerza de cohesión actuante en la superficie AC.

Como C = cB/2cos<f> (fig. VII-7), se tiene que

qc - -¿ -(2P , + c£tg<j>) (7-7)

El problema se reduce entonces a calcular Pp, única incógnita en la ec. 7-7.

La fuerza Pp puede ser descompuesta en tres partes, Pvc, Ppg y Ppy.Ppc es la componente de Pp debida a la cohesión actuante a lo

largo de la superficie CDE.PpQ es la componente de Pv debida a la sobrecarga q = yDf que

actúa en la superficie AE.Ppy es la componente de Pp debida a los efectos normales y de

fricción a lo largo de la superficie de deslizamiento CDE, causados por el peso de la masa de suelo en las zonas II y III.

Teniendo en cuenta el desglosamiento anterior, la ec. 7-7 pue­de escribirse

Page 275: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 251

<lc — + P»<i + P p -r + 2 c P c9 (7 -8 )

Terzaghí calculó algebraicamente los valores de P„c, PM y P,,y; después de ello, trabajando matemáticamente la expresión obtenida, logró transformar la ec. 7-8 en la

Donde qc es la presión máxima que puede darse al cimiento por unidad de longitud, sin provocar su falla; o sea, representa la capa­cidad de carga última del cimiento. Se expresa en unidades de presión. Nc, N,¡ y Ny son coeficientes adimensionales que dependen sólo del

carga y al peso del suelo, respectivamente.La ec. 7-9 se obtiene de la (7-8) introduciendo en ella los

siguientes valores para los factores de capacidad de carga

Si en esas expresiones se colocan los valores obtenidos por el cálculo para Ppc, Ppq y Ppy se ve que los factores son sólo función del ángulo </>, como se dijo.

Prescindiendo de los análisis algebraicos que justifican todas las afirmaciones anteriores, la ec. 7-9 puede tenerse de la (7-8) razo­nando como sigue:

Observando la fig. VII-7 puede verse que la componente Ppc es proporcional a B y a c. En efecto, si B se duplica, también lo hace la longitud de la superficie de deslizamiento CDE, puesto que dupli­car B equivale a dibujar la nueva figura a escala doble. Evidente­mente Ppc será doble si el valor de c se duplica, independientemente de toda otra consideración. Por ello, podrá escribirse que:

qc = c N c + y Di Nq + -y y B Ny (7-9)

valor de <j>, ángulo de fricción interna del suelo y se denominan “factores de capacidad de carga” debidos a la cohesión, a la sobre-

(7-10)

Pvc - Kc Be

Page 276: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Donde Kc es una constante que dependerá sólo del valor de <#> (nótese en la fig. V I1-7 que cualquier variación de <j> trae consigo una variación en la extensión y forma de la superficie de falla).

Análogamente puede observarse que al duplicarse B se duplica la superficie donde actúa la sobrecarga q — y Df, por lo que PM resulta proporcional al propio valor de o. Por esto podrá escribirse:

Ppq = KqB y b {Con Kq función sólo de <j>, por lo que ya se dijo.Por último, al duplicarse B se cuadruplica el área de las zonas

II y III y con ella el peso del material de dichas zonas. Esto se expresa matemáticamente diciendo que Pvy es proporcional a B2. Por otra parte, es evidente que Ppy debe ser proporcional a y. Puede así escribirse

Ppy = Ky y B*

Ky es también sólo función de </>.Llevando estos valores a la ec. 7-8 se tiene

qc = ~ (Kc Be + K, B y D, + Ky y B* + \ Be tg * )

qc = [ ( 2 KC + tg<j>)c + ( 2 Kq)y D{ + (2 K r )fíy]Llamando a los términos entre paréntesis N c, Nq y (1/2) Ny res­

pectivamente, resulta la ec. 7-9.Si en esos mismos términos en paréntesis se substituyen los valo­

res de Kc, KQ y Ky escritos arriba es fácil ver que se obtienen los valores de N c, Ng y Ny dados por la ec. 7-10.

La ec. 7-9 es la fundamental de la Teoría de Terzaghi y permite calcular en principio la capacidad de carga última de un cimiento poco profundo de longitud infinita. La condición para la aplicación de la fórmula 7-9 a un problema específico es el conocer los valo­res de Nc, Nq y Ny en ese problema. Estos factores, como va se dijo, son sólo funciones de <j> y Terzaghi los presenta en forma gráfica; esta gráfica se recoge en la fig. VII-8.

En el Anexo VH-b se presentan algunos de los análisis mate­máticos que completan la actual exposición sobre la Teoría de Terzaghi.

Debe notarse que en la fig. VII-8 aparecen tres curvas que dan los valores de Nc, N q y Ny en función del ángulo <f> y aparecen también otras tres curvas que dan valores modificados de esos facto­res, N'c, N\ y N'y (líneas discontinuas de la figura). La razón de ser de estas últimas tres curvas es la siguiente: el mecanismo de falla mostrado en la fig. VII-7, supone que al ir penetrando el cimiento en el suelo se va produciendo cierto desplazamiento lateral de modo que los estados plásticos desarrollados incipientemente bajo la carga

252 CAPITULO VII

Page 277: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 253

10 s §0■o" —

20 40 60 80VALO RES OE Ny

60 50 40 30 20VA LO RES DE Ne Y

FIG. V I1-8. Factores de capacidad de carga para aplicación de la teoría de Tenaghi

se amplían hasta los puntos E y E\ en tal forma que, en el instantede la falla, toda la longitud de la superficie de falla trabaja al esfuerzolímite. Sin embargo, en materiales arenosos sueltos o arcillosos blan­

dos, con curva esfuerzo- deformación como la C2 de la fig. VII-9, en la cual la deformación crece mucho para cargas próximas a la de falla, Terzaghi conside­ra que al penetrar el ci­miento no logra desarro­llarse el estado plástico hasta puntos tan lejanos como los E y E', sino que la falla ocurre antes, a car­ga menor, por haberse al­canzado un nivel de asen­tamiento en el cimiento que, para fines prácticos, equivale a la falla del mis­mo. Este último tipo* de falla es denominado por Terzaghi local, en contra-

°T»' C0NST posición de la falla en des-. . , , ,, . arrollo completo del me-FIG. V I1-9 Cunas de estuario deformación tipi- i _______ . „

eos para mecanismo de falla general canismo atras expuesto,(1) y local (2), según Terzaghi la que llama general.

Page 278: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

254 CAPITULO VII

Para obtener la capacidad de carga última con respecto a [alia local de un modo razonablemente aproximado para fines prácticos, Terzaghi corrigió su teoría de un modo sencillo introduciendo nuevos valores de “c" y “<f>" para efectos de cálculo; así trabaja con

(7-11)

tg <*>' = §- tg <f>

O sea, asigna al suelo una resistencia de las dos terceras partes de la real; a este suelo equivalente, Terzaghi le aplica la teoría primeramente expuesta.

Dado un ángulo <j>, en un suelo en que la falla local sea de temer, puede calcularse con la expresión 7-11 el <f>' equivalente. Si con este valor 4>' se entrara a las curvas llenas de la fig. VII-8 se obten­drían valores de los factores N iguales a los que se obtienen entrando con el <[ original en las curvas discontinuas, para los factores N'. De este modo Terzaghi evita al calculista la aplicación reiterada de la segunda ec. 7-11.

En definitiva, la capacidad de carga última respecto a falla local queda dada por la expresión

qe = l - c N 't + v D f N'<¡ + ± -y B N 'y (

Toda la teoría arriba expuesta se refiere únicamente a cimientos continuos, es decir, de longitud infinita normal al plano del papel. Para cimientos cuadrados o redondos (tan frecuentes en la práctica, por otra parte), no existe ninguna teoría, ni aun aproximada. Las siguientes fórmulas han sido propuestas por el propio Terzaghi y son modificaciones de la expresión fundamental, basadas en resultados experimentales

Zapata cuadrada

qc = 1.3 c N e + yD fN g + OAyBNy (7-13)

Zapata circular

qc = 1.3 c Nc + y D fN q + 0.6 fR N y (7-14)

En las ecuaciones anteriores, los factores de capacidad de car.ga se obtienen en la fig. VII-8, sean los correspondientes a la falla

Page 279: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

general o a la local, cuando ésta última sea de temer. En la ec. 7-14, R es el radio del cimiento.

También debe notarse que todas las fórmulas anteriores son válidas sólo para cimientos sujetos a carga vertical y sin ninguna excentricidad.

VII-6. Aplicación de la Teoría de Terzaghi a suelos puramente cohesivos

Como se indica en el Anexo Vll-b, o como puede verse en la fig. VII-8, para un suelo puramente cohesivo y en el caso de un cimiento de base rugosa, los factores de capacidad de carga resultan

N c = 5.7 N q = 1.0 Ny = 0

Con estos valores, la ec. 7-9 queda

qc = 5.7 c + y Dr (7-15)

Es costumbre escribir la ec. 7-15 comoqc = 2.85 qn + Y D¡ (7-16)

Que se visualiza de inmediato teniendo en cuenta que, en los suelos ahora tratados, qu — 2c, donde qu es la resistencia a la com­presión simple del material. La ec. 7-16 es válida para cimientos de longitud infinita. Su equivalente para un cimiento cuadrado y circular se obtiene de inmediato a partir de las ecs. 7-13 y 7-14 y vale

q0 ~ 1 .3 X 5 .7 c + y D , (7-17)

En la práctica es frecuente utilizar la siguiente fórmula aptoxi- mada, cuya justificación descansa en las dos expresiones anteriores

qc = 2.85 q„(l + 0 .3 ^ -)+ y D { (7-18)

En efecto, para el cimiento infinitamente largo B/L = 0 y resulta la ec. 7-16; para el cimiento cuadrado, B/L — 1 y la ec. 7-18 de­viene en la 7-17. En rigor, la aproximación de la ec. 7-18 consiste en establecer una interpolación lineal entre ambos casos extremos, para cimientos largos, pero de longitud finita.

MECANICA DE SUELOS (II) 255

Page 280: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

256 CAPITULO VII

VÜ-7. La Teoría de Skempton

Terzaghi en su Teoría aplicada a suelos puramente cohesivos no toma en cuenta para fijar el valor de Nc la profundidad de desplante del cimiento en el estrato de apoyo, D. Así, en la fig. VII-10, los dos cimientos tendrían la misma capacidad, en lo referente a la influen­cia de la cohesión, es decir, al valor de N c.

Es claro que, según Ter­zaghi, la capacidad de car­ga no sería la misma en los dos cimientos, a causa del diferente valor del término yDt, que interviene en la expresión 7-15 o en sus si­milares; .pero también puede considerarse una cuestión de sentimiento que el v a l o r Ne, que Terzaghi no dife­rencia, podrá ser distinto en ambos casos. En efecto si se

piensa en términos de superficies de falla, el cimiento más profundo tendría una superficie de mayor desarrollo, en la cual la cohesión trabajará más, a lo que deberá corresponder un mayor valor de N c- Skempton6 realizó experiencias tratando de cuantificar estas ideas y encontró, en efecto, que el valor de N c no es independiente de la profundidad de desplante; también encontró, de acuerdo con la intui­ción, que N c crece al aumentar la profundidad de desplante del cimiento, si bien este crecimiento no es ilimitado, de manera que N c permanece ya constante de una cierta profundidad de desplante en adelante. Lp anterior es comprensible si se consideran los resul­tados de la Teoría de Meyerhof, que aparece más adelante, en este mismo capítulo.

Skempton propone adoptar para la capacidad de carga en suelos puramente cohesivos una expresión de forma totalmente análoga a la de Terzaghi, según la cual

qc ~ c N c + yD ¡ (7-19)

La diferencia estriba en que ahora N c ya no vale siempre 5.7, sino que varía con la relación D/B, en que D es la profundidad de entra­da del cimiento en el suelo resistente y B es el ancho del mismo elemento. En la fig. VII-11 aparecen los valores obtenidos por Skempton para N c, en el caso de cimientos largos y de cimientos cuadrados o circulares.

Por otra parte, en los casos de suelos heterogéneos estratifi­cados debe manejarse con cuidado el término yD¡, que representa

'u iiu AD>0

FIG. V II-10. Influencia de la profundidad de desplante en el valor de N e, en

suelos puramente cohesivos

Page 281: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

RELACION- BFIG. V ll- l l . Valoras do Ai. según Skempton, pora suelos puramente cohesivos

Df i

í

SUELO BLANDO

ESTRATO FIRME

F IS . VII-12. Distinción entre D y D¡ para aplicar la teoría de Skemptom

Vü-8. La Teoría de Meyerhof

la presión del suelo al nivel de desplante y que, por lo tanto deberá calcularse to­mando en cuenta los dife­rentes espesores de los es­tratos con sus respectivos pesos específicos, en la con­dición de suelo de que se trate, más cualquier sobre­carga distribuida en la superficie del suelo. Lo an­terior vale también, por supuesto, para la Teoría de Terzaghi.

En la Teoría de Terzaghi, analizada en la sección VII-6, no se toman en cuenta los esfuerzos cortantes desarrollados en el suelo arriba del nivel de desplante del cimiento; el suelo arriba del

18—Mecánica de Suelos II

Page 282: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

plano de apoyo del cimiento se toma en cuenta solamente como una sobrecarga perfectamente flexible, pero no como un medio a través del cual puedan propagarse superficies de deslizamiento o en el cual puedan desarrollarse resistencias al esfuerzo cortante. Esta hipótesis es tanto más alejada de la realidad cuanto más profundo sea el cimiento considerado.

Meyerhof7 trató de cubrir esta deficiencia en una Teoría de Capacidad de Carga que ha alcanzado amplia difusión en épocas recientes. Desde luego, la Teoría de Meyerhof tampoco resuelve el problema con completo rigor científico y está sujeta a hipótesis de importancia, que se expondrán en lo que sigue.

En esta Teoría y para el caso de cimientos largos, se supone que la superficie de deslizamiento con la que falla el cimiento tiene la forma que se muestra en la fig. V II-13.

258 CAPITULO V II

F IS . V I1-13 Mecanismos de falla propuestos por Meyerhofa) A poca profundidadb) A gran profundidad

Según Meyerhof, la cuña ABB' es una zona de esfuerzos unifor­mes, a la que se puede considerar en estado activo de Rankine; la cuña ABC, limitada por un arco de espiral logarítmica, es una zona de esfuerzo cortante radial y, finalmente, la cuña BCDE es una zona de transición en que los esfuerzos varían desde los correspon­dientes al estado de corte radial, hasta los de una zona en estado plástico pasivo. La extensión del estado plástico en esta última zona depende de la profundidad del cimiento y de la rugosidad de la cimentación. La línea BD es llame da por Meyerhof la superficie libre equivalente y en ella actúan los esfuerzos normales, p0, y tan­genciales, So, correspondientes al efecto del material contenido en lacuña BDE. _

La expresión a que se llega finalmente al desarrollar la leonade Meyerhof es la siguiente:

Page 283: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

qc = cN c + p0Nq + y y B N y (7,20)

En la que el sentido de p0 es el arriba indicado y las demás letras tienen los significados usuales en este capítulo.

Como se ve, y éste es un ejemplo más de la fuerza de la tradición y la costumbre, Meyerhof presenta una expresión final cuya forma matemática es enteramente análoga a la de Terzaghi.

Las diferencias estriban en p0, que ahora no es simplemente igual a yh y en los tres factores de capacidad de carga, Nc, Nq y Ny, que son diferentes en valor numérico a los que se manejan con la Teoría de Terzaghi.

El cálculo que se hace en la Teoría de Meyerhof de estos factores también sigue, básicamente, los lincamientos planteados anteriormente por Terzaghi, aunque, naturalmente, las superficies de deslizamiento que sirven de base a los cálculos son diferentes. Sin embargo, en la Teoría de Meyerhof persiste el defecto fundamental de que TV',, y Nq se calculan con una cierta superficie de deslizamiento, en tanto que Ny se calcula a partir de otra determinada con independencia y que, en general, no coincide con la primera; esta segunda superficie deter­mina de hecho, una zona plástica de menor extensión que la primera. Así, una misma fórmula procede de dos mecanismos de falla, vale decir de dos fundamentos distintos, por lo que, en rigor, en la expre­sión 7-20 se suman términos no homogéneos entre sí. La verdadera superficie de deslizamiento debería de ser determinada, lo cual hasta hoy no ha sido posible, según se dijo. Implícitamente, Meyerhof espe­ra que esa superficie verdadera resulte intermedia entre las dos utilizadas.

En el Anexo VII-c se presenta un desarrollo más detallado de la Teoría de Meyerhof, en el cual podrá verse el sistema seguido por este investigador para calcular sus factores, imprescindibles para el uso práctico de la fórmula 7-20.

A fin de cuentas, Meyerhof llega a gráficas en las que es posible calcular los valores de N c, N q y Nr. Estas gráficas se presentan en las figuras VTI-M, VII-15 y VII-16, tal como el propio autor las propuso originalmente.

Debe notarse que para poder aplicar estas gráficas en general, es preciso conocer el valor del ángulo 0, de inclinación de la super­ficie libre equivalente con la horizontal y ésta es una incertidumbre básica de la Teoría, que no ofrece ningún procedimiento riguroso para su cálculo. En efecto, como se hace ver en el mencionado AnexoVII-c, el valor de 0 depende, a fin de cuentas, de un coeficiente m, llamado “de movilización de la resistencia al esfuerzo cortante en la superficie libre equivalente”, definido por la expresión:

So = m(c + po tg <¿>) (7-21)

MECANICA DE SUELOS (II) 259

Page 284: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

260 CAPITULO VII

ANGULO DE FRICCION INTERNA /

FIG . V I1-14. Valores de N e para cimienfos largos, según Meyerhof

Que indica que en la superficie libre equivalente se acepta que la resistencia al esfuerzo cortante sigue la ley de Coulomb en esen­cia, pero regulada con un coeficiente m, de valor comprendido entre 0 y 1. Cuando m — 0, no se desarrolla resistencia en la superficie libre y cuando m = 1, la movilización de la resistencia es total. El valor de m es necesario en los cálculos puesto que en la Teoría se hace ver que la superficie libre equivalente no es necesariamente una superficie de falla y, por lo tanto, no hay razón, en principio, para que en ella se agote la resistencia del material, al ocurrir el desliza­miento del cimiento. Pues bien, este valor de m no puede calcularse en la Teoría; no existe en ésta ningún criterio que permita decidir

Page 285: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 261

ANGULO DE FRICCION INTERNA J¡f

FIG. VII-15 Vatores de Nq, pora cimientos largos según Meyerhof

si 0, 1 ó un valor intermedio será el conveniente. Afortunadamente, por otra parte, la variación de los factores de capacidad de carga o de 0 con m no es muy abrupta, como puede verse en las figurasVII-M a VII-16, en las que los valores de Nc, Nq y Ny se calculan para m = 0 y m = 1, casos extremos.

También ha de notarse que en algunos casos especiales puede decirse cuales son las condiciones reales de la superficie libre equi­valente y, por lo tanto, fijar realmente el valor de m; tal es el caso de un cimiento desplantado sobre la superficie del terreno {D¡ = 0), en que dicha superficie es, evidentemente, la libre equivalente (0 = 0) y en la que, por no existir esfuerzos cortantes actuando,

Page 286: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

262 CAPITULO VII

FIG . V I1-16. Valores de N , para cimientos largos, según Meyerhof

puede decirse que m — 0; otro tanto ocurre en un cimiento colocado superficialmente sobre taludes simétricos a sus dos lados, en que dichos taludes forman la superficie libre equivalente (3 < 0 ), donde m vale también 0, por no existir esfuerzos cortantes sobre los taludes abiertos al exterior.

Para el caso de cimientos largos profundos, en que la profun­didad de hincado sea de 6 a 8 veces mayor que el ancho del elemento, la superficie de deslizamiento se cierra siempre, como en el casob ) de la fig. VII-13 y, por ello, puede afirmarse que ¡3 = 90°; la inde­

Page 287: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

terminación del valor de 0 desaparece y la Teoría es fácilmente aplicable en los problemas reales.

En las figuras V II-14 a VII-16 se indican otros tipos de cimen­tación ligados a otros valores de 0 en forma meramente aproximada o como una guía para llegar a valores razonables de los factores de capacidad de carga. Es evidente que esta información ya no es tan segura y deberá ser usúda con gran prudencia.

Así pues, la Teoría de Meyerhof, tal como fue presentada ori­ginalmente no es de aplicación sencilla a cimentaciones a poca pro­fundidad. Por otra parte, en este caso puede aplicarse fácilmente la Teoría de Terzaghi en las condiciones más favorables, desde el punto de vista de sus hipótesis; además, en estas cimentaciones a poca profundidad, la Teoría de Terzaghi proporciona valores de la capa­cidad de carga muy parecidos y más conservadores. Por todo lo anterior puede concluirse, desde un punto de vista práctico, que no es importante que la Teoría de Meyerhof produzca las indetermina­ciones señaladas en cimientos poco profundos.

La Teoría de Meyerhof es, en cambio, muy atrayente para el cálculo de cimentaciones en talud o de cimentaciones profundas, del tipo de pilas y pilotes, especialmente en este último caso, en que las hipótesis de la Teoría de Terzaghi resultan tan poco apropiadas, al no tomar en cuenta lo que pudiera suceder sobre el nivel de des­plante. En este caso precisamente la Teoría de Meyerhof no está indeterminada según se detallará más adelante. Sin embargo, los autores de esta obra se sienten en la obligación de advertir a sus lectores contra un optimismo excesivo respecto a la Teoría de Meyerhof, como respecto a cualquier otra Teoría de Capacidad de Carga. Las mediciones en obras reales y los estudios en modelos muestran desviaciones notables en los resultados de las teorías, que deberán siempre conjugarse con el criterio del proyectista, la expe­riencia del constructor y la prudencia del científico que sabe valuar las incertidumbres y complejidades de la naturaleza.

Para el caso de cimientos largos en arenas sin cohesión (c = 0;0), Meyerhof simplificó aún más la fórmula 7-20, substitu­

yéndola por la expresión

qc = - j v B N yq (7-22)

En que Nyq es un nuevo factor de capacidad de carga en el cual están involucrados los valores de Nq y de Ny. En la fig. VII-17 se presentan gráficas que dan los valores de Nyq para <f> = 30° y <j> — 40°, representativos de arenas sueltas y compactas, respecti­vamente.

MECANICA DE SUELOS (II) 263

Page 288: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

264 CAPITULO VII

FACTOR DE CAPA ClDAO DE CARCA PARA CIMENTACIONES LARDAS EN MATERIAL NO COHESIVO

FACTOR DE CAPACIDAD DE CARCA PARA CIMENTACIONES LARCAS EN MATERIAL NO COHESIVO

VII-17. Valores de N y q , para cimientos largos de arenas, según Meyerhol

El valor de N yg depende de K , coeficiente de presión de tierras, el cual puede teóricamente oscilar entre los valores correspondientes a los estados activo y pasivo y no puede calcularse en forma precisa con la teoría, debiendo ser valuado con pruebas de campo. Meyerhof propone, para fines de proyecto, adoptar K = 0.5 para arenas sueltas y i — Para compactas. Además de la compacidad de la arena, influyen en K la resistencia y características de deformación del suelo, la historia previa de esfuerzo-deformación y el método de construcción de la cimentación propiamente dicha.

Las anteriores expresiones para el uso de la Teoría de Meyerhof se refieren a cimientos largos en el sentido normal al plano del papel.

j Sj aP n caso de pilotes, que corresponden a cimientos cuadrados o circulares, las cosas son algo diferentes. Refiriéndose a 7 ™ S *C*0n c?hf lón Y fricción, en los que es aplicable la fórmula /-/U, Meyerhof consideró despreciable al término en N y , expre- sanao la capacidad de carga con la fórmula

q c = c N c + K y h N q (7-23)

dosEc í Uv flo í^ T v r/ entÍd° iy los¿ al°\e? Prácticos arfiba discuti- A í T L los sentidos usuales y N c y N q los valores que resultan de Ja. gráficas de la fig. VII-18. Es Mural que varíen a h " á bs

Page 289: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

factores de capacidad de carga, si se considera que en el caso de cimientos cuadrados o circulares, que es el caso de pilotes como ya se hizo notar, las zonas plásticas son menores que en el caso de ci­mientos largos del mismo ancho y en los cuales la profundidad de hincado sea suficiente para que (3 valga también 90°.

MECANICA DE SUELOS (II) 265

ANGULO DE F R I C C I O N INTERNA (pFIG . V il- 18. Valores de N c y N q para pilotes, según Meyerhof

Para el caso de cimientos rectangulares, no muy largos, en arena, la fórmula 7-22 también ha de ser modificada, adoptando la forma

qc = l . r \BNyq (7-24)

Page 290: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

266 CAPITULO V II

Donde X es un “factor de forma” del cimiento, que depende de la relación largo a ancho del mismo, L/B. Los valores de X aparecen en la gráfica de la fig. VII-19, que involucra a los correspondientes a

FACTOR DE FORMA,X

1.0 15 2.0 2 .5 3 .0 3.5

o* loo

o<HZbJ2O<

ÜJOoxoz<u.*oQCQ.

0

1

2

3

4

5

6

7

8

9

10

0.5

VsS,

\i\ \

1 \

n\

iCIMEliPREE)

ITACI0CCAVAI

H €AS

5 i [5*

1

o z

4 5 o 20

S 40® * 10

: 3 5 ° > 5 1

10 5

5 2 1

0

0

CIMENTACIONES

N 35'LONG/ANCHO DE UNA CIMENTACION RECTANGULAR

© CIMENTACION CIRCULARl/b

F IG l V I1-19. Valores del factor de forma en cimientos no muy largos o pilotes, enarenas, según Meyerhof

Page 291: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

pilotes cuadrados para los que L/B = 1 ó circulares, que se conside­ran independientemente.

Debe notarse que el valor de X no sólo depende de la relación L/B, sino que también se ve influenciado por la relación profundidad de desplante a ancho del cimiento, D¡/B, por el valor del ángulo <f> y por el procedimiento de construcción del cimiento, especialmente si se trata de un cimiento hincado o de uno colado en el lugar, previa excavación.

En las refs. 8, 9, 10, 11 y 12 podrán consultarse los puntos de vista de Meyerhof sobre su Teoría, así como algunas aplicaciones importantes de ésta.

MECANICA DE SUELOS (II) 267

VÜ-9. Resumen de recomendaciones

A continuación se presenta un breve resumen en el cual se vierte la opinión de los autores de este libro, respecto al campo de aplica­ción práctica de las diferentes teorías de capacidad de carga atrás mencionadas. El criterio para señalar a una teoría como apropiada para un caso dado obedece tanto a la confiabilidad de la teoría en sí, de acuerdo con los resultados de sus aplicaciones prácticas, como a la sencillez de aplicación.

1 . La Teoría de Terzaghi es recomendable para toda clase de cimentaciones superficiales en cualquier suelo, pudiéndose aplicar con gran confiabilidad hasta el límite D¡ < 2 B.

2. La Teoría de Skempton es apropiada para cimentaciones en arcilla cohesiva (<¡> — 0), sean superficiales o profundas, in­cluyendo el cálculo de capacidad de carga en cilindros y pilotes.

3. Puede usarse la Teoría de Meyerhof para determinar la capacidad de carga de cimientos profundos en arenas y grava, incluyendo cilindros y pilotes, aunque ejerciendo vigilancia cuidadosa, ya que en ocasiones se ha observado que propor­ciona valores muy altos con respecto a los prudentes.

De lo anterior no debe pensarse que las reglas procedentes pue­dan seguirse a ojos cerrados, limitándose el proyectista a sentirse confiado en una fórmula. Particularmente en el caso de cimentaciones profundas, cilindros y pilotes, las teorías no dan valores de confia­bilidad total y, quizá, ni aún buena; la experiencia del proyectista y las normas del sentido común deberán de jugar un papel de tras­cendencia y en ningún caso estará justificada una actitud pasiva del ingeniero, limitándose a seguir un formulario en forma indiscri­minada.

Page 292: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

268 CAPITULO VII

vn-io. Cimentaciones con carga excéntrica e inclinada

Ultimamente se han desarrollado algunas investigaciones13’ 14 re­ferentes al comportamiento de cimentaciones superficiales sujetas a cargas excéntricas y/o inclinadas. Desde luego, es evidente que tales situaciones han de modificar los resultados de las teorías, desarrolladas todas bajo la hipótesis de carga vertical axial, según se vio. También parece evidente que tanto la excentricidad de la carga, como su inclinación son elementos desfavorables para la ca­pacidad de carga de un elemento de cimentación.

En el Anexo VlI-d se recogen algunas normas útiles que van resultando de los estudios hasta hoy realizados.

ANEXO Vn-a

Solución elástica del estado de esfuerzos bajo una banda de longitud infinita

La solución debida a Carothers1, permite determinar el estado de esfuerzos en un medio semi-infinito, homogéneo, isótropo y lineal­mente elástico, sobre el que actúa una banda de carga uniformemente distribuida de valor q, ancho 2 b y longitud infinita (fig. V II-a.l).

2 b

FIG. VII-a.l. Estado de esfuenos bajo una banda de longitud infinita según la teoría

de la Elasticidad

En un punto cualquiera del medio los esfuerzos principales son

o*i = — (a + sen a)TZ(7-3.1)

cr3 = — (a — sen a)71

Donde a es el ángulo subtendido por las rectas que unen al punto considerado con los límites de la banda cargada. Estos esfuer­zos actúan en direcciones tales que ffi, esfuerzo principal mayor, coincide con la bisectriz del ángulo a.

De las ecs. 7-a.l se deduce que el esfuerzo cortante máximo entre los que actúan en dicho punto (t ) vale

Page 293: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 269

Por lo tanto, los máximos esfuerzos cortantes en el medio ocurren en puntos en que sen a sea máximo, o sea en que a valga 90°, lo que corresponde a un lugar geométrico constituido por un semicírculo de diámetro 2 b (ver fig. VII-a. 1). Dichos esfuerzos cortantes máxi­mos en el medio valen

Tmáx = — (7-a,3)TZ

Como quiera que estos esfuerzos Tmáx actúan en planos que for­man el ángulo de 45° con la dirección del esfuerzo principal mayor, cri, se sigue que sus direcciones están dadas para cada punto del semicírculo por las cuerdas que unen el punto de que se trate con los extremos de la banda cargada.

Debe notarse que las direcciones en que actúan los esfuerzos cortantes de falla a lo largo del semicírculo no forman una superficie continua a lo largo de la cual pudiera producirse la falla del medio y, por lo tanto, la solución aquí analizada no proporciona una meca­nismo posible de falla.

ANEXO VH-b

La Teoría de Terzaghi

En este capítulo se expusieron métodos seguidos por Terzaghi para establecer su teoría de Capacidad de Carga, así como las expresiones finales a que puede llegarse en tal teoría; el propósito de este Anexo es presentar con mayor detalle los pasos seguidos en el desarrollo, a fin de tener una mayor comprensión del signifi­cado, grado de validez y problemas de interpretación de las conclu­siones finales.

El trabajo original de Terzaghi5 no desprecia el peso propio de la cuña I, (fig. V II-7), que se desplaza con el cimiento, al considerar el equilibrio de las fuerzas verticales que actúan sobre el mismo. ( Es­te equilibrio se expresó en la ec. 7-6, pero considerando tal peso despreciable, lo cual corresponde a una presentación posterior y más simple de la teoría, hecha por el propio Terzaghi).

En realidad, la influencia del peso mencionado es ínfima, por lo que, cuando la Teoría se presenta en textos suele omitirse el término respectivo. En lo que sigue, empero y por respetar la presentación original del propio Terzaghi, el peso de la cuña I se hará intervenir en los cálculos.

Dicho peso vale (fig. V II-7)

(fig. VII-7)

Page 294: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

270 CAPITULO VII

así, la ec. 7-7 se transforma en

qc = + cBtg<¿ — (7-b .l)

En la ec. anterior, ha de calcularse Pp para valuar la capacidad de carga del medio.

El problema se reduce a calcular el empuje pasivo que se produce en la superficie CA' ( fig. VH-b. 1) cuando el cimiento trata de incrustarse.

En el Capítulo IV quedó establecido que el valor de la presión pasiva, debida al peso de un relleno puramente friccionante, sin sobrecarga, es, dentro de la Teoría de Rankine:

Ppr — Kpy y z

Si el relleno fuera horizontal y el muro vertical, el valor de Kpy sería

Kpy~ tg2 ^45° + = Np

Cuando la superficie sobre la que actúa la presión es inclinada, como la A'C, el valor de Kp7 es diferente, dependiendo del ángulo a.

También se estableció en el Capítulo IV que el efecto de una sobrecarga q en la presión pasiva es un aumento constante de ésta en el valor

Page 295: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Si el relleno es horizontal y el muro vertical, el valor de Kpq es el anotado arriba para K fy. En el caso de la fig. VII-b.l, en que la superficie A'C es inclinada, este valor también será distinto y fun­ción sólo del ángulo a.

Por último, en un relleno friccionante y cohesivo, el aumento de presión pasiva causado por la cohesión es independiente de la profundidad z, como también se vio en el mismo Capítulo IV y vale

Ppc K pc X C

En el caso de relleno horizontal y muro vertical se encontró

Kvc = 2 V777 = 2 tg ( 4 5 ° 4- D

De nuevo este valor será diferente si la superficie sobre la que actúa la presión pasiva es inclinada.

En realidad, las expresiones arriba escritas para Ppc, Pvq y Pvy son para presiones normales a la superficie en que obran. Si la presión total no es normal a esta superficie, sino que forma con ella el ángulo 8, las expresiones anteriores proporcionan sólo la componente normal de las presiones. Por último, si, como en el caso de la fig. VII-b.l, en la superficie en que actúan las presiones ocurre un contacto suelo con suelo, el valor del ángulo 8 será <j>.

Así la presión pasiva normal será:

PPn c KpC 4- <1 Kpq 4" y z Kpy (7-b.2)En la ecuación anterior, los dos primeros términos son indepen­

dientes de z, en tanto que el tercero sí depende de aquella variable.Llamando P,p„ a la parte de la presión normal que no depende de

z y P"pn a la que sí depende, se tiene

P/pn C Kpc 4" Q KpqP"pn - y z K p y

Las correspondientes componentes normales a la superficie A'C de los empujes pueden obtenerse integrando las expresiones anteriores en lo longitud de A'C, que es igual a H/sen a. (fig. V II-b.l).

p>» = iL=w ( c í - + **»> <7-M >aplicada a la mitad de A'C. Y

P"p» = — — r P"pn dz = \ Y H 2 (7-b.4)sen a J o 2 1 sen rr ' 'que se localiza a la altura H/3, a partir del punto C.

MECANICA DE SUELOS (II) 271

Page 296: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Los correspondientes empujes pasivos {P„ y P"p) formarán un ángulo S con las componentes anteriores.

Además de los empujes P[p Y P”p, existe a lo largo de la super­ficie A 'C otra fuerza debida al efecto de la cohesión del suelo, c. Esta fuerza vale

C = - ^ — c (7-b.5)sen a ■

JE1 empuje pasivo total será la resultante de P'p, P"p y C. La componente normal total de dicho empuje se obtendrá sumando las expresiones 7-b.3 y 7-b.4, de lo cual resulta

Pvn = P'pn + P"vn = ———(c Kpc + q Kpg) + \yH> ( 7-b.6)sen a 2 sen a

Considérese ahora, en primer lugar, el caso de un medio sin "cohesión” (c = 0), en el que, además, D¡ — 0; o sea, en el que no existe sobrecarga. Este sería el caso de un cimiento superficialmente desplantado sobre arena.

Para este caso particular, la ec. 7-b.l queda

272 CAPITULO VII

= i - ( 2 Ppr- i ^ r tg^ ) (7-b.7)

Donde Ppy es la parte de Pp que toma en cuenta únicamente efectos de peso. Para este mismo caso particular, el empuje pasivo sobre la superficie A'C de la fig. VII-b.l puede calcularse a partir de la expresión 7-b.6, dividiendo el valor de la componente normal del empuje PPn, entre eos 8

P „ = 4 - Y H 2 — = (7-b.8)2 sen a eos 8

En el caso analizado (fig. V II-b.l)

H = i B tg $

8 = <j> (por ser contacto suelo con suelo) a = 180° — <£

con tales valores, la ec. 7-b.8 queda

Page 297: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 273

Substituyendo este valor en la ec. 7-b.7 se obtiene

«• = 4 [ t Y 82 ' 9 - >)] = T T

donde

N,

En la expresión anterior Kpy puede obtenerse por medio del méto­do de la espiral logarítmica (Capítulo IV ), o por otro equivalente. Por lo demás debe notarse que, puesto que a y 8 dependen, para este caso particular, sólo de Kpy y por lo tanto Ny serán función sólo de dicho parámetro.

Si el terreno en que se apoya el cimiento tuviera cohesión y D¡ fuera diferente de cero, existiendo una sobrecarga q en el nivel del cimiento, la capacidad de carga del cimiento se calculará usando la ec. 7-b.l, en la que, otra vez, habrá de valuarse Pp según la ec. 7-b.6, introduciendo en ella de nuevo los valores

H = -2 B tg*

De ello resulta

8 — <t>a = 180 °-<¡>

p- = I r s = 2 ^ cK ” + « * » > +

( Kpc \ Kpg 1 f Kvy \qc = c — + tg <t>) + q — + -z y B tg </> ( ----— — 1)\cos2 d> ) eos2 ó 2 Veos2 <\> ]

(7-b.l2)

Nótese que las ecs. 7-b.l 1 y 7-b.l2 son únicamente válidas para la condición que se llamó falla general.

En la fig. VII-b.2 se muestra un cimiento continuo con base rugosa y aparece también la superficie de falla CDE, que se supone es sobre la que realmente ocurre la falla. Como se mencionó, Prandtl obtuvo la ecuación de dicha superficie para el caso de un medio rígido-plástico perfecto y exento de peso propio (y = 0); la solución de Prandtl, dibujada en la fig. VII-b.2, produciría una superficie19—Mecánica de Suelos II

Page 298: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tal como la que allí se muestra marcada con las letras C Di £ 1! esta superficie contiene a un arco (C D \) de espiral logarítmica, cuya ecuación es

r = r„e9ts*Donde 6 es el ángulo central en radianes, formado entre la línea

AC y el radio vector r. Para <j> = 0 la ecuación anterior deviene a un círculo de radio r = r0.

También, para y — 0, la ec. 7-b.l2 queda

q<¡ = C( J ^ L + tg = c Nc + q N q (7-b.l3)n Veos - 4> J eos- <j>

donde el sentido de los símbolos N c y Ng es evidente.En la ecuación anterior qc es la capacidad de carga del medio

sin peso. Debe notarse que los dos términos del segundo miembro tienen sentido físico por separado: el primero representa la capacidad de carga del medio sin sobrecarga (q - 0) y el segundo, la carga que puede soportar el medio supuesto que su cohesión es nula.

En el caso y ^ 0 , c = 0 y q = 0 no se ha podido hasta el mo­mento determinar matemáticamente la superficie de falla teórica que resuelve el problema. Por el método de la espiral loqarítmica, por ejemplo (Capítulo IV ), puede determinarse la forma aproxi­mada de dicha superficie y, con tal base, puede garantizarse que se desarrolla más alta que lo que indica la teoría analizada arriba. En la fig. VII-b.2, esta superficie se ha dibujado a través de los puntos C D E 2. La capacidad de carga para este caso, obtenida a partir de la ec. 7-b.l2 será

274 CAPITULO VII

FIG. Vll-b.2. Superficies de falla para diferentes condiciones del medio

Page 299: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

« = h B t * * U F Í - ‘ ) = ^ S N ’ f ™ 1*»

En el caso general se tiene: 0, q ^ O y y 0. Para estecaso, la capacidad de carga del cimiento es ligeramente mayor que la suma de las dadas por las ecs. 7-b.l3 y 7-b.l4, según se desprende de análisis numéricos de casos específicos, puesto que para el caso general tampoco existe una solución teórica completa relativa a la superficie de falla. De los mismos análisis se desprende que esta superficie de falla, a la cual se llamará real, ocurre en una zona intermedia entre las dos superficies particulares que se han mencio­nado; en la fig. VII-b.2, esta superficie real se trazó por los puntos C D E. De lo anterior Terzaghi concluye que es razonable considerar que la capacidad de carga real está dada por la suma de los tres términos antes analizados: o sea

qc = c N c + q N q + - L y BNy (7-b.l5)

Teniendo en cuenta que en la mayoría de los casos la sobrecarga q es sólo debida al peso del suelo sobre el nivel de desplante, suele considerarse q — y D¡ y, por consecuencia

qc — c N c + y Df Nq + y B Ny (7-b.l 6)que es la ec. 7-9.

En realidad, las curvas de la fig. VII-8, para los factores de capacidad de carga N c y Nq, no fueron dibujados por Terzaghi a partir de los valores aproximados que se desprenden de la ec. 7-b. 13, sino que se calcularon a partir de otra solución matemáti­camente exacta de tales valores, obtenida por una aplicación de la función de esfuerzos de Airy hecha por Prandtl y Reissner para un medio sin peso. Según esta solución

Nq ~ 2 eos2(45° + J J l ) (7-b.l7)

N c = ctg <f, |

MECANICA D E SUELO S (II) 275

2 eos2(45° + <f>/2 ) J

a» = e(3/4 * ~ W tg t

Por lo contrario, la curva correspondientes a Ny en la fig. VII-8 sí representa los valores de la ec. 7-b.IO, obtenida por el propio Terzaghi.

Page 300: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

276 CAPITULO VII

En las ecs. 7-b.l 7 y 7-b.lO en el caso <#> = 0, correspondiente a un medio puramente cohesivo y con un cimiento rugoso, se tienen los valores particulares:

JV, = - | * + 1 = 5 .7

N ,= 1.0 (7-b. 18)

Ny = 0

ANEXO VII-c

La Teoría de Meyerhof para cimientos muy largos

En el párrafo VII-8 del cuerpo de este capítulo se describió el mecanismo de falla propuesto por Meyerhof como base a su Teoría de Capacidad de Carga en cimentaciones. En la fig. V II-13 alli in­cluida se mostró gráficamente dicho mecanismo. También se escribió la fórmula final propuesta en la teoría, según la cual:

qc = cNc + poNq + - j t B N y (7-c.l)

En este anexo se describirá el camino seguido por Meyerhof para valuar los factores de capacidad de carga N c, Nq y Ny. El método establecido por Meyerhof es similar al anteriormente seguido por Terzaghi, en su propio caso. Primeramente se valúan N c y Nq con base en teorías previas establecidas por Prandtl (sección VII-3) y Reissner, convenientemente generalizadas y con ía suposición de que el material está desprovisto de peso propio: después se calcula Ny utilizando un método independiente sugerido por Ohde.

Así, en una primera etapa, con material sin peso, la fórmula 7-c.l se reduce a:

qe' — cNc + PcNq ( 7-c.2)

En tanto que, en una segunda etapa, se obtiene el efecto del peso del material:

Page 301: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Vü-c.l. Obtención de los valores de N c y Nq

El cálculo de estos factores de capacidad de carga se hace en lo que sigue para un cimiento muy largo y con base rugosa de ancho B. Los factores son función de los valores de (í, p0 y s0, donde estos símbolos tienen el significado que se mencionó con referencia a la fig. VII-13.

En la fig. VIl-c.l aparece un esquema de la superficie de talla compuesta por un arco de espiral logarítmica AC y un tramo de recta CD.

MECANICA DE SUELOS (II) 277

F I G . V ll-c.l. Obtención de Nc y Nq poro cimientos muy largos según Meyerhof

Considerando que la zona ABB' es de esfuerzos constantes y ha­ciendo uso del método del círculo de Mohr. como aparece en la parte b) de la figura, se deduce que:

Page 302: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

278 CAPITULO VII

qc = Pv + V ctg (45° — | ) (7-c.4)

Nótese que el punto P resulta ser el polo del círculo de Mohr, que los esfuerzos en el plano BB' están dados por el punto E y que el punto D representa el estado de esfuerzos en el plano AB (en la parte b, PD es paralela a AB, de la parte a de la misma figura).

Además, por la ley de Coulomb debe tenerse:s / = c + p/tg<j> (7-c.5)

Considérese ahora el equilibrio en la masa ABC. Tomando mo­mentos de las fuerzas exteriores a dicha masa respecto al punto B, se tiene (ver parte a de la figura):

ap np rí,2 Mn — pp' AB — p i B C j (cdl) eos <j> ■ r — 0 ( 7 - c . 6 )

En donde L es la longitud del arco de espiral AC. Tomando en cuenta la ecuación de la espiral logarítmica puede escribirse:

£C =~AB e61** (7-c.7)Además, en la integral c y cos<f> son constantes y

f r d l = [ ' r -£f*L = J L A ° da. =o j„ C O S ó COS^Jo

—jdiL r *— i 8 r 2ats —1~| (7_c 8)cos$ \_2 tg <¡> J 0 2 sen <j> |_ J ' / c-8>

Substituyendo (7-c.7) y (7-c.8) en (7-c.6) se obtiene

- AB2 ppr — AW e20 p! ~ - AB2 cctg <f>( e29 — 1) = 0¿ i 2

Lo cual conduce a:

c + = ( c + pitg<£)e28tE* ( 7 - C . 9 )

Ecuación que relaciona a los esfuerzos en la superficie AB con los de la superficie BC.

Para llegar a relacionar la carga q[ con los esfuerzos p0 y s0 resta ahora poner los esfuerzos pi y de la superficie BC, en térmi­nos precisamente de los esfuerzos p0 y s0. Para ello debe tenerse en cuenta que la zona BCD es también una zona de esfuerzos constan­tes en estado plástico pasivo, por lo que la relación buscada puede obtenerse simplemente por medio del método del círculo de Mohr, representando por un círculo el estado de esfuerzos en todo punto

Page 303: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de la zona, tal como se hace en el esquema de la parte c) de la fig.VII-c.1. En este círculo, el punto D representa el estado de esfuerzos en el plano BC y el punto E al estado de esfuerzos en el plano BD. Este punto E se obtuvo encontrando primeramente el polo P, por la intersección de la línea PD, paralela a BC de la parte a), con el círculo y, en segundo lugar, trazando la línea PE, paralela a la superficie BD, por el polo ya obtenido. Viendo los ángulos marcados en la figura puede obtenerse que:

Pi = Po + /?sen(2iQ + <jb) — Psen<£ (7-c.lO)

donde R es el radio del círculo, igual a

R * = c_± P ^ ± (7.cll)eos t¡> eos <j>

Por lo que, substituyendo este valor en la ec. 7-c.lO se llega a

Pi = Po + ° ~ P~ ~ — [sen(2r] + </>)— sen j>] (7-C.12)eos <J>

MECANICA DE SUELOS (II) 279

despejando pi

p0 cos<j> + c[sen(2i) + <j>) — sen<¿>] cos<j> — tg 0[sen(2T) + <¡>)— sen ó]Pi = (7-C.13)

Conviene ahora definir el parámetro m denominado coeficiente de movilización del esfuerzo cortante a lo largo de la superficie BD, en la forma ya utilizada en el párrafo VII-8. Así

s0 = m (c + p0tg<¿>) (7-c .H )

Volviendo a la parte c) de la fig. VII-c. 1, puede escribirse que

v 5o m(c + p0tg</>)cos¿ c o s ( 2 o + » ) = -e = ------- (7 'C' 15)

De donde se ve que el valor del ángulo t) depende de m, así como del esfuerzo normal en la superficie libre equivalente y de las propie­dades del suelo.

En particular, obsérvese que si m — 1 el punto E deberá coincidir con D, puesto que en este caso el esfuerzo cortante se moviliza por completo y, por lo tanto, iq = 0. En cambio, si m — 0, el punto E debe quedar sobre el eje cr, puesto que s» vale 0 y 2 -r) = 90 — <f>; es decir, T) = 45° — <j>/2. Además, una vez definido m, tq queda definido

Page 304: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

para un caso real dado y muy fácilmente puede relacionarse geomé­tricamente el valor del ángulo 3 con las características de forma de la cimentación, D¡, profundidad de desplante y B, ancho.

Substituyendo el valor de p, (ec. 7-c.13) en la ec. 7 - c.9 puede obtenerse un nuevo valor de p'v, el cual llevado a la ec. 7 -C .4 , teniendo en cuenta la 7 -C .5 , conduce, finalmente, a

f . T (1 + sen < )e2<,te ”1}4° = c | Ct9 * L ~ s e n * s e n ( 2 i i + * f - 1 } j +

r ( l + s e n 1[_1 — sen <f> sen (2 t) + <t>) J

lo cual puede ponerse en la forma

q'c = cNc + p0N<, ( 7 - C . 2 )

que es la ecuación de partida. Comparando estas dos últimas ecua­ciones escritas, los valores de N c y Nq resaltan como evidentes.

VTI-c.2. Obtención del valor del Ny

Para la obtención de este factor, que refleja la influencia del peso propio del suelo sobre la capacidad de carga, Meyerhof ha seguido del método de la espiral logarítmica, debido a Ohde, al cual encuentra ventajas por conducir a una solución matemática rigurosa en el caso y — 0 y por dar lugar a una superficie de falla que se parece bastante a los mecanismos de falla observados. Sin embargo, es de notar que la espiral logarítmica que el método plantea no es la misma usada en el cálculo de los factores N c y Nq, que tenía su centro en el punto B (parte a de la fig. V II-c .l); en efecto, la espiral que ahora se busca es la crítica, que corresponde al minimo valor de Ny y ésta tiene su centro en algún punto 0, en general diferente de B. (fig. VII-c.2).

La obtención de Ny mínimo se realiza por un método semigráfico de tanteos, en el cual se calcula la carga necesaria para producir el deslizamiento, considerando como fuerzas resistentes solamente las debidas al peso de la cuña. Analizando el equilibrio de la cuña por medio de una ecuación de momentos en torno a 0, centro de la espiral supuesta, se tienen las siguientes fuerzas que producen momento

Pi, empuje de la cuña DGE, que puede obtenerse del diagrama de Mohr.

280 CAPITULO VII

Page 305: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 281

FIG. Vll-e.2. Cálculo de Ny, para cimientos muy largos según Meyerhof

Wy, peso propio de la cuña BCDG.P'\ empuje resultante del efecto de la cimentación, transmitido a

través de la cara BC, que forma un ángulo <j> con la normal a dicha cara, y que actúa en el tercio de la distancia BC, contado a partir de B.

Así, P " vale:

K = u ( 7 - C . 1 7 )

Una vez encontrado el mínimo P¿', por tanteos con diferentes centros de espiral, se puede obtener el valor q", al considerar el equi­librio de la cuña ABC, haciendo intervenir su propio peso:

B — 2 P'J sen (45 + —■) — y B -y tg(45 + ~ )de donde:

Page 306: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

282 CAPITULO VII

Lo cual puede ponerse en la forma

donde el significado y valor de Ny son evidentes.Los valores de N c , N g y N y así obtenidos, que corresponden a

cimientos muy largos, son los tabulados y graficados por Meyerhof e incorporados en este capítulo como figuras vII-14, VII-15 y VII-16,

ANEXO Vn-dCimentaciones superficiales sujetas a cargas excéntricas o

inclinadas

En el caso de cargas excéntricas, que actúan a una distancia e del eje longitudinal del cimiento (excentricidad), Meyerhof recomienda tratar los problemas con las mismas fórmulas que rigen el caso de cargas axiales, modificando para efecto de cálculo, en cambio, el ancho del elemento de cimentación al valor:

B ' = B - 2 e (7-d .l)

Lo anterior equivale esencialmente a considerar la carga centrada en un ancho menor que el real, considerando que una faja del cimiento de ancho 2e no contribuye a la capacidad de carga.

Este ancho reducido B ‘ debe usarse en las fórmulas en el términoen que interviene B , en lugar de este último y, además, también debeusarse al calcular la carga total que puede resistir el cimiento, al valuar al área total de éste.

En el caso de una cimentación rectangular con carga excéntrica en las dos direcciones (longitud y ancho), el criterio anterior se aplica independientemente a las dos dimensiones del cimiento. Es de señalar, a fin de evitar errores de cálculo, que en el caso de un arco circular, la fórmula que da la carga total del cimiento es, conse­cuentemente con lo anterior:

—,______irDD j a ,Qtot — — — <Jc (7-d.2)

en que D', diámetro reducido, vale:

D’ - D - 2 e.

En el caso de cargas inclinadas Meyerhof ha obtenido coeficien­tes de reducción para los factores de capacidad de carga N c y N y ,

q”c = | y BNy ( 7-C.3)

Page 307: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

que intervienen en su propia teoría. Con éstos puede obtenerse la capacidad de carga equivalente bajo fuerzas verticales, simplemente multiplicando los factores normales, obtenidos para carga vertical, por los coeficientes mencionados.

Los coeficientes de reducción aparecen en la Tabla 7-d.l, en la forma en que los presenta Sowers15.

MECANICA DE SUELOS (II) 283

TABLA 7-d.l

FactorProfundi­

dad de Des­plante, Dt

Inclinación de la carga respecto a la vertical0 10° 20° 30° 45° CTV O o

N y0 1.0 0.5 0.2 0 — —

B 1.0 0.6 0.4 0.25 0.15 0.05

N o 0 a B 1.0 0.8 0.6 0.4 0.25 0.15

En el caso de que la carga inclinada sea excéntrica, el efecto de los coeficientes de la tabla anterior se combinará con las normas dadas al comienzo de este anexo para cargas no axiales.

REFEREN CIAS

1. Jürgenson, L. — The application of Theories of Elasticity and Plasíicity to Foundation Problems — Contributions to Soil Mechanics — Boston Society of Civil Engineers— 1925-1940.

2. Prandtl, L. — Ueber die Haerte plastischer Koerper — Goettingen Nachr., math. — phys, Kl. — 1920.

3. Prager, W . y Hodge, P. G. — Theoty o f Perfectly Plástic Solids (Capi­tulo 6) — John Wiley and Sons— 1961.

4. Hill, R. — The Plástic Yielding of Notched Bars undec Tensión — Quarterly— Journal of Mechanics and Applied Mathematics— 1949.

5. Terzaghi, K. — Theoretical Soil Mechanics■—Cap. VIII — John Wiley and Sons— 1956.

6. Skempton, A. W. — The Bearing Capacity of Clays — Building Research Congress — Londres — 1951.

7. Meyerhof, G. G. — The Ultímate Bearing Capacity of Foundations — Geo- technique — Diciembre, 1951.

8. Meyerhof, G, G. — Recherches sur la forcé portante des pieux — Suplements des Annaux du Institute du Batiment et Travaux Publiques — París, marzo- abril, 1953.

9. Skempton, A. W., Yassin, A. A., Gibson, R. E. — Théorie de la forcé por­tante de pieux dans la Sable — Suplements des Annaux du Institute du Bati­ment et Travaux Publiques — Paris, marzo-abril, 1953.

10. Meyerhof, G. G. y Murdock, L. J. — An Investigaron of the Bearing Ca­pacity of Somc Bored and Driving Piles in London Clay — Geotechnique- 1953.

Page 308: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

11. Meyerhof, G. G. —Influence of Proughness of Base and Ground-watet Con- ditions on the Ultímate Bearing Capacity of Foundations — Geotechnique— 1955.

12. Meyerhof, G. G. — The Ultímate Bearing Capacity o f Foundation on Slopes— Vol. I.— Memorias del IV Congreso Internacional de Mecánica de Suelos y Cimentaciones.— 1957.

13. Meyerhof, G. G. — The Bearing Capacity of Foundations under Eccentric and Inclined Loads — Memoria del III Congreso Internacional de Mecánica de Suelos y Cimentaciones — Vol. I — Zurich — 1953.

14. Meyerhof, G. G. — Some Recent Foundation Research and Its Application to Design — Structural Engineer — Vol. 31 — N’ 6 — Londres — Junio - 1953.

15. Sowers, G. F .— Shallow Foundations — Cap. 6 de la obra Foundation En- gíneering, editada por G. A. Leonards — McGraw Hill Book Co. 1962.

284 CAPITULO VII

BIBLIOGRAFIA

/ Theoretical Soil Mechanics — Karl Terzaghi — John Wiley and Sons — 1943 v/ La Mecánica de Suelos en la Ingeniería Práctica — Karl Terzaflhi y Ralph B.

Peck— (Trad. O Moretto)— El Ateneo Ed. — 1955. v Mecánica de Suelos — J. A. Jiménez Salas — E. Dossat 1954. yFoundation Engineering — Editado por G. A. Leonards-Mc Graw Hill Book Co.

1962.Principies of Soil Mechanics — Ronald F. Scott — Addison-Wesley Pub. Co.—

1963.yFoundations — A. L. Little — Edward Amold Ltd.— 1961.

Page 309: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO VIII

CIMENTACIONES POCO PROFUNDAS

Vm-1. Introducción

En este capítulo se estudian las cimentaciones de todos aquellos tipos que se conocen en la rutina diaria de la ingeniería con el nombre de poco profundas o superficiales. En general, estas expre­siones se refieren a cimentaciones en las que la profundidad de desplante no es mayor que un par de veces el ancho del cimiento; sin embargo, es evidente que no existe un límite preciso en la pro­fundidad de desplante que separe a una cimentación poco profunda de una profunda.

La preocupación del constructor por el comportamiento de las cimentaciones es, por supuesto, tan antigua como la construcción misma, pero hasta épocas relativamente recientes tal preocupación no se reflejó en intentos de analizar científicamente el comportamiento de las cimentaciones, tratando de establecer principios generales que sirvieren a la vez de normas tanto para el proyecto, como para la construcción de campo.

Durante muchísimo tiempo, la tecnología de las cimentaciones se estableció solamente bajo bases burdamente empíricas: más que de una técnica en el actual sentido de la palabra, resulta justificado hablar de un “arte de cimentar". El hecho de que con lo que hoy se antojan tan pobres armas, el constructor de antaño fuera capaz de realizar obras magníficas que perduraron hasta los tiempos actuales, más bien habla en favor de la inventiva y capacidad de adaptación de los ingenieros de otras épocas, que de la técnica que utilizaron. Hoy no resulta razonable seguir usando tan pobres medios y pres­cindir de los avances recientes en el conocimiento del campo, en nombre de las mayores realizaciones de la ingeniería clásica.

La transmisión de conocimientos puramente experimentales en forma de una auténtica tradición oral, fue, durante largos siglos, el único modo de que disponía un constructor para adquirir el arte de cimentar. Naturalmente, todos los vicios del conocimiento puramente experimental, sin bases científicas generalizadoras, estaban presentes en este método.

En el momento en que el ritmo de la construcción aumentó hasta niveles similares a los que hoy se conocen, el método del “arte” se transformó en algo particularmente peligroso, al aumentar el número

285

Page 310: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

286 CAPITULO VIII

de constructores, con lo que, necesariamente, el arte de cimentar cayó en manos no siempre muy bien dotadas. Los fracasos que enton­ces se hicieron notar condujeron al primer intento de racionalizar la construcción de las cimentaciones. Los constructores de alguna determinada ciudad volvieron la vista a sus realizaciones bien logra­das y, relacionando la carga soportada con el área del cimiento, trataron de establecer un valor “seguro” del esfuerzo que era posible dar al suelo de aquel lugar particular. Nacieron así las leyes de “Código” o “Reglamento”, que en muchas partes perduran en la actualidad. Sin embargo, basta pensar por un instante en las comple­jidades y variaciones del suelo en cualquier lugar del planeta, para darse cuenta que la generalización que se persigue en un código urbano de tal estilo es, por lo menos, muy peligrosa. Además, hoy se dispone de una gran variedad de tipos de cimentación poco pro­funda, adaptable cada uno de ellos a tipos peculiares de suelos y estructuras, consiguiéndose con una buena combinación seguridad y economía máximas; es claro que los estudios que una técnica de tal naturaleza requiere, quedan muy lejos de la generalización burda que presupone un simple Código.

Las Teorías de Capacidad de Carga, desarrolladas a partir de 1920, proporcionaron una base más o menos científica al estudio de las cimentaciones. Combinadas con el creciente conocimiento de los suelos y sus propiedades mecánicas y con el mejoramiento de las téc­nicas de medición de campo, han permitido en la actualidad el des­arrollo de una metodologia de proyecto y construcción de cimenta­ciones mucho más racional y avanzada que la que nunca antes poseyó el ingeniero. De lo anterior no debe seguirse que las teorías recien­temente desarrolladas resuelven los problemas por completo; ya se ha insistido sobre sus limitaciones aún enormes. Pero tales teorías, auxi­liadas por la clasificación y el estudio de los suelos y por mediciones del comportamiento de cimentaciones construidas, que permiten enca­sillarlas y asimilar correctamente las experiencias adquiridas, propor­cionan una base común, que hace posible el intento de generalizar el conocimiento sobre cimentaciones, convirtiendo el arte de cimentar en una disciplina que tiende a lo científico cada vez más.

En este capítulo se clasifican someramente las cimentaciones po­co profundas y se estudian las normas esenciales que deben regir su proyecto y construcción en los diferentes suelos. Finalmente, se estu­dian también algunos casos especiales de interés práctico, relacionados con el tema.

Vni-2. Clasificación de las cimentaciones poco profundas

Los tipos más frecuentes de cimentaciones poco profundas son las zapatas aisladas, las zapatas corridas y las losas de cimentación.

Page 311: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 287

Las zapatas aisladas son elementos estructurales, generalmente cuadrados o rectangulares y más raramente circulares, que se cons­truyen bajo las columnas con el objeto de transmitir la carga de éstas al terreno en una mayor área, para lograr una presión apropiada. En ocasiones las zapatas aisladas soportan más de una columna. Las zapatas aisladas se construyen generalmente de concreto reforzado.

Las zapatas corridas son elementos análogos a los anteriores, en los que la longitud supera en mucho al ancho. Soportan varias columnas o un muro y pueden ser de concreto reforzado o de mani­postería, en el caso de cimientos que transmiten cargas no muy grandes. La zapata corrida es una forma evolucionada de la zapata aislada, en el caso en que el suelo ofrezca una resistencia baja, que obligue al empleo de mayores áreas de repartición o en el caso en que deban transmitirse al suelo grandes cargas.

Cuando la resistencia del terreno sea muy baja o las cargas sean muy altas, las áreas requeridas para apoyo de la cimentación deben aumentarse, llegándose al empleo de verdaderas losas de cimentación, construidas también de concreto reforzado, las que pue­den llegar a ocupar toda la superficie construida.

No existe ningún criterio preciso para distinguir entre si los tres tipos anteriores, siendo la práctica la norma para su distinción. También existen multitud de variedades de cimentaciones combina­das, en las que los tres tipos básicos se entremezclan al gusto del proyectista o del constructor, que se esforzará siempre por extraer del suelo el mayor partido posible, combinando los factores estruc­turales con las características del terreno de la manera más ventajosa en cada punto.

Si aún en el caso de emplear una losa corrida la presión transmi­tida al subsuelo sobrepasa la capacidad de carga de éste, es evidente que habrá de recurrirse a soportar la estructura en estratos más firmes, que se encuentren a mayores profundidades, llegándose así a las cimentaciones profundas.

VIII-3. Factores que determinan el tipo de cimentación

A continuación se exponen ciertas normas breves que han de ser tomadas en cuenta para el proyecto de cualquier cimentación. En rigor, lo que más adelante se dice es aplicable tanto a cimentaciones poco profundas, como a otras desplantadas a mayor profundidad, pues se trata de comentarios de orden general que deben presidir cualquier proyecto de cualquier cimentación.

En general, los factores que influyen en la correcta selección de una cimentación dada pueden agruparse en tres clases principales:

Page 312: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

1 ) Los relativos a la superestructura, que engloban su función, cargas que transmite al suelo, materiales que la constituyen,etc.

2) Los relativos al suelo, que se refieren a sus propiedades mecánicas, especialmente a su resistencia y compresibilidad, a sus condiciones hidráulicas, etc.

3) Los factores económicos, que deben balancear el costo de la cimentación en comparación con la importancia y aún el costo de la superestructura.

De hecho, el balance de los factores anteriores puede hacer que diferentes proyectistas de experiencia lleguen a soluciones ligera­mente distintas para una cimentación dada, pues< el problema carece de solución única por faltar un criterio exacto para efectuar tal balance, que siempre tendrá una parte de apreciación personal.

En general, puede decirse que un balance meditado de los factores anteriores permite en un análisis preliminar a un proyectista con experiencia eliminar todos aquellos tipos de cimentación francamente inadecuados para resolver su problema especifico, quedando sólo algu­nos que deberán de ser más cuidadosamente estudiados para elegir entre ellos unas cuantas soluciones que satisfagan todos los requisitos estipulados desde el punto de vista estructural, de suelos, social, etc., para escoger de entre éstos el proyecto final, generalmente con una apreciación simplemente económica. Si ha habido éxito en todas las etapas del estudio, la solución final representará un excelente com­promiso entre requerimientos estructurales y costo.

Debe observarse que al balancear los factores anteriores, adop­tando un punto de vista estrictamente ingenieril debe estudiarse no sólo la necesidad de proyectar una cimentación que se sostenga en el suelo disponible sin falla o colapso, sino también que no tenga durante su vida asentamientos o expansiones que interfieran con la función de la estructura. Se llega así a la contribución fundamental de la Mecánica de Suelos al problema de las cimentaciones, contri­bución de doble aspecto que involucra dos problemas de la misma importancia para garantizar el éxito final. Por un lado, abordando un problema de Capacidad de Carga, se trata de conocer el nivel de esfuerzos que la cimentación puede transmitir al suelo sin provocar un colapso o falla brusca, generalmente por esfuerzo cortante; por otro lado, será necesario calcular los asentamientos o expansiones que el suelo va a sufrir con tales esfuerzos, cuidando siempre que éstos queden en niveles tolerables para la estructura de que se trate. No puede decirse que uno de los aspectos anteriores tenga mayor importancia que el otro en el proyecto de una cimentación; ambos deberán ser tenidos en cuenta simultáneamente y de su justa apre­ciación dependerá el éxito o fracaso en un caso dado.

288 CAPITULO VIII

Page 313: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

VÜI-4. Consideraciones generales sobre el contacto suelo-estructura

Se trata ahora de dar algunas ideas fundamentales sobre como afecta la rigidez de las áreas cargadas a la distribución de asenta­mientos y presiones en el suelo subyacente; se consideran en el análi­sis suelos puramente friccionantes y puramente cohesivos, así como los casos límites de áreas cargadas totalmente flexibles e infinitamente rígidas.

Considérese en primer lugar el caso de un área uniformemente cargada y totalmente flexible. Debido a su flexibilidad, las presiones que el área cargada pasa al suelo serán idénticas a la presión uniforme sobre el área. Por otra parte, el asentamiento no será uniforme, sino que es máximo al centro del área cargada y menor en la periferia, adoptando una ley similar a la que se muestra en la fig. VlII-l.a, si es que el medio cargado se supone idealmente elástico. La justificación de la afirmación anterior se presenta en el Anexo Ill-a, y se corrobora en el Anexo VHI-a.

MECANICA DE SUELOS (II) 289

FIG. VIII-1. Perfil de asentamiento bajo un área uniformemente cargada sobre la su­perficie de un medio semi-infinito

En la práctica el asentamiento inmediato, debido exclusivamente a cambio de forma (es decir, excluyendo el asentamiento por conso­lidación ), de áreas flexibles con carga uniforme, apoyadas en arcillas saturadas, adopta un perfil similar al mostrado en la parte a) de la fig. VIII-1. En cambio, cuando el área flexible se apoya en arenas21)—Mecánica de Suelos II

Page 314: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

o gravas, el perfil se parece a los mostrados en la parte b ) de la misma figura, ya que estos materiales poseen la propiedad de que su rigidez aumenta con el confinamiento, el cual obviamente será máxi­mo en la zona bajo el centro del área cargada.

Considérese ahora en cambio que la carga se transmite al suelo a través de una placa infinitamente rígida. En este caso es obvio que, por su rigidez, la placa se asentará uniformemente, por lo que la presión de contacto entre placa y medio no podrá ser uniforme. Comparando este caso con el de la fig. VIII-1, es fácil ver que en el medio homogéneo y elástico la presión es mínima al centro y máxi­ma en las orillas, puesto que para llegar al asentamiento uniforme éste deberá disminuir en el centro (disminución de presión) y aumen­tar en las orillas (aumento de presión). Una intuición análoga para el caso del medio cuya rigidez aumenta con el confinamiento conduce a una distribución en la que la presión es máxima bajo el centro del área cargada y mucho menor bajo la periferia. En la fig. VIII-2 se muestran ambas distribuciones (partes a y b).

290 CAPITULO VIII

FIG. VI11-2. Distribución de presiones bajo una placa infinitamente rígidaa) Medio homogéneo y elásticob) Medio cuya rigidez aumenta con el confinamiento

También ahora, en la práctica, el caso a) se parece a la distri­bución en una arcilla saturada, aún cuando teóricamente la presión es infinita en la periferia de la placa y es igual a la mitad de la presión media, bajo el centro; evidentemente la primera condición no puede satisfacerse y el valor de la presión en la periferia está limitado a su máximo que depende de la resistencia del material.

E1 caso b) de la fig. VIII-2 representa aproximadamente la distribución real de presión bajo una placa rígida colocada sobre arena o grava.

Page 315: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 291

VIII-5. Cimentaciones en arenas y gravas

En todo problema de cimentaciones existe un doble aspecto a considerar; por una parte la capacidad de carga, para evitar la falla por este concepto; por otra parte existe un aspecto de asentamientos, según el cual la cimentación no debe sufrir hundimientos o expan­siones que pongan en peligro la función de la estructura o que sean mayores que aquéllos considerados como tolerables en el proyecto estructural.

El diseño de una cimentación consistirá siempre en considerar estos dos aspectos.

Se analizará en lo que sigue, en primer lugar, el aspecto de capacidad de carga.

Si un cimiento de ancho B está desplantado a una profundidad Dj dentro de un manto muy potente de arena o grava, la capaci­dad de carga de ese cimiento podrá estimarse haciendo uso de las fórmulas que proporciona la Teoría de Terzaghi (Capítulo V II). Para el caso de un cimiento muy largo, dicha capacidad, a la falla, será por lo tanto:

qc = y D f N, + y y B N r (8-1)

Para los cimientos cuadrados o circulares se usarán las fórmulas correspondientes a la Teoría de Terzaghi, tal como han sido obte­nidas en el capítulo VII de este volumen.

Puede verse que, en esencia, la capacidad de carga última de un cimiento poco profundo en arena o grava depende de los siguientes conceptos:

1. La compacidad relativa de la arena, que se refleja en el valor de 4> y, por ello, en los valores de los factores de capacidad de carga Nq y Ny. De hecho dicha compacidad influye muy poderosamente en la capacidad de carga, pues Ny y Nq au­mentan muy abruptamente cuando la compacidad llega a valo­res altos. Él mejor método práctico para determinar la com­pacidad relativa de un manto de arena es quizá la prueba estándar de penetración, descrita en el apéndice del volu­men I de esta obra. También se incluyó en aquel lugar una gráfica que expresa la importante correlación entre N, nú­mero de golpes en la prueba, la compacidad relativa y el valor del ángulo </>, de fricción interna.Cuando se trate con arenas muy finas situadas bajo el nivel freático el valor de N dado por la prueba de penetración es-

Page 316: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tándar resulta mayor que el que se tendría con arena seca, debido a la baja permeabilidad de la arena, que impide que el agua emigre a través de los huecos al producirse el impacto. Los valores obtenidos en la prueba en estos casos (N ') se corrigen, según la expresión siguiente, propuesta por Peck, Hanson y Thornburn 2.

A T = 1 5 + i - ( N ' - 1 5 ) = N ' ^ - (8-2)

La corrección anterior sólo se hace si N' > 15- Finalmente, es de señalar que en ¡os casos en que existan gravas o boleos en el suelo, los resultados de la prueba estándar de penetración no suelen ser representativos de la compacidad de los mantos, pues uno de aquellos elementos puede detener el penetrómetro, aumentando ficticiamente el número de golpes. En estos casos la compacidad es mucho más, difícil de determinar por métodos simples, haciéndose necesario recurrir a la experiencia y al criterio.La posición del nivel de aguas freáticas.En general, el peso específico de cualquier arena no sumer­gida oscila entre límites muy próximos, sea la arena seca, húmeda y saturada. Pero si la arena está sumergida bajo el nivel freático, el valor de y se reduce sensiblemente a la mitad, lo cual se refleja de inmediato en la capacidad de carga última obtenida. Asi por ejemplo, el valor de la so­brecarga al nivel de desplante yD¡ deberá calcularse teniendo en cuenta la condición de ese material, de modo que si está parcial ó totalmente sumergido, se adopte el valor y'm donde ello ocurra: el valor de y que figura en el segundo término de la ec. 8-1,, se refiere al material situado bajo el nivel de desplante del cimiento, que sería movilizado en caso de falla. Peck, Hanson y Thornburn2 recomiendan que si el nivel freático está a una profundidad B o mayor bajo el nivel de desplante, se considere el peso específico que figura en el segundo término de la ecuación como no sumergido: si el nivel freático y el de desplante coinciden o el primero queda encima del segundo deberá usarse el valor y 'm; en casos intermedios, una interpolación lineal entre ambos valo­res de y será razonable. La posición del nivel de aguas freáticas se refleja además muy acusadamente en los costos de construcción de la cimentación, en el momento en que el nivel de desplante quede bajo dicho nivel freático, pues en­tonces la zona de cimentación habrá de ser drenada de ma­nera que el nivel del agua se abata y la excavación necesaria se realice en seco.

CAPITULO VIII

Page 317: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Algunos métodos útiles para abatir el nivel freático en exca­vaciones se mencionarán en el volumen III de esta obra. Finalmente, el hecho de que el nivel freático quede sobre el nivel de desplante puede conducir, cuando el espacio de ci­mentación desee aprovecharse, por ejemplo, para sótanos en edificios, al delicado problema de impermeabilizar estas zonas, lo cual es siempre difícil y costoso.

3. El ancho de la cimentación, según se deduce de la expresión 8-1, influye linealmente en la parte de la capacidad de carga que se refiere al peso del suelo situado bajo el nivel de des­plante: por el contrario, dicho ancho no influye en la parte de capacidad de carga que refleja el efecto de la sobrecarga existente sobre el nivel de desplante.

4. Por último, la profundidad de desplante, D¡, también influye en la capacidad de carga, según se desprende de la inspec­ción de la fórmula 8-1. No existe ningún criterio fijo para establecer apriorísticamente la profundidad de desplante que debe utilizarse en un proyecto dado; sin embargo, es posible mencionar algunas consideraciones generales que han de tenerse presentes para seleccionar una profundidad1'específica. Por muy bueno que sea un terreno de cimentación, no con­viene cimentar demasiado superficialmente, pues ello conduce a estructuras con poca resistencia a fuerzas laterales: un valor del orden de 1.0 m debe verse como un mínimo recomenda­ble; este valor pudiera rebajarse a otro del orden de 0.50 m en caso de que el suelo fuera extraordinariamente firme y la estructura ligera. Otra regla digna de tenerse en cuenta en la práctica es la de apoyar los cimientos siempre abajo de la capa de tierra vegetal, pues de otra manera pudieran pre­sentarse posteriormente problemas de muy difícil solución con plantas en crecimiento, aparte de lo indeseable del suelo con materia orgánica desde el punto de vista de resistencia y compresibilidad. También es preciso considerar siempre la posi­bilidad de la existencia de cavernas u oquedades en el sub­suelo o la presencia de estructuras subterráneas debidas al hombre, como por ejemplo ductos, colectores, cables, etc. La mayor parte de estos problemas pueden resolverse con la adecuada exploración.

El diseño de una cimentación poco profunda construida sobre suelos “friccionantes” es particularmente complicado cuando se atien­de al aspecto de asentamientos de la estructura. En efecto, como se mencionó en el Capítulo III, el problema del cálculo de asentamientos en arenas dista de estar razonablemente resuelto. Desde luego, todo lo que en el capítulo mencionado se expuso puede aplicarse a un problema práctico como norma de criterio, para llegar a tener una

MECANICA DE SUELOS (II) 293

Page 318: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

294 CAPITULO V III

idea del orden de las magnitudes en juego. En lo que sigue se propor­cionarán algunas ideas, basadas en el empirismo, que han probado su utilidad en muchos casos prácticos.

El asentamiento bajo una zapata en arena dependerá, como es natural, de las características esfuerzo-deformación de ésta; en espe­cial de la rigidez que presenta a los esfuerzos cortantes, la cual depende del confinamiento del material y de su propia compacidad. El primer concepto aumenta en forma toscamente lineal con la pro­fundidad en una arena, por lo que la mencionada rigidez seguirá una ley más o menos similar. Teniendo en cuenta que, como se dijo, el peso específico de una arena sumergida es del orden de la mitad del no sumergido, puede concluirse que el asentamiento bajo una zapata en arena sumergida se duplicará aproximadamente respecto al valor en la misma arena no sumergida, debido a que la presión de confinamiento en el primer caso depende del valor y'm en vez del de ym y, por ello, la rigidez del material al esfuerzo cortante se reduce prácticamente a la mitad. De esta manera, puede verse cómo la posición del nivel freático influye en la magnitud de los asen­tamientos de la arena.

A igual presión de contacto de una zapata en arena, el asenta­miento crece al crecer el ancho de la zapata, si bien con bastante lentitud; la razón de este hecho estriba en que, al aumentar el anchó se afectan zonas más profundas en que la rigidez ante esfuerzos cortantes va siendo más grande.

Para arenas no sumergidas o para casos en que el nivel freático se encuentre a una profundidad B, ancho de la zapata, o mayor respecto al nivel de desplante, Peck, Hanson y Thornburn2 propor­cionan gráficas empíricas para obtener la presión de contacto corres­pondiente a un hundimiento de 2.5 cm (1 "). Para diferentes anchos de cimiento y distintas compacidades de la arena, obtenidas por la prueba estándar de penetración (fig. V III-3).

Los valores de N, número de golpes en la prueba estándar, de­berán obtenerse en su caso, usando las correcciones indicadas en este mismo inciso. La dimensión B de las gráficas se refiere al ancho de la zapata, si ésta es cuadrada, o a su minima dimensión, si es rectangular. Si la arena estuviera sumergida, por lo arriba expuesto deberán reducirse a la mitad los valores dados por las gráficas para la presión admisible, correspondiente al asentamiento de 2.5 cm.

En ocasiones se ha usado la gráfica anterior para obtener las pre­siones de contacto correspondientes a otros asentamientos diferentes a 2.5 cm, haciendo la suposición de que el asentamiento es directa­mente proporcional a la presión de contacto; asi, por ejemplo, los valores de la presión de la gráfica, duplicados, corresponderán, para el resto de las condiciones invariables, a asentamiento bajo la zapata de 5 cm (2").

Page 319: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Eo■O

o•N CVIo»se

tuo Z3F— OO<rt— QCz Oo >-o <t

zUJo o

zzo o

F—to zUJ tuac a»Q-

t-zUJto

oO 1.5 3 4.5 6

A ncho de l a Z a p a t a , B , en m.FIG . VI11-3. Presión de contado correspondiente a asentamientos de 2.5 cm (1") para

zapatas en arena

MECANICA D E SU ELO S (II)

7

VIII-6. Cimentaciones en arcillas homogéneas

En lo referente al aspecto de capacidad de carga, las cimenta­ciones poco profundas en arcillas homogéneas pueden calcularse con las teorías de Terzaghi o de Skempton, tal como se expusieron, particularizadas pard'íel caso, en el Capítulo VII. Quizá la Teoría de Skempton sea la más completa para la aplicación al caso en estudio, pero la Teoría de Terzaghi proporciona valores muy simi­lares de la capacidad de carga, por lo que la distinción entre ambas teorías tiene más de académica que de real en cimentaciones poco profundas.

Page 320: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En cualquiera de los dos casos, la expresión a usar es del tipo: qe — c N c + yD ; (8-3)

La capacidad de carga última depende ahora esencialmente de la “cohesión" del material y de la presión actuante al nivel de des­plante (yDf). El ancho del cimiento no interviene si se aplica la Teoría de Terzaghi y su intervención es indirecta (a través de la re­lación de D /B ) en la Teoría de Skempton.

El valor de c puede obtenerse de una prueba triaxial rápida, que es la que mejor refleja dentro de un criterio de trabajo con esfuerzos totales, las circunstancias de la cimentación, en que la etapa inicial antes de la consolidación, suele ser la más crítica. Frecuentemente suele usarse como alternativa la prueba de compresión simple, algo más sencilla y rápida de ejecución; sin embargo, hay ciertos aspectos que hacen preferible la prueba triaxial rápida, cuando la disponibili­dad de equipo y otros factores hagan posible su realización. En general, la prueba de compresión simple proporciona valores de la resistencia del suelo ( “cohesión” ) algo inferiores a los de una prueba rápida; la razón estriba en la falta de soporte lateral que se tiene en una prueba de compresión simple, lo que hace que cualquier fisura o pequeña irregularidad estructural se refleje en el resultado de la prueba; por otra parte, la arcilla en la naturaleza posee siempre un cierto grado de confinamiento, por lo que, para una cimentación, suelen considerarse algo más representativos los resultados de una prueba rápida.

La capacidad de carga en arcillas homogéneas depende también, según se vio, de la presión existente al nivel de desplante (yD¡). En este caso existe una diferencia importante en el cálculo, según la cimentación sea o no impermeable, cuando el nivel de desplante quede bajo el nivel freático. En el primer caso, al nivel de desplante se habrá aliviado al terreno en una presión que es la total corres­pondiente a esa profundidad; por el contrario, en una cimentación permeable y por ello llena de agua hasta una altura igual a la del nivel freático, la descarga efectuada por la excavación no incluye a la presión del agua, por lo que el término yD¡, debe representar únicamente la presión efectiva y así debe ser calculado; por ello, deberá usarse el peso específico sumergido en la parte del suelo bajo el nivel freático, o bien deberá restarse a la presión total al nivel de desplante, la presión debida al agua en el mismo nivel.

En arcillas homogéneas el que el nivel de desplante quede bajo el nivel freático ya no suele ser un problema tan grave como en el caso de arenas; las arcillas por su impermeabilidad permiten mante­ner las cepas de excavación en seco con un bombeo moderado y no muy costoso. Ahora bien, si la excavación es de gran área y profun­didad, «1 botffteo no se podrá emplear despreocupadamente, pues el flujo de agua hacia la excavación, en el fondo de la misma, produce

296 CAPITULO VIII

Page 321: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 297

expansiones que posteriormente se traducirán en asentamientos de la estructura; en estos casos, lo indicado es o bien hacer la excava­ción en secciones de área menor o bien recurrir a métodos para disminuir el flujo del agua hacia el fondo de la excavación, tales como pozos de captación o similares, que se describirán en el Volu­men III de esta obra.

Otro problema de las excavaciones en arcillas especialmente de las relativamente profundas, es el que se refiere a la estabilidad de los taludes de las mismas y a los movimientos verticales y horizon­tales que se producen en las zonas adyacentes a la excavación pro­piamente dicha. La estabilidad probablemente ya difícil de por sí, por la baja resistencia común en las arcillas, se ve especialmente compro­metida por el flujo lateral del agua hacia la excavación. La disminu­ción de la resistencia al esfuerzo cortante que este flujo produce, así como el efecto de las fuerzas de filtración, son factores que deben considerarse en cualquier análisis de estabilidad a plazo rela­tivamente largo. En el Volumen III de esta obra se discutirán mé­todos para interceptar el flujo lateral del agua. El tablestacado es otra de las formas de estabilizar los bordes de una excavación, gene­ralmente preferible en zonas en que por existir edificaciones vecinas u otras causas similares, no sean tolerables desplazamientos en el terreno.

En regiones muy frías, según se explicó en el Capitulo I, el suelo se congela cuando la temperatura ambiente es inferior a 0°C. Esto produce expansiones que dependen tanto de factores ambienta­les como de la naturaleza del suelo. Una cimentación desplantada en este suelo se eleva durante la congelación y desciende brusca­mente en el deshielo; para evitar estos efectos perjudiciales, la cimentación deberá desplantarse a suficiente profundidad. La pro­fundidad máxima de congelación puede establecerse a partir de la experiencia local y la profundidad de desplante recomendable por este concepto será de ese orden en suelos muy susceptibles a la acción del congelamiento, pudiéndose llegar a la mitad de dicho valor en suelos poco susceptibles. En la República Mexicana los espesores máximos de congelamiento son del orden de 40 cm en el norte del país, por lo que puede decirse que el problema es inexis­tente, si se tiene en cuenta lo discutido respecto a la profundidad de desplante mínima recomendable en cualquier circunstancia.

Un aspecto muy importante en las cimentaciones poco profun­das en arcillas es el relativo a los cambios volumétricos que ocurren en el suelo al variar su contenido de agua; estas variaciones proceden por lo general de períodos de estiaje y lluvias, aunque a veces son causados por factores más limitados, como riego de ciertas áreas o la existencia de hornos o calderas inadecuadamente aisladas. En áreas cubiertas de gran extensión el efecto es siempre más notorio en los bordes que en el centro, más protegido, lo que se traduce en

Page 322: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

298 CAPITULO VIII

movimientos diferenciales que causan daños progresivos. En regio­nes áridas, basta la reducción de evaporación que produce una vi­vienda o un pavimento al cubrir el suelo, para producir humedeci- miento en la zona cubierta, con la correspondiente expansión; las grietas longitudinales de gran desarrollo que aparecen frecuente­mente en los hombros de las carreteras en estas zonas, tienen este origen. En las regiones húmedas el efecto es el contrario; cuando por alguna razón el suelo se seca, sobreviene el enjutamiento y el agrietamiento y cualquier estructura suprayacente se asienta y se daña.

A veces, el agua que los árboles absorben es suficiente para pro­ducir cambios de volumen de importancia; esto aparte del efecto destructor que las raíces pueden ejercer por sí mismas.

Estudios realizados por Holtz y Gibbs en el Bureau of Recla- mation y por Sowers y colaboradores 3•* han permitido ligar la sus­ceptibilidad de las arcillas a los cambios volumétricos con su índice plástico y su límite de contracción. Como resultado de tales estudios ha podido establecerse la siguiente relación empirica, que aparece en la Tabla 8-1.

TABLA 8-1Susceptibilidad a cam­bios de volumen por cambios de contenido

de agua

Indice de plasticidadLímite de ContracciónRegiones

áridasRegioneshúmedas

Poca 0-15 0-30 12 o másPoca a media 15-30 30-50 10-12Media a alta 30 o más 50 o más 10 o menos

Los cambios volumétricos son máximos en la superficie del suelo y nulos en la profundidad correspondiente al nivel freático; cuando éste no aparece dentro de la zona sujeta a cambios, la profundidad de esta zona es muy variable, dependiendo de los factores que pro­voquen la variación y de la naturaleza del suelo.

La profundidad de desplante deberá de quedar siempre bajo la zona sujeta a cambios volumétricos, cuando ésta puede ser determi­nada. Si esto último no es posible, el problema ha de ser resuelto con criterio y experiencia ceñidos a las condiciones locales.

En cimentaciones poco profundas en arcillas homogéneas el pro­blema de asentamientos por consolidación suele ser el factor domi­nante en su comportamiento, de manera que la presión admisible desde el punto de vista de la resistencia del suelo suele quedar limi­tada por el valor que produzca el máximo asentamiento tolerable para la estructura que se desea cimentar.

Los asentamientos por consolidación se calculan recurriendo a la Teoría de la Consolidación Unidimensional con Flujo Vertical, que

Page 323: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 299

se describió en el Volumen I de esta obra. Calculando los asenta­mientos que corresponden a cada elemento de la cimentación pueden obtenerse los asentamientos diferenciales, que son los que a fin de cuentas suelen interesar al proyectista de la estructura. Debe tenerse en cuenta que al calcular el asentamiento producido bajo una zapata, por ejemplo, deben hacerse intervenir las presiones que transmiten otras zapatas vecinas, situadas a distancias en que su influencia al­cance a hacerse notar.

En el cálculo de asentamientos por consolidación sólo deben in­tervenir las cargas muertas y las vivas permanentes, pues las cargas accidentales o transitorias actúan un tiempo pequeño en comparación al requerido para influenciar un proceso de consolidación.

Los asentamientos diferenciales que una estructura puede tolerar dependen de su función y de características de la propia estructura y no puede darse un criterio general al respecto; en este punto el ingeniero especialista en suelos ha de quedar subordinado a las ne­cesidades del ingeniero estructural.

Los asentamientos totales son muy importantes cuando existen estructuras vecinas a la considerada que pueden sufrir perjuicios por el movimiento de ésta o cuando existan instalaciones, ductos, etc., que no soportan sin daño los hundimientos resultantes.

VIII-7. Cimentaciones en arcillas fisuradas

Frecuentemente, por procesos sufridos por las arcillas a lo largo de su historia geológica, se presentan en su estructura masiva multi­tud de fisuras muy próximas, siguiendo una o más direcciones predo­minantes. En estas condiciones se tiene la dificultad práctica de no poderse labrar los especímenes necesarios para la realización de una prueba de resistencia al esfuerzo cortante. Además, si una mues­tra pudiera lograrse, las pruebas en sí serían de interpretación insegu­ra, pues la resistencia obtenida resultaría menor que la real; en una prueba de compresión simple, por la falta de confinamiento lateral, el error sería máximo, pero aún en una prueba rápida las fisuras supondrían planos de debilitamiento que influenciarían los resultados a no ser que la presión hidrostática de confinamiento fuera muy elevada.

A veces, en los laboratorios, se logran los especímenes por el procedimiento de elegir en una masa relativamente grande, por ejem­plo una muestra cúbica, un fragmento relativamente libre de fisuras; no hay que decir que los resultados de las pruebas realizadas gra­cias a este subterfugio tienen el defecto de ser poco representativos.

Quizá el mejor recurso para valuar la resistencia de una arcilla f¡surada para fines de cálculo de una cimentación, sea el realizar pruebas de carga con una placa, directamente sobre el terreno. Este

Page 324: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

300 CAPITULO VIII

procedimiento, no exento de defectos y limitaciones de importancia, ha rendido muchas veces buenos resultados prácticos.

En esencia el método consiste en cargar un terreno con una placa metálica cuadrada o circular, de unos 50 cm de lado o diámetro, llevándola a la falla. Considerando la presión de falla como la capa- cidad de carga última del terreno, es posible, operando a la inversa una fórmula del tipo 8-3, obtener el valor del parámetro c. Lá placa se coloca a diferentes profundidades dentro del estrato en estu­dio, generalmente haciendo una prueba cada metro, dentro de la profundidad afectada por el futuro cimiento. En el Anexo V lII-b se describe someramente la técnica de la prueba de carga y se discuten sus limitaciones más importantes.

Una vez determinado el valor de la resistencia, con las arcillas fisuradas se puede proceder como con las homogéneas, ya estudiadas anteriormente en este capítulo. Sin embargo, en el caso de los talu­des de las excavaciones, la resistencia obtenida en la forma arriba des­crita no puede utilizarse para análisis de estabilidad; de hecho, esta estabilidad puede calcularse muy difícilmente y el problema suele re­solverse con elementos de retención suficientes, cuando, por alguna razón, los taludes de la excavación no pueden tenderse a voluntad.

VIII-8. Cimentaciones en limos y loess

Actualmente se han perdido bastante los atributos distintivos de los suelos cuyo rango de tamaños cae en lo que las antiguas clasifi­caciones granulométricas llamaban limos. Hoy en los limos se distin­guen dos tipos, los plásticos y los no plásticos. El comportamiento mecánico de los primeros se asimila al de las arcillas de plasticidad baja o media; el de los segundos se asimila al de las arenas muy finas. Los limos pueden deber su plasticidad a un porcentaje de partículas de forma laminar o a su contenido de materia orgánica. JEl polvo de roca es el típico ejemplo de un limo no plástico, con Índice de plasticidad prácticamente nulo, en tanto que los limos or­gánicos que se encuentran en depósitos masivos, fluviales o lacustres suelen presentar características de plasticidad acentuadas.

La prueba de penetración estándar suele utilizarse para determinar la consistencia de los limos; se considera que si el número de golpes en la prueba es menor que 10, los limos son sueltos o suaves e in­adecuados para soportar cimientos. Cuando N es mayor que tal límite se considera que el material puede servir para los efectos se­ñalados y, en tal caso, la cimentación se calcula con los procedi­mientos indicados para arenas, si el limo es no plástico, o con los procedimientos indicados para arcillas, si el limo es plástico.

En el caso de limos plásticos normalmente consolidados, bajo el nivel freático, los asentamientos constituyen un problema de impor-

Page 325: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 301

tanda, comparable al que se presenta en arcillas; su cálculo puede hacerse a partir de la Teoría de la Consolidación de Terzaghi, con base en las correspondientes pruebas de laboratorio.

En limos sueltos o suaves, no adecuados para soportar cimientos, puede recurrirse al empleo de cimentaciones compensadas, descritas más adelante en este mismo capítulo, o bien a cimentaciones profun­das, analizadas en el Capítulo IX.

En muchos limos, la resistencia al esfuerzo cortante es debida, además de la fricción entre las partículas, a algo de cohesión produ­cida, por ejemplo, por un cementante. La mejor manera de determinar esa resistencia al esfuerzo cortante es recurrir a la realización de pruebas triaxiales, que permitan definir claramente la envolvente de resistencia del material. La prueba de compresión simple puede dar valores muy exagerados de la cohesión del material, a causa de la compresión existente entre las partículas, debida a la presión capi­lar del agua intersticial en el espécimen, que equivale a un confina­miento de importancia y que, por lo tanto, es una resistencia debida a fricción. La contribución real de la cohesión y de la fricción pro­ducto de presión capilar puede ponerse de manifiesto en la prueba de compresión simple repitiendo ésta con espécimen totalmente sumer­gido en agua; si el espécimen se derrumba o su resistencia es mucho menor que la del espécimen probado en el aire, quedará esta­blecido que lo que aparentaba ser cohesión es, en realidad, resis­tencia por fricción desarrollada por tensión capilar en el agua.

El loess es, como se describió en el Capítulo I del Volumen I de esta obra, un material de depósito eólico, formado por partículas del tamaño del limo o de la arena fina, ligadas por un cementante. La estructuración del material es abierta, de un tipo intermedio entre una estructura simple típica y una panaloide y a ella corresponden relaciones de vacíos relativamente altas.

Una característica fundamental de los depósitos de loess, desde el punto de vista de su capacidad para sostener una cimentación, es su poca uniformidad; en estos depósitos la resistencia puede variar grandemente en distancias o profundidades pequeñas. La prueba de penetración estándar es muy útil para verificar esta uniformidad, pero en cambio puede dar valores bajos de la resistencia, a causa de que la peculiar estructura del material facilita la penetración del muestreador.

Por sus especiales características el loess es un material en que es particularmente difícil calcular la capacidad de carga con mé­todos teóricos; asi, este es otro caso en que las pruebas de carga pudieran ser de utilidad, dosificándolas con criterio, de acuerdo con la uniformidad del depósito.

Los loess son generalmente depósitos no saturados, pero cuando se saturan el cementante se ablanda o se disuelve, perdiendo el con­

Page 326: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

302 CAPITULO VIII

junto su cohesión. En estas condiciones, su estructura sufre un co­lapso, que se traduce en un asentamiento brusco, posiblemente muy perjudicial. La elevación del nivel freático, el riego, fugas de agua de tuberías o la simple exposición a lluvias fuertes son elementos de saturación comunes que deben evitarse.

VIII-9. Cimentaciones en suelos estratificados

Todas las Teorías de Capacidad de Carga expuestas en el Ca­pítulo VII y aplicadas a diferentes casos más atrás en este mismo capítulo son válidas únicamente para suelos homogéneos; la estrati­ficación plantea un problema de heterogeneidad en principio no resuelto.

La frecuencia con que en la práctica se presentan cimentaciones poco profundas en suelos estratificados ha obligado, por otra parte, al uso de soluciones aproximadas con las que se espera poder llegar a resultados razonables. Frecuentemente, las soluciones empleadas para el caso están claramente inspiradas en las obtenidas para ma­teriales homogéneos.

Los casos más frecuentes de estratificación en la práctica son aquellos en que un estrato de arcilla firme se presenta sobre otro de arcilla suave o en que un estrato friccionante sobreyace a otro cohesivo poco resistente.

En estos casos, el efecto de la estratificación es una distorsión en la superficie de falla, que tiende a crecer en el estrato débil y a tener desarrollos mínimos en el más fuerte. Obviamente, para que lo anterior suceda es preciso que la frontera del estrato débil no es­té muy lejana del desplante del cimiento; en caso contrario, no se sabe muy bien cual sea el efecto de la presencia del estrato débil, pero su efecto va haciéndose de menor importancia, según la separación aumenta, al grado que cuando la separación es del orden de 2B, el efecto Je su presencia es prácticamente despreciable.

Para el caso de la secuencia de dos estratos arcillosos saturados, Button5 ha propuesto una solución basada en el análisis de su­perficies cilindricas de falla; los resultados de su método aparecen en la fig. VIII-4, en la que se dan los valores del factor de capa­cidad de carga N c, modificado para tomar en cuenta la presencia del estrato inferior, en función de la relación d/B, en que d es el espesor del estrato superior y B el ancho del cimiento y de la relación de las cohesiones de ambos estratos.

La solución de Button cubre tanto el caso mencionado, en que el estrato más resistente es el superior, como el caso inverso, quizá menos frecuente en la práctica. En la gráfica se ve que el efecto del estrato débil es disminuir la capacidad de carga del fuerte y esta disminución depende tanto de la relación de cohesiones de ambos

Page 327: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 303

F IG . V lll-4. Solución de Button para un sistema de dos estratos cohesivos

estratos, como de la relación d/B. Por el contrario, cuando el estrato débil está arriba, el hecho de tener un estrato resistente abajo hace que su capacidad de carga aumente. Si el estrato inferior es mucho más resistente que el superior, la superficie de falla es tangente a éste y no influye en la capacidad de carga del cimiento la resistencia del estrato inferior, por alta que sea; esto se pone de manifiesto, para una cierta relación d/B, por la horizontalidad de las lineas de la figura, después de que se alcanza un cierto valor de la relación

Si los estratos no son puramente cohesivos, no existen soluciones del tipo de la de Button, arriba tratada. En este caso la estratificación puede ignorarse, calculando la capacidad de carga del cimiento sobre un suelo ficticio homogéneo, obtenido promediando proporcionalmen­te valores de los parámetros de resistencia de los dos estratos. Sin embargo, para poder hacer esto es necesario que las características de los dos estratos no sean demasiado diferentes, en cuyo caso el promedio no tiene sentido. Suele considerarse que ya no pueden pro­mediarse valores que difieran entre sí más de un 50%, dentro de la profundidad significativa del cimiento.

Cuando se tiene un estrato resistente con cohesión y fricción sobre un estrato débil, en condiciones tales que no pueda hacerse el promedio proporcional arriba propuesto, en la práctica se ha

Page 328: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

304 CAPITULO VIII

recurrido, para tomar en cuenta la presencia del estrato débil a un artificio que hace uso de la Teoría de Boussinesq. Según éste, se compara la capacidad de carga del estrato débil, calculada supo­niendo que el cimiento llega al nivel de su frontera superior y con­siderando al estrato suprayecente como una sobrecarga, con el esfuer­zo máximo que el cimiento le envía desde su verdadero desplan­te, calculado éste con la Teoría de Boussinesq. De este modo, la capacidad del estrato débil puede limitar al esfuerzo admisible de proyecto para la cimentación. En el cálculo del esfuerzo máximo transmitido por el cimiento deben hacerse intervenir cimientos ve­cinos, colocados a distancias en que se alcance a sentir su presencia.

VIII-10. Capacidad de carga admisible. Factor de seguridad

Todas las capacidades de carga que hasta ahora se han mencio­nado corresponden, como repetidamente se ha insistido, a valores a la falla, es decir, a valores tales que si esos esfuerzos se comu­nicaran al material, este quedaría en estado de falla incipiente. Huelga decir que estos valores no son los que en la práctica se asignan a las cimentaciones reales. Nace así el concepto de capacidad de carga admisible o de trabajo, que es con la que se diseñará una ci­mentación, La capacidad de carga admisible en un caso dado será siempre menor que la de la falla y deberá estar suficientemente lejos de ésta como para dar los márgenes de seguridad necesarios para cubrir todas las incertidumbres referentes a las propiedades de los suelos, a la magnitud de las cargas actuantes, a la teoría espe­cífica de capacidad de carga que se use y a los problemas y des­viaciones de la construcción.

En la práctica se ha generalizado la costumbre simplista de expresar la capacidad de carga admisible por una fracción de la capacidad de carga a la falla, obtenida dividiendo ésta entre un número mayor que 1, el cual se denomina factor de seguridad (F ,) . Sin embargo, por lo menos para el caso de suelos puramente cohe­sivos, el anterior criterio es erróneo, tanto desde el punto de vista conceptual, como del punto de vista., del valor numérico de la capa­cidad de carga que con él se obtiene.

En efecto, considérese de nuevo el modelo mecánico de la ba­lanza de Khristianovich, descrito en el párrafo VI-1, en el que se desea calcular el máximo Q que puede ponerse en un platillo, cuando en el otro actúa ün peso P y cuando existe un cierto monto de fric­ción en las guías de la balanza, sin que el platillo con Q baje y el otro suba, produciéndose el desequilibrio. Ya se dijo que la Q máxima compatible con el equilibrio es igual a P más el valor de la fricción desarrollada en las guías, que colabora al equilibrio de la balanza, oponiéndose ahora a Q. En el caso de que se quiera tener cierto

Page 329: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

grado de seguridad contra el desequilibrio de la balanza, pudiera ocurrirse reducir el valor de Q, por ejemplo a la mitad en cuyo caso pudiera pensarse a la ligera que se estaba aplicando un factor de seguridad de 2 al desequilibrio de la balanza. De este modo, en un platillo quedó P, en el otro Q/2 y, además actúa la fricción. Sin embargo, hacer esto, posiblemente produjo el desequilibrio de la balanza en sentido contrario; es decir, levantándose el platillo con Q/2 y bajando el platillo con P ; para que este desequilibrio ocurra bastará que la diferencia P — Q/2 sea mayor que la fricción en las guías. De este modo, al disminuir la carga Q a la mitad, no se produjo seguridad, sino desequilibrio. Es evidente en este caso que el factor de seguridad debe aplicarse únicamente a aquella parte de Q que exceda al valor de la carga del otro platillo P. La condición de máxi­ma seguridad corresponde al caso P — Q. en el que toda la fricción garantiza el equilibrio de la balanza.

Análogamente, en el caso de una cimentación en suelo puramente cohesivo, se vio que la capacidad de carga última está dada por una expresión del tipo:

qc — cNc + yDf

Si se medita sobre lo dicho en la sección V I-1, se ve que qc repre­senta la carga de un platillo, yD¡ la carga en el otro y el término debido a la resistencia del suelo, cNc. la fricción en las guías de la balanza. Razonando como antes se concluye que la condición de máxi­ma seguridad es

qc = y D f

Pues entonces la resistencia del suelo está toda en reserva. En el caso de aplicar un factor de seguridad, éste deberá actuar sólo sobre la parte de qc que exceda a yD¡, es decir, sobre cNc. De este modo resulta:

qai = ^ l + yDf (8-4)

donde qai es la capacidad de carga admisible o de trabajo. El crite­rio ahora expuesto, conduce a conclusión bien distinta a la que se llega dividiendo toda la capacidad de carga de falla entre el factor de seguridad. De hecho, esta última operación pudiera, como en el caso de la balanza, conducir a valores inseguros y, en todo caso, llevará a soluciones antieconómicas.

En el caso de suelos puramente friccionantes, la capacidad de carga es mucho mayor que la presión actuante al nivel de desplante, por lo que el dividir la capacidad de carga última total entre un factor de seguridad produce un error, que si bien conceptualmente21—Mecánica de Suelos II

MECANICA DE SUELOS (II) 305

Page 330: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

306 CAPITULO VIII

hablando es idéntico al comentado para suelos puramente cohesivos, es en cambió, numéricamente muy pequeño; por esta razón la capa­cidad admisible de un suelo friccionante suele obtenerse en la prác­tica con la mencionada expresión simplista:

qas = * - (8-5)

Los valores de F e a usar en un caso dado en la práctica pueden variar algo según la importancia de la obra y el orden de las incer- tidumbres que se manejen; en rigor debería de ser diferente en cada caso y producto de un estudio de ese caso. Sin embargo, en aras de simplicidad, existen valores típicos aceptados por la costumbre que se aplican a las cimentaciones poco profundas. Así, si en el análisis de las cargas actuantes se consideran sólo las permanentes es reco­mendable usar un F , mínimo de 3. Si se toman en cuenta cargas permanentes y carga viva eventual, el valor anterior puede reducirse a 2 o 2.5. Si, además, se consideran efectos de sismo en regiones de tal naturaleza, el factor de seguridad puede llegar a tomar valores tan bajos como 1.5.

A veces es conveniente verificar el factor de seguridad corres­pondiente a los tres casos anteriores independientemente.

Todo lo anterior se refiere a problemas de falla en las cimenta­ciones; sin embargo, como ya se dijo, hay casos en que el asenta­miento representa la condición dominante. En estos casos habrá de usarse una capacidad de carga aún menor que la admisible y tal que los hundimientos del subsuelo sean compatibles con el buen funcionamiento de la estructura.

Vm-11. Cimentaciones compensadas

El principio en que se basan estas cimentaciones es bien sencillo; se trata de desplantar a una profundidad tal que el peso de la tierra excavada iguale al peso de la estructura, de manera que al nivel de desplante el suelo, por así decirlo, no sienta la substitución efectuada, por no llegarle ninguna presión en añadidura a la originalmente existente.

Este tipo de cimentación exige, por supuesto, que las excavacio­nes efectuadas no se rellenen posteriormente, lo que se logra o con losa corrida en toda el área de cimentación o construyendo cajones huecos en el lugar de cada zapata. El primer tipo de cimentación es usual en edificios compensados, el segundo en puentes, por ejemplo.

Las cimentaciones compensadas han sido particularmente utiliza­das para evitar asentamientos en suelos altamente compresibles, pues, teóricamente, los eliminan por no dar al terreno ninguna sobrecarga.

Page 331: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 307

Sin embargo, como el proceso de carga no es simultáneo con el de descarga, resultado de la excavación, tienen lugar expansiones en el fondo de ésta, que se traducen en asentamientos cuando, por efecto de la carga de la estructura, dicho fondo regrese a su posición ori­ginal. Así. los problemas principales de una cimentación compensada emanan de la excavación necesaria, generalmente profunda.

Todo lo anterior se refiere a las cimentaciones denominadas de compensación total, en las que el peso de la estructura es igual al de la tierra excavada. También existe, por supuesto, la compensación parcial, en donde el peso de la tierra excavada compensa únicamente una parte del peso de la estructura, en tanto que el restante se toma con pilotes o descanso sobre el terreno, si es que la capacidad de carga y la compresibilidad de éste lo permiten.

En el Anexo VIII-c se dan ideas complementarias sobre cimenta­ciones compensadas.

VIII-12. Cimentaciones en roca

El problema de las cimentaciones en roca es bien diferente del que se tiene en las cimentaciones ordinarias sobre suelo; en realidad, corresponde más bien su estudio a la Mecánica de Rocas, nuevo cam­po de la Ingeniería, en rápida expansión. Sin embargo, en aras de complementar la exposición correspondiente a este capítulo, en lo que sigue se dan algunas ideas sobre cimentaciones construidas so­bre roca.

En las cimentaciones sobre roca, el asentamiento no suele ser una limitación para el diseño, pues dada la rigidez del material, suele ser completamente despreciable. La resistencia del material al es­fuerzo cortante tampoco suele ser condición critica en una roca, con­siderada masiva. Los problemas emanan ahora de dos fuentes; por un lado de los defectos, tales como grietas o fisuras, que la roca pueda tener y por otro, de los altos esfuerzos que soporta la estructura propiamente dicha que constituye la cimentación, emanantes de las altas presiones de contacto que se toleran.

La resistencia de una roca suele obtenerse de una prueba de compresión simple o suele estimarse. También ahora las pruebas de tipo triaxial son más convenientes, pero el equipo y el personal para su realización no están disponibles frecuentemente, por lo que gene­ralmente el dato con el que se ha de trabajar es q„, resistencia a la compresión simple. Si tal es el caso, es usual suponer <j> ~ 0, lo cual no es realmente correcto, según indican las pruebas triaxiales, y calcular.

Page 332: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Con este valor de c, la capacidad de la roca puede calcularse con alguna de las teorías ya tratadas, utilizando una expresión del tipo qe — cNc. Una vez calculada la capacidad de carga a la falla, puede usarse un factor de seguridad del orden de 3 para obtener la capaci­dad de trabajo.

Uno de los problemas prácticos que puede presentar la roca como material de cimentación es que se presente en un manto inclinado, sobre el que haya peligro de que deslice la cimentación. Esto puede ocurrir cuando la inclinación de la roca sea mayor que 30°, hasta cuyo límite puede decirse que las normales precauciones de construc­ción para lograr una buena adherencia entre la roca y el concreto de los elementos de cimentación, bastan para prevenir el peligro. En inclinaciones mayores debe recurrirse a anclajes, escalonamientos e ideas similares que combatan el riesgo de deslizamiento.

Si la roca sobreyace a suelos blandos, debe tenerse en cuenta que la deformación de éstos puede afectar a aquéllas; el riesgo de que la capa de roca falle por flexión puede, por su parte, analizarse con las técnicas que sirven para diseñar un pavimento rígido, expuesto en un capítulo posterior de este volumen.

En roca agrietada, fisurada o junteada, han de ser las zonas más débiles las que limiten las cargas de diseño a emplear en un caso dado y, en estos casos, conviene elevar el factor de seguridad que se utilice a valores del orden de 5 o aún mayores.

Un riesgo de importancia por su frecuencia en ciertos tipos de rocas como calizas por ejemplo, es la presencia de oquedades, o caver­nas dentro de la profundidad que afecta la cimentación y bajo ella. Siempre deberá explorarse convenientemente el terreno de cimenta­ción para excluir esta posibilidad. Si las cavernas existen y su techo ofrece peligro de no sustentar la cimentación será necesario corregir el defecto, rellenándolas o prolongando la cimentación hasta su piso.

También exige cuidado el colocar un cimiento en un corte o talud de roca, especialmente si las grietas o juntas que ésta pudiera pre­sentar tuviesen un echado hacia el corte o talud. Ahora es de gran importancia la naturaleza del material que pueda llenar las grietas, sobre todo en lo referente a su estabilidad ante agua y a su plasti­cidad. En casos como éstos, el uso de banderillas metálicas de anclaje ha sido de utilidad.

En la fig. VIII-5 se presentan gráficamente algunos de los pro­blemas frecuentes en cimientos sobre roca, con algunas soluciones usadas en la práctica.

Vm-13. Cimentaciones en taludes

Meyerhof7 ha propuesto un método para tomar en cuenta el hecho de que un cimiento se encuentre desplantado en las proxi-

308 CAPITULO VIII

Page 333: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 309

a) Situación inconveniente pro­ducto do exploración defec­tuosa

SUELO

SUELO BLANDOc) Falla por flexión a causa de

la cadencia de un suelo blan­do subyacente a una capa de

e) Relleno con concreto de gran­des grietas

b) Anclaje para prevenir desli­zamiento

d) Cimentación en talud, con echado desfavorable, ilus­trando el uso de banderillas de anclaje

f) Presencia de cavernas bajo la cimentación (inadmisible)

FIG. V I11-5. Problemas relacionados con cimentaciones en roca

Page 334: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

310 CAPITULO V III

midades de un talud, a fin de evitar que su presencia produzca la falla de éste por deslizamiento. En el Anexo VlII-d se presentan las gráficas respectivas, que limitan la capacidad de carga por este concepto; dichas gráficas se refieren a cimientos continuos.

VIII-14. Socavación

Una corriente de agua que se desplaza en su cauce o en una zona de inundación tiene una cierta capacidad de suspender y arrastrar partículas sólidas que constituyen el lecho sobre el que ocurre el flujo. Este movimiento de material sólido en corrientes aluviales es un fenómeno complejo que depende de diversos factores, tales como la configuración geológica y topográfica del cauce, las características del material de arrastre y las características hidráulicas de la corrien­te. Esto produce la llamada socavación normal en el lecho de la corriente. Cuando se coloca un obstáculo dentro del cauce, como una pila de apoyo de un puente, se modifican localmente las con­diciones de escurrimiento, cambiando en consecuencia la capacidad de arrastre en la zona vecina a la obstrucción. Si esta capacidad es mayor que la proporción con que la corriente alimenta a la zona con material sólido, se producirá en ésta una socavación adicional a la normal de la corriente; en caso contrario se producirá un depósito.

F a lla p o r socavación (c a r re te ra cos tera d e l P a c if ic o en G u e rre ro )

Es evidente que el conocimiento de la profundidad a que puede llegar la socavación total y las características de este fenómeno son de fundamental importancia para el diseño de cimentaciones poco

Page 335: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

profundas, en el caso de puentes y aún de otras estructuras cons­truidas en zonas inundables. Innumerables fallas de puentes han ocurrido cuando la profundidad de desplante de las pilas ha quedado arriba del nivel alcanzado por la socavación normal, más la adicional impuesta por los obstáculos que la cimentación representa.

El problema de determinar el poder de socavación normal de una corriente es uno de los más complicados a los que puede enfren­tarse el ingeniero, pues la socavación producida durante al aumento de capacidad de arrastre que el río adquiere en creciente por au­mento de velocidad, se rellena cuando la corriente vuelve a su estado normal, no quedando huella aparente del fenómeno.

Se han intentado soluciones teóricas del problema, pero dadas las incertidumbres envueltas, su valor es hasta cierto punto dudoso. La otra fuente de conocimiento disponible es la que emana del análisis de corrientes reales o de experimentos en modelos de laboratorio; estos estudios son los más prometedores y de hecho han rendido ya resultados prácticos muy satisfactorios.

En muchos ríos, la profundidad normal de socavación es del orden de la diferencia de los tirantes en condiciones ordinarias y en creciente máxima, pero este dato no puede considerarse regla confia­ble, pues se han encontrado corrientes en que la socavación alcanza el triple y aún más de tal valor y otros casos en que, por el contrario, dicho valor es exagerado.

En el Anexo VHI-e se dan algunas reglas para calcular la profundidad de socavación y se describe un método propuesto para impedir, por lo menos parcialmente, que se produzca. También en el Volumen III habrá un Apéndice dedicado al tema.

Vni-15. Falla de fondo en excavaciones de arcillaCuando se construyen excavaciones para fines de cimentación

se plantean una gran cantidad de problemas prácticos, algunos de los cuales ya han sido someramente tratados en párrafos anteriores. Sin embargo, no se ha mencionado el que constituye una de las causas de falla más frecuentes y peligrosas en excavaciones abiertas en arcillas: la falla del fondo de la excavación,

En este tipo de falla ocurre un asentamiento del terreno vecino, acompañado por el levantamiento generalmente rápido del fondo de la excavación; lo que sucede es que el material vecino fluye hacia el centro de la excavación, que se levanta correspondientemente. Este tipo de falla ha sucedido en zanjas para tubos y drenajes y en exca­vaciones relativamente profundas.

Las excavaciones para fines de cimentación se realizan lo sufi­cientemente rápidas como para que sean despreciables los cambios en presión neutral dentro de la arcilla, por lo que todos los análisis

MECANICA DE SUELOS (II) 311

Page 336: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de estabilidad pueden hacerse con datos provenientes de pruebas triaxiales rápidas.

La capacidad de carga de una arcilla, a la profundidad Uf esta dada, por ejemplo según la fórmula de Skempton (Capítulo V II), por

qc - cNc + Y D}

Si sobre el suelo existe una sobrecarga de magnitud q, el valor de qc pasa a ser

312 CAPITULO VIII

qc = cNc + Y Df + q ( 8-6 )

En el segundo miembro de la ec. 8-6, el término cNc repre­senta la resistencia del suelo a lo largo de una superficie de falla, en tanto que el término yD¡ + q representa el esfuerzo al nivel de des­plante debido al peso del suelo suprayacente y a las sobrecargas que hubiere. En el caso de una excavación, en el instante de falla de fondo incipiente (fig. VIII-6), la resistencia a lo largo de la super­ficie de falla (cNc) se opone al flujo del material del talud hacia el fondo de la excavación, a donde tiende a moverse por efecto de la presión yD¡ + q. Es evidente que, en el instante de falla de fondo incipiente, se tendría:

(8-7)

Page 337: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 313

La fórmula 8-7 da la profundidad máxima a que puede llevarse la excavación, sin que falle por fondo. En la realidad, será necesario adoptar una precaución adicional por medio de un factor de seguridad; así

y D í + q = ^ (8-8)

de donde

F . = (8-9)Y D¡ + q

La expresión 8-9 permite calcular la seguridad de la exca­vación contra falla de fondo. En la práctica un valor de 1.5 para F , parece ser suficiente en todos los casos, pues la aproximación de los cálculos resulta del orden de ± 20% , cuando se les compara con los resultados obtenidos de fallas reales.10

Una observación de interés es que la falla de fondo es indepen­diente de la falla del talud como tal y no es causada por un mal ademado de los mismos. De hecho en una excavación no ademada la falla de talud siempre ocurre antes que la de fondo, pues el número de estabilidad de un talud es como mínimo 4 y como máximo 5.3 (recíprocos de 0.25 y de 0.181, respectivamente), como se vio en el Capítulo V, números que son menores que 6.2, valor mínimo de N c, según la teoría de Skempton, para una excavación cuadrada. Así, tóericamente, la falla de fondo sólo puede ocurrir en excavacio­nes ademadas, en que la falla de los taludes está restringida; sin embargo, la distorsión que la falla de fondo implica, puede llevar a la excavación a un colapso más general.

ANEXO VHI-a

Consideraciones adicionales sobre el contacto suelo-estructura

En el párrafo III-a.2 del Anexo Ill-a se dieron algunas fórmulas para calcular dentro de la Teoría de la Elasticidad, los asentamientos bajo áreas circulares y rectangulares uniformemente cargadas. El asentamiento total así obtenido puede dividirse en dos partes: el debido a la distorsión del medio (cambio de forma) y el debido a cambio de volumen. La influencia de uno u otro dentro del total, en medios linealmente elásticos, puede cualificarse haciendo variar con­venientemente el valor de la relación de Poisson, p. En efecto, si p = 0.5 se tiene el material incompresible, según la teoría lineal

Page 338: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

314 CAPITULO VIII

de la Elasticidad, por lo que el asentamiento que en él se pro duzca tiene que deberse exclusivamente a cambio de forma. Así 1¡ expresión:

8C = ( 1 - p 2) - g - D (3-a.4)

ya vista para el caso del asentamiento bajo el centro de un áreacircular uniformemente cargada, particularizada para p = 0.5, darála parte de 8< que se debe a cambio de forma únicamente.

8c = 0.75 g -D ( 8 - a . l )

Por otra parte, según la Elasticidad, no puede haber un valor de p más diferente de 0.5 que el valor p = 0. En un material con tal constante, el asentamiento total bajo la placa sería

8C = -g- D (8-a,2)

Puede pues verse que, en los casos más distantes, el asentamiento por cambio de forma representa un 75% del asentamiento total, de donde se deduce que el valor relativo del hundimiento por cambio de volumen no excederá de un 25% del total.

El anterior es, por supuesto, un razonamiento estrictamente teó­rico y con él se llega a conclusiones bastante razonables para los materiales que poseen circunstancialmente un comportamiento lineal­mente elástico, tales como el acero: sin embargo, en suelo las cosas son bien distintas, pues, por ejemplo en las arcillas, el asentamiento por cambio de volumen (consolidación) es mucho mayor que el de distorsión, al grado de que este último suele ignorarse sin cometer con ello un error serio; en estos campos, la utilidad de las fórmulas tales como las 3-a.4 se reduce, para el caso de arcillas saturadas, a un medio más o menos tosco para el cálculo de asentamientos inme­diatos, anteriores a todo proceso de consolidación. En estas condi­ciones, es obvio que el valor de p conveniente será p = 0.5. La apli­cación quizá más importante de estas ecuaciones en la práctica es el cálculo de deformaciones bajo carga transitoria, como el viento, o la interpretación de pruebas de carga de muy corta duración.

Considerando las limitaciones señaladas, puede resultar útil gene­ralizar la expresión 3-a,4, de modo que resulte aplicable a otras formas de placa cargada. En efecto, el asentamiento bajo una placa flexible uniformemente cargada puede, en general, expresarse como:

i __n,2Z = ^ - p B h (8-a,3)

Page 339: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SU ELO S (II) 315

donde B es el ancho del elemento transmisor de la carga, h es un factor de influencia que depende del punto en que se mida el asen­tamiento y de la forma del área cargada y las demás letras tienen los significados normales.

En la Tabla 8-a.l se dan algunos valores-útiles de la1.

TABLA 8-a.l

Forma del área cargada.

Valores de le

Bajo el Centro

Bajo la Esquina Promedio

Cuadrado 1.12 0.56 0.95Rectángulo (L/B = 2) 1.52 0.76 1.30

(L/B = 5) 2.10 1.05 1.83(L/B = 10) 2.54 1.27 2.20

Círculo * 1.00 0.64 (borde) 0.85

* Usando D, diámetro, en lugar de ñ, ancho, en la expresión 8-a.3.

Nótese que en áreas rectangulares, el asentamiento bajo una esquina es la mitad que bajo el centro del rectángulo.

El asentamiento elástico crece linealmente con la presión, p. y con el ancho del cimiento, B.

ANEXO VHI-b

Pruebas de carga en Arcillas Fisuradas

Para efectuar una prueba de carga con placa, para fines de cálculo, de cimentaciones poco profundas, la placa deberá colocarse centrada en el fondo de una excavación, cuyo ancho sea del orden de cuatro veces el diámetro o lado de la placa y cuya profundidad sea la del nivel a que se desea calcular la capacidad de carga. La razón de la especificación sobre el ancho de la excavación es eliminar el término que se refiere a la sobrecarga (y D¡) de la fórmula a usar, para lo cual es preciso que quede excavada a los lados de la placa una zona suficiente para abarcar las zonas de falla que se desarrollen.

El lado o diámetro de la placa depende fundamentalmente del espaciamiento de las fisuras en el suelo, del tamaño del cimiento y del grado de uniformidad de la arcilla en lo referente a resistencia. Sin embargo, la experiencia ha comprobado que una placa de 50

Page 340: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

316 CAPITULO VIII

cm de lado o diámetro, según sea cuadrada o circular, satisface todas las exigencias.

La placa deberá tener sobre el suelo un apoyo completo, por lo que es recomendable colocar entre la placa y el suelo una pequeña cama de arena del mínimo espesor suficiente para rellenar las irre­gularidades del fondo de la excavación.

El dispositivo de carga puede ser de dos tipos. Uno, muy simple y económico, que consiste en una pequeña estructura de madera o acero colocada sobre la placa, con una plataforma en la que se colo­cará la carga como lastre. El segundo, más elaborado, en el cual se da la carga con un gato hidráulico, que reacciona contra una viga metálica o una pequeña estructura, las que se anclan en el terreno o se lastran suficientemente. En la fig. VIII-b.l se muestran esque­mas de estos dispositivos.

FIG. V III-b.l. Esquemas de dispositivos para pruebas de carga de placaa) Con plataformab) Con viga lastradac) Con estructura anclada

El uso del gato hidráulico permite controlar la velocidad de la prueba y el proceso de carga de un modo muy efectivo, pero requiere de la presencia constante de un operador; la plataforma con carga muerta no tiene esta desventaja, pero es más burda.

Page 341: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Durante la prueba deberán de medirse las deformaciones que la placa vaya sufriendo. Esto puede lograrse con un nivel fijo o, más precisamente, con un micrómetro montado sobre una estructura inde­pendiente apoyada a suficiente distancia de la zona afectada por la prueba.

Los incrementos de carga que se vayan aplicando deberán de ser del orden de un décimo de la carga de falla estimada o del orden de un quinto de la carga de trabajo propuesta. La prueba deberá conti­nuar hasta obtener la falla completa de la placa o hasta el triple de la carga de trabajo. Cada incremento deberá mantenerse constante hasta que la velocidad de asentamiento de la placa sea menor que0.005 cm/h, debiéndose hacer lecturas de la deformación a intervalos crecientes tales como 1, 2, 5, 10, 30 min, 1 h, 2 h. Al final de la acción del incremento se dibujará la curva asentamiento-tiempo, en la cual se podrá medir la velocidad de asentamiento; al final de la prueba se dibujará una gráfica que relacione los asentamientos fina­les de cada incremento de carga con el valor de éstos; en esta gráfica, por lo general, puede distinguirse la carga de falla, señalada como un quiebre brusco entre dos ramas rectas prácticamente, que constituyen la curva. En la fig. VIII-b.2 aparecen dos curvas típicas tiempo-asentamiento, para un incremento de carga y carga-asenta­miento.

Los resultados de una prueba de carga no representan las condi­ciones a largo plazo de un cimiento real bajo carga; la prueba es demasiado corta para ello. Además la prueba debe interpretarse cui­dadosamente relacionando sus resultados con los de una exploración completa del terreno; de otro modo, es posible cometer errores de interpretación muy importantes. Como ejemplo, baste citar el de un estrato de arcilla más o menos dura que sobreyazca a un depósito de arcilla muy blanda; por su pequeño tamaño, los efectos de la placa de prueba pueden no llegar a la arcilla blanda en forma apreciable, lo cual dará a los resultados de la prueba un cariz opti­mista que pudiera no confirmarse cuando la zapata real, mucho más grande, alcanzara a afectar a la arcilla blanda con niveles de esfuerzo de importancia. Casos como el anterior obligan a repetir la prueba de placa en diversos niveles (generalmente de metro en metro) dentro de la profundidad significativa de la zapata prototipo, que equivale, aproximadamente, a dos veces el ancho de la misma; pero aün con estas precauciones las posibilidades de errores serios de interpretación de la prueba subsisten, cuando los resultados de ésta no se analizan con el debido criterio.

Huelga decir, al tener en cuenta todo lo anterior, que la prueba de carga no dice absolutamente nada de cuales vayan a ser los asentamientos totales por consolidación que sufrirá la zapata real. Así, el valor de estas pruebas se limita al cálculo de la capacidad de

MECANICA DE SUELOS (II) 317

Page 342: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

318 CAPITULO VIII

F IG . Vl|l-b.2. Curvas asentamiento-tiempo y carga-asentamiento en una prueba de cargacon placa

Page 343: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 319

carga última de los suelos; como método en este campo su valor es menos seguro que un análisis completo basado en exploración, muestreo y pruebas de resistencia al corte, por lo que estas pruebas de carga deben circunscribirse a las arcillas fisuradas en que, como se dijo, no pueden realizarse dichas pruebas de esfuerzo cortante por las condiciones prácticas ya señaladas.

ANEXO VIII-c

Cimentaciones compensadas

Por cimentaciones compensadas se entienden en este Anexo aque­llas totalmente compensadas o compensadas parcialmente en las que el resto de la carga se transmite al suelo por apoyo directo, por permitirlo así la capacidad de carga de éste y por resultar los asen­tamientos que se produzcan dentro de limites tolerables para la estructura de que se trate.

En lo referente a la presión adicional a la compensada que el suelo pueda tomar por capacidad de carga, el análisis se reduce a lo tratado en el cuerpo de este capítulo y en el Capítulo VII. El análisis de asentamientos que produzca la parte de presión no compensada suele ser el punto fundamental de los cálculos a efectuar; se realiza en la forma usual, es decir, aplicando la Teoría de Consolidación de Terzaghi y frecuentemente limita la parte de la presión de la estructura que pueda quedar sin ser compensada y, por lo tanto, obliga a efectuar excavaciones de la profundidad necesaria para la compensación suficiente.

En suelos altamente compresibles y normalmente consolidados no puede darse ninguna presión en añadidura de la previamente existen­te, pues cualquier incremento actuaría sobre la rama virgen de la curva de compresibilidad de la arcilla, causando fuertes asentamien­tos. En cambio, si la arcilla es preconsolidada podrá darse al suelo algo de presión por arriba de la previamente existente, con tal de que dicho exceso no llegue a afectar la rama virgen de la curva de compresibilidad y quede dentro de la rama de recompresión, con lo que los asentamientos resultantes serán bajos. Sin embargo, no basta para poder aprovechar la capacidad del suelo el que exista a niveles próximos a la cimentación por construir un manto más o menos preconsolidado; será siempre necesario verificar que a mayor pro­fundidad no existan mantos de arcilla muy compresible a los que puedan llegar, desde la cimentación, esfuerzos que sobrepasen su carga de preconsolidación y afecten los tramos vírgenes de sus curvas de compresibilidad, pues los asentamientos totales resultantes serían en este caso grandes. La verificación anterior habrá de hacerse comparando los perfiles de carga de preconsolidación con los esfuer­

Page 344: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

zos transmitidos por el exceso de presión que se dejó en la cimenta- ción, sumados a la presión efectiva que el suelo tenga por peso propio. El cálculo de los esfuerzos transmitidos suele hacerse apli­cando la Teoría de Boussinesq.

En relación a la presión en exceso de la existente previamente que puede dejarse actuar en una cimentación compensada en suelo preconsolidado, L. Zeevaert6 recomienda que su valor se limite q

Ap < y (Pc — Po) (8 -c . l )donde

Ap = incremento de presión en la cimentación sobre la presión previamente existente.

pc — carga de preconsolidación.po — presión efectiva en el suelo, por peso propio.

La limitación anterior deberá de verificarse, según se dijo más arriba, a cualquier profundidad abajo del nivel de desplante.

Para fines de cálculo del peso del material excavado para una cimentación compensada, la presión a considerar al nivel de des­olante es la total, en caso de ser la cimentación impermeable, pues la descarga incluye a las partículas del suelo y al agua. Si la cimen­tación fuese permeable, el agua abajo del nivel freático no se descar­garía, lo que equivale a considerar para la descarga al nivel de des­plante a la presión efectiva del suelo.

En suelos de compresibilidad no muy alta posiblemente esté justi­ficado dejar que la cimentación aplique presiones de cierta magnitud, aún invadiendo el tramo virgen de la curva de compresibilidad del material, siempre y cuando un detallado análisis de asentamientos indique que los resultados de tal criterio son tolerables para la estruc­tura en estudio.

320 CAPITULO VIII

ANEXO Vffl-d

Cimentaciones en Taludes

En la ref. 7, Meyerhof estudia el caso de cimientos poco pro­fundos construidos en taludes, combinando su propia teoría de capa­cidad de carga con los estudios referentes a la estabilidad de aquéllos. Se consideran dos casos diferentes para el cimiento; en el primero el cimiento está colocado sobre la ladera del talud, en tanto que en el segundo está sobre la corona del terraplén, pero a distancia tal del borde del talud que éste deja sentir su influencia. Desde luego, en ambos casos, la amplitud de las zonas plásticas es menor que la que se tiene en un cimiento situado sobre un terreno horizontal (ver

Page 345: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 321

Capítulo V II) , razón por la cual la capacidad de carga influenciada por el talud siempre será menor. Los dos casos anteriores se estudian suponiendo al talud formado por material puramente cohesivo o por material puramente friccionante.

Ya se vio que, según Meyerhof, la capacidad de carga del suelo puede expresarse como

q e = cNCQ + - j yBNyq (8-d .l)

En la fig. VIII-d.l aparece una gráfica que da los valores de N c, para el caso de taludes en matériales puramente cohesivos, en cuya ladera se ha alojado un cimiento continuo. El factor N eq es fun­dón del número de estabilidad del talud

N .= fH (8-d.2)

En que H es la altura del talud y las demás letras tienen los sentidos usuales en cuestión de capacidad de carga; también depende N c, de 3, ángulo de inclinación del talud y de la relación D/B, de la profundidad menor de desplante al ancho del cimiento. En la misma figura aparece otra gráfica que proporciona el valor del factor Ny,, que rige la capacidad de carga de un cimiento continuo colocado en la ladera de un talud constituido por material puramente friccionante. Este factor depende del ángulo de fricción, <£, de la inclinación del talud, 3, y, otra vez, de la relación D/B. En ambos casos la linea llena se refiere al valor D/ B = 0 y la punteada a D/ B — 1.

10* 40* «O* 80*

F IG . V III-d .l. Ftrcfores de capacidad da carga para un cimiento en la ladera de un talud

22—Mecánica de Suelos II

Page 346: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Puede observarse en la gráfica para materiales cohesivos que para un valor de N, = 5.53 (cuyo recíproco es 0.181, valor con el que se trabajó en el Capitulo V ) , se tiene estado crítico en el talud; con­gruentemente, la capacidad de carga del cimiento en tal caso es nula (N cq = 0 ). Análogamente, si N a - 0 y 0 = 0 se tiene una superficie horizontal y el factor N cq resulta igual a 5.2, valor que coincide con el que, como se dijo, resulta en la Teoría de Prandtl para un cimiento común largo en material cohesivo. En las gráficas se observa que para un cierto valor de N„ la capacidad de carga disminuye con el ángulo del talud, (3, y al crecer el valor de N , por aumentar la altura del talud, la capacidad de carga disminuye rápidamente.

En taludes de suelo puramente friccionante el factor Nyq dismi­nuye al disminuir <j>, lo cual es de sentido evidente y disminuye también cuando 3 crece, observándose que aún para el caso D /B = 0. desplantado el cimiento en un talud cuya inclinación sea crítica (3 = <j>), el sistema conserva una capacidad de carga.

En la fig. VIII-d.2 se muestran gráficas análogas para cimientos en la corona del talud, pero relativamente cerca del borde de éste.

322 CAPITULO VIII

Fl©. VIII-d.2. Factores de capacidad de carga para un cimiento en la corona de untalud

Page 347: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

De nuevo se presentan dos gráficas, una que da N cq, en el caso de cimientos largos sobre taludes en materiales puramente cohesivos y otra para el factor N rq, relativo a taludes formados por suelos puramente friccionantes.

Puede observarse que en el caso de taludes cohesivos el valor de N„, depende del número de estabilidad del talud, N„, de su inclina­ción, 3, de la relación D /B y de la distancia al borde del talud, b, expresada por la relación b/B o b/H, según se detalla en la figura a que se está haciendo referencia. Las líneas llenas y punteadas tienen el mismo sentido ya visto.

El factor Nyq, que rige la capacidad de cimientos sobre taludes friccionantes, depende del ángulo de fricción interna, <¿>, del ángulo del talud, 3, de la relación D /B y de la relación b/B.

Puede observarse en ambos casos que existe un valor de la dis­tancia b tal que para valores mayores la capacidad de carga del ci­miento ya no se vé influida por la presencia del talud y es la que corresponde a un cimiento sobre terreno horizontal. Este valor, de gran importancia práctica, oscila entre 2 y 6 veces el ancho del cimiento y depende de la relación D/ B y del ángulo <f>, de fricción interna.

Nótese que al colocar un cimiento en un talud, sea cual sea su posición, la estabilidad de éste probablemente cambia, por lo que siempre deberá verificarse por los métodos usuales que el talud sigue siendo estable, considerando la sobrecarga que el cimiento representa.

También debe insistirse que las soluciones antes descritas valen sólo para taludes en suelos puramente cohesivos o puramente fric­cionantes según el caso. Así, la fórmula 8-d.l deberá aplicarse siempre desglosada: el primer término del segundo miembro para suelos cohesivos y el segundo para friccionantes.

ANEXO Vm-e

Socavación en Pilas de Puentes

La socavación adicional a la propia de la corriente producida al pie de las pilas de los puentes es debida a las modificaciones de las condiciones hidráulicas de escurrimiento que la presencia de la propia pila produce. En efecto, basta la desviación lateral de la corriente, causada por el obstáculo, para que aquélla adquiera un impulso en dirección vertical que, combinado con el movimiento de avance da lugar a trayectorias descendentes que atacan el fondo, incrementando mucho la capacidad de arrastre de material sólido en la zona aguas arriba de la pila. En la cavidad así creada se produce un vórtice

' de eje horizontal que aumenta la erosión, hasta el punto en que se alcanza un nuevo perfil de equilibrio en el fondo del cauce.

MECANICA DE SUELOS (II) 323

Page 348: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La profundidad afectada por esta socavación varía con muchos factores que se refieren tanto a la corriente, como al cauce y a la propia pila. Las principales de estas características son el tirante y velocidad del agua, el tipo de suelo que forma el fondo del cauce la lorma~cUr~Ia pila, su ancho y su inclinación con respecto a la dirección principal de la corrriente. Los investigadores tratan de ligar a estas variables principales y a otras de menor influencia, pero las fórmulas y relaciones mejores de que hoy se dispone son de carácter semi-empírico y todavía no es posible depositar en ellas un alto grado de confiabilidad. Entre los métodos que se han propuesto para fijar profundidad de socavación adicional, se menciona a continuación uno, extraído de la ref. 8. En el volumen III de esta obra se men­cionarán algunas teorías y trabajos en añadidura a lo que aquí se trata.

324 CAPITULO VIH

FIG . V lll-e .l. Cálculo de la socarac¡6n producida por la presencia de una pila enuna corriente

En la fig. VIII-e.l.a aparece una curva que da la profundidad de socavación adicional cuando se conocen el tirante de la corriente y el ancho de la pila de puente de que se trate, al nivel del fondo del cauce. En la parte b) de la misma figura se obtiene un factor K, dependiente de la geometría de la sección recta de la pila y de su inclinación respecto a la dirección principal de la corriente, por el que debe multiplicarse el valor obtenido de la gráfica de la parte a), para obtener el valor final de proyecto para la socavación adicional. La gráfica de la parte b) de la figura funciona como sigue: conocida la relación largo a ancho de la pila (L/b) y el ángulo de inclinación respecto a la dirección de la corriente, puede obtenerse un valor de/ K válido para pila de sección rectangular; si la pila tiene forma

Page 349: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA D E SUELO S (II) 325

similar a alguna de las que aparecen dibujadas, el valor antes obte­nido deberá aún ser multiplicado por el coeficiente de reducción que aparece en las gráficas, para obtener finalmente la socavación adicio­nal definitiva.

Los autores de esta investigación indican que las gráficas anterio­res sólo son aplicables si existe en la corriente un gasto continuo de material sólido desde la dirección aguas arriba.

Obtenida así la profundidad de socavación adicional en la corrien­te causada por la presencia de la pila, para obtener la profundidad total de socavación deberá sumarse la socavación normal de la co­rriente, mencionada en el cuerpo de este capítulo.

Con las reglas que se desprenden de los párrafos anteriores y las enunciadas en el cuerpo de este capítulo se obtienen profundidades de socavación total que son probablemente exageradas en la mayor parte de las corrientes, según el criterio de los autores de este libro; sin embargo, el problema de la socavación es tan complicado e incier­to que por fuerza ha de serse muy conservador si se pretende pro­porcionar un criterio cuantitativo general. Por otra parte, no puede excluirse un caso real en que la profundidad calculada con los crite­rios expuestos sea aún insuficiente en relación a las características de una corriente. De lo anterior se deduce que el criterio y la expe­riencia del ingeniero son vitales para juzgar en estos problemas y en la práctica el ingeniero deberá echar mano de todo los recursos susceptibles de ciarle luz. Así, por ejemplo, se ha recurrido a la prueba de penetración estándar para formular una idea de las pro­fundidades a donde llega la socavación normal en un cauce. Según este criterio, en los lugares ya firmes se notará un aumento en el número de golpes necesarios para la penetración estándar a conseguir en la prueba; el criterio del proyectista establece un número indicativo en zonas ya fuera de peligro de socavación y 30 ó 40 golpes son números que se mencionan para tal efecto. Sin embargo, la norma anterior es peligrosa si no se emplea con experiencia, ya que en los cauces son frecuentes los boleos o las gravas que acusan gran número de golpes, sin que ello indique que exista la compacidad correspondiente.

Otro punto digno de observarse en las gráficas de la fig. VIII-e.l es que en ellas no se habla del tipo de suelo que forme el fondo del cauce. Se refieren, naturalmente, a suelos socavables, constituidos por arenas, gravas o aún boleos y no a aquellos suelos en los que, por sus características, la socavación es de menor peligro; entre éstos últimos figuran las arcillas, los suelos cementados y, desde luego, las rocas en masas extensas.

En fechas relativamente más recientes, se han desarrollado mucho investigaciones sobre métodos tendientes a conseguir que la socava­ción adicional a la normal de la corriente no se produzca o sea de

Page 350: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

escasa significación, cuando se coloca un obstáculo en la corriente. En la reí. 9,- por ejemplo, Levi y Luna proponen un método que consiste en provocar, en la zona que de otro modo sería de socavación en una pila, un depósito de material o, por lo menos, una reducción muy substancial de dicha socavación; para ello proponen modificar las condiciones de la corriente cerca de la pila, por medio de otro obstáculo colocado aguas arriba de ella, cuyo efecto en combinación con el de la pila, sea en el sentido expresado. En realidad, la idea de producir una modificación a la corriente por medio de un obstáculo que resulte benéfico para una pila colocada aguas abajo del qbstáculo, es antigua, pero en la referencia mencionada, los autores presentan un estudio muy minucioso sobre diversos tipos de obstáculos, distancias y posiciones en que deben colocarse y otros factores, que permiten establecer criterios cuantitativos de detalle, de relativa confiabilidad. El estudio está basado en el comportamiento de numerosos modelos de laboratorio, en los que se reprodujeron las condiciones reales de campo. De él pueden extraerse las siguientes conclusiones, presen­tadas por los autores.

El obstáculo más apropiado para modificar el régimen de erosión de la corriente en forma favorable para la pila es una pantalla colo­cada aguas arriba de la pila, alineada con ella. La forma más favora­ble de la pantalla corresponde a una sección rectangular delgada, de espesor del orden de 1/20 del ancho de la pila, colocada normal a la dirección principal de la corriente. El ancho del obstáculo no debe sobrepasar al de la pila, pues aunque a mayor ancho la eficiencia es mayor, no se considera práctico sobrepasar el ancho de la pila por proteger. La distancia más recomendable de la pantalla a la pila es 2.2 veces el ancho de la última. La pantalla debe de hincarse lo sufi­ciente para que en ningún caso su propia socavación pueda hacerla fallar; si la profundidad de la socavación total de la pila sin protec­ción ha sido calculada, se recomienda hincar la pantalla protectora un 30% más que dicha profundidad. Conviene, por último, que la pantalla no sobresalga del fondo del cauce en más de un 35% del tirante de agua.

En estas condiciones, los autores del trabajo afirman que la socavación adicional que se produciría en la pila sin protección puede reducirse hasta en un 70%. La pantalla puede construirse antes o después que la pila. Finalmente los autores hacen notar que aunque los resultados de su experimento sólo valen en principio para las condiciones que rigieron en el mismo (lecho horizontal, homogeneidad del material de arrastre, tirante de agua constante y relativamente elevado), tienen la impresión de que su valor cualitativo tiene un campo de aplicación mucho más amplio y, de hecho, confían en su método para cualquier caso, especialmente cuando se trate de rellenar socavaciones que ya se han producido.

326 CAPITULO VIII

Page 351: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 327

REFERENCIAS

J l / Sowers, G. F. — Shallow Foundations — Capítulo 6 del libro Foundation/Engineering, editado por G. A. Leonards — Me Graw Hill Book Co.— 1962.

/ i r Peck, R. B., Hanson, W . E. y Thomburn, T . H. — Capitulo 14 del libro Foundation Engineering — John Wiley and Sons— 1957.

3. Holtz, W . G. y Gibbs, H. F. — Engineering Properties of Expansive Clays —Trans. A. S. C. E. — Vol. 120— 1956.

4. Sowers, G. F. Dalrymple, G. B. y Kennedy, C. M .— High Volume Change Clays of the Southeastern Coastal Plain — Trabajo no publicado — Law Engineering Testing Co. — Atlanta,. Ga. — 1961.

5. Buttcra, S. J. — The Bearing Capacity o f Footings on a Two Layer Cohesive Subsoil— Tercer Congreso Internacional de Mecánica de Suelos y Cimenta­ciones — Zurich — 1953.

6. Zeevaert, L. — Cimentaciones compensadas — Memorias del Primer Congreso Panamericano de Mecánica de Suelos y Cimentaciones — Vol. I. — México, D. F .— 1959.

7 Meyerhof, G. G. — The Ultímate Bearing Capacity o f Foundations on Slopes — Memorias del IV Congreso Internacional de Mecánica de Suelos y Ci-

j mentaciones. — Vol. I — 1957.8 ' Laursen, E. M. y Toch, A. — Scour Around Bridpe Piers and Abufmentí—

/Iowa Highway Research Board Bull. N9 4 — 1956. ~9Y Levi, E. y Luna, H. — Protección contra la socavación producida al pie

de las pilas de puente — VIII Congreso Panamericano de Carreteras — Bo­gotá, Colombia — 1960.

10. Bishop, A. W . y Bjerrum, L. — The Relevance of the Triaxial Test to the Solution of Stability Problems — Research Conference on Shear Strength of Cohesive Soils — ASCE — Boulder, Colorado — 1960.

BIBLIOGRAFIA

/ Foundation Engineering — Ed. por G. A. Leonards — Me Graw Hill Book Co. y — 1962.

y Foundation Engineering — R. B. Peck, W . E. Hanson y T. H. Thomburn — John Wiley and Sons— 1957.

{/Foundations — A. L. Little — Edward Amold Pu. Londres — 1961. Foíinjiari'ons^of Bridges^ and ^Buildinas — H. S. Jacoby y R, P. Davis — Me

Page 352: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 353: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO IX

CIMENTACIONES PROFUNDAS

Las condiciones del suelo superficial no siempre son apropiadas para permitir el uso de una cimentación poco profunda, del tipo de las descritas en el Capítulo V III. En tal caso será preciso buscar terrenos de apoyo más resistentes a mayores profundidades; a veces éstos no aparecen a niveles alcanzables económicamente y es preciso utilizar como apoyo los terrenos blandos y poco resistentes de que se dispone, contando con elementos de cimentación que distribuyan la carga en un espesor grande de suelo. En todos estos casos y en otros que se detallarán en lo que sigue, se hace necesario recurrir al uso de cimentaciones profundas.

En este capítulo se darán los principios fundamentales para el cálculo de la capacidad de carga y los asentamientos de las cimenta­ciones profundas. Se estudiarán los arquetipos de éstas, simbolizando a la gran variedad que de ellas existe hoy y no se detallarán los problemas económicos y constructivos que, por otra parte, suelen jugar un papel tan importante en la elección, diseño y construcción de una cimentación profunda.

IX-2. Tipos de cimentaciones profundasLos elementos que forman las cimentaciones profundas que hoy

se utilizan más frecuentemente se distinguen entre sí por la magnitud de su diámetro o lado, según sean de sección recta circular o rec­tangular, que son las más comunes.

Los elementos muy esbeltos, con dimensiones transversales de orden comprendido entre 0.30 m y 1.0 m se denominan pilotes. A pesar del amplio rango de dimensiones que se indicó, la inmensa mayoría de los pilotes en uso tienen diámetros o anchos comprendidos entre 0.30 m y 0.60 m; pueden ser de madera, concreto o acero.

Los elementos cuyo ancho sobrepasa 1.0 m, pero no excede del doble de ese valor suelen llamarse pilas. Sin embargo, no se ha esta­blecido hasta hoy una distinción definida entre pilas y pilotes y el criterio arriba expuesto tiene el único mérito de ser seguido por un cierto número de especialistas. Para otros, una pila es simplemente un elemento que, trabajando exactamente igual que una zapata, trans­mite cargas a mayor profundidad que la que suele considerarse en

329

IX-1. Introducción

Page 354: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

330 CAPITULO IX

aquellas; según estos especialistas un elemento es pila cuando la relación profundidad' a ancho es 4 o mayor, en tanto que para una zapata suelen considerarse relaciones del orden de 1. Por último, cabe mencionar que para muchos ingenieros, entre los que se cuentan los autores de este libro, pila es, en el lenguaje diario, cualquier apoyo intermedio de un puente. En cualquier caso, las pilas se construyen de mamposteria o de concreto.

Por último, se requieren muchas veces elementos de mayor sec­ción que los anteriores a los que se da el nombre de cilindros, cuando son de esa forma geométrica o cajones de cimentación, cuando son paralelepipédicos. Los diámetros de los primeros suelen oscilar entre 3.0 y 6.0 m, se construyen huecos para ahorro de materiales y de peso, con un tapón en su punta y siempre se hacen de concreto. Los cajones tienen anchos similares, son huecos por la misma razón y se construyen con el mismo material.

En la fig. IX-1 aparecen esquemáticamente los tipos de cimen-

FIG. IX-1. Tipos de cimentaciones profundasa) Pilotob) Pilac) Cilindro (corte)d ) Cajón de 6 celdas (corte)

IX-3. Generalidades sobre pilotesEn general, se usan los pilotes como elementos de cimentación

cuando se requiere

Page 355: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 331

1. Transmitir las cargas de una estructura, a través de un espesor de suelo blando o a través de agua, hasta un estrato de suelo resistente, que garantice el apoyo adecuado. La forma de trabajo de estos pilotes podría visualizarse como similar a la de las columnas de una estuctura.

2. Transmitir la carga a un cierto espesor de suelo blando, uti­lizando para ello la fricción lateral que se produce entre suelo y pilote.

3. Compactar suelos granulares, con fines de generación de capa­cidad de carga. Este uso de los pilotes, en realidad fuera del campo de las cimentaciones en sí mismas, fue ya mencionado en el Volumen I de esta obra, en el capítulo referente a Compactación.

4. Proporcionar el debido anclaje lateral a ciertas estructuras (como tablestacas, por ejemplo) o resistir las fuerzas laterales que se ejerzan sobre ellas (como en el caso de un puente). En estos casos es frecuente recurrir a pilotes inclinados.

5. Proporcionar anclaje a estructuras sujetas a subpresiones, mo­mentos de volcadura o cualquier efecto que trate de levantar la estructura. Estos son pilotes de tensión.

6. Alcanzar con la cimentación profundidades ya no sujetas a erosión, socavaciones u otros efectos nocivos.

7. Proteger estructuras marítimas, tales como muelles, atraca­deros, etc., contra el impacto de barcos u objetos flotantes. Una estructura auxiliar que cumple tal fin recibe el nombre de Duque de Alba,

Evidentemente, los pilotes pueden ser diseñados para cumplir dos o más de las funciones anteriores.

Desde el punto de vista de su forma de trabajo, los pilotes se cla­sifican en de punta, de fricción y mixtos. Los pilotes de punta desarrollan su capacidad de carga con apoyo directo en un estrato resistente. Los pilotes de fricción desarrollan su resistencia por la fricción lateral que generan contra el suelo que los rodea. Los pilotes mixtos aprovechan a la vez estos dos efectos.

Atendiendo al material del cual están hechos, los pilotes pueden ser de madera, de concreto, de acero o de una combinación de estos materiales. Los pilotes de madera ya se usan muy raramente en trabajos de importancia y han quedado prácticamente circunscritos a estructuras provisionales o a funciones de compactación de arenas. Los pilotes de concreto son los más ampliamente usados en la actuali­dad; pueden ser de concreto reforzado común o presforzado; aunque en su mayoría son de sección llena, últimamente se ha desarrollado bastante el uso de pilotes huecos, de menor peso. Los pilotes de acero son de gran utilidad en aquellos casos en que la hinca de los pilotes

Page 356: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

332 CAPITULO IX

de concreto se dificulte por la relativa resistencia del suelo, pues tienen mayor resistencia a los golpes de un martinete de hincado y mayor facilidad de penetración; suelen usarse secciones H o secciones tubu­lares, con tapón en la punta o sin él.

Según el procedimiento de construcción y de colocación, los pilotes de concreto pue­den ser prefabricados e hin­cados a golpes o a presión o colados en el lugar, en una excavación realizada previa­mente a la construcción del pilote. Para los pilotes hinca­dos a golpes, quizá aún los más frecuentes, por lo menos en trabajos ejecutados fuera de las ciudades, existen tres tipos principales de martine­tes de hincado. El de caída libre, de poco uso ya por su lentitud, consiste simplemente en una masa guiada, que se eleva por medio de un mala­cate y se deja caer desde la altura especificada; el de vapor de acción sencilla, que

utiliza la energía del vapor para levantar la masa golpeante, para después dejarla caer por acción exclusivamente gravitacional y el de vapor de doble efecto, en el que la energía del vapor eleva la masa y la impulsa y acelera en su caída.

La efectividad de los distintos martinetes suele compararse recu­rriendo a su energía, expresada en kgm/golpe. Hay gran varie­dad de tipos y tamaños, existiendo máquinas en que la masa golpeante llega a 6 ton de peso o más, con 100 golpes por minuto y con energías hasta de 10,000 kgm.

I X - 4 . Capacidad de carga en pilotes. Fórmulas d in á m ic a s

La determinación de la capacidad de carga de un pilote es uno de los puntos de la actual Mecánica de Suelos más sujetos a las incer- tidumbres emanantes de lo imperfecto de las teorías de que se dispone,

M á q u in a p i lo te a d o ra

Page 357: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de la dificultad de cuantificar la influencia del método constructivo del pilote y del desconocimiento de como deben ser tomadas en cuenta las características esfuerzo-deformación de los suelos, por otra parte tan imprecisamente conocidas hoy en día.

Ahora bien, aún supuesto que actualmente fuera posible calcular con suficiente aproximación la capacidad de carga de un pilote debe tenerse en cuenta que en la construcción nunca se utiliza uno de estos elementos, sino un grupo de ellos. Aunque la investigación actual sobre capacidad de carga o cualquier otro aspecto del comportamiento de un grupo de pilotes es sumamente limitada y escasa, existen ya suficientes elementos de juicio para afirmar que el comportamiento mecánico de un solo pilote es muy diferente del que exhibe un grupo. Esta no es ciertamente la menor incertidumbre que hoy rodea al campo de las cimentaciones piloteadas, ya que en la actualidad sólo existen teorías o fórmulas para calcular la capacidad de carga de pilotes aislados; el valor así obtenido se asigna al grupo, ignorando la diferencia de comportamiento arriba señalada; el hecho de que la práctica haya ido proporcionando algunas normas para tomar en cuen­ta el efecto de agrupamiento, poco añade todavía al panorama antes expuesto. De hecho, han ocurrido con cierta frecuencia fallas de grupos de pilotes en casos en que el conocimiento actual indicaría que un pilote considerado aislado había sido juiciosamente pro­yectado.

Por todo lo anterior, el diseño y construcción de las cimentaciones piloteadas es uno de los campos de la Mecánica de Suelos en que más se requiere el criterio de un ingeniero que no se confie única­mente en el discutible valor de una fórmula y que sepa hacer uso de su experiencia, sentido común e intuición del comportamiento de los materiales.

Para calcular la capacidad de carga de pilotes de punta, que trabajan por apoyo directo en un estrato de resistencia garantizada, se han usado fórmulas y criterios que pueden agruparse en tres clases principales, que se citan a continuación:

Las llamadas fórmulas dinámicas tratan de obtener la capacidad de carga del terreno a partir de la energía comunicada al pilote por el impacto del martillo de hinca. Su aplicación está limitada por lo tanto a los pilotes de punta hincados al golpe.

Las fórmulas empiricas en que la capacidad de carga del pi­lote se obtiene de experiencias locales.

Las fórmulas estáticas, en que la capacidad de carga del pilote se obtiene a partir de una teoría que valué la capacidad de carga del suelo, a partir de sus parámetros de resistencia.

Fórmulas dinámicas se han desarrollado muchas a partir del principio común del que todas emanan, según el cual la energía del impacto, cuantificada multiplicando el peso del martillo golpeante

MECANICA D E SUELO S (II) 333

Page 358: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

334 CAPITULO IX

por su altura de caída libre, se iguala con el trabajo efectuado du­rante la penetración del pilote por el impacto, cuantificado a su vez por el producto de la penetración de la punta del pilote en el impacto, por una fuerza que representa la resistencia dinámica del suelo al pilote y que se supone igual a la carga estática que el pilote puede soportar. A partir de tan sencillo principio, diferentes investigadores han ido complicando las fórmulas a usar, al tratar de tomar en cuenta las pérdidas de energía que se tienen durante la hinca, por rebote del martillo, deformación del pilote, vibraciones, absorción en el suelo vecino, etc. De este modo se ha llegado a la elaboración de fórmulas algebraicamente complicadas1, en algunas de las cuales se han des­arrollado métodos realmente ingeniosos para incorporar pérdidas de detalle.

La falacia fundamental de las fórmulas dinámicas estriba en supo­ner que la resistencia dinámica opuesta al pilote en su punta durante el hincado por impacto, es igual a la resistencia que el pilote encon­trará en su punta en condiciones de carga estática. Ello equivale a ignorar la diferencia de respuesta de los materiales a tipos de carga tan diferentes como la estática puramente y el impacto; cualquiera que se introduzca en el agua de una alberca lentamente y que des­pués se deje caer sobre la misma de frente, desde una altura de 10 m, por ejemplo, concordará, sin embargo, en que dicha diferencia existe.

La diferencia es primordialmente debida a que durante el impacto se desarrollan resistencias viscosas y de inercia en el sistema pilote- suelo, pues la penetración del pilote tiene lugar en un lapso muy breve, con lo que la velocidad de penetración es importante y genera resistencia viscosa, análoga a la que se tendría en un fluido real si se tratase de mover a un objeto dentro de él. Además, la aparición de esta velocidad implica aceleraciones previas a las que deben haberse opuesto fuerzas de inercia, semejantes a las que se manejan en Mecánica en el Principio de D’Alambert. Estas fuerzas viscosas y de inercia no se presentan en el caso estático y hacen que la correlación entre la resistencia dinámica y la estática sea muy difícil, si no impo­sible, de realizar. También se ignoran en las fórmulas dinámicas los efectos de cambio de resistencia del suelo en torno al pilote con el tiempo, tan importantes en muchos tipos de suelos. Ni tan siquiera puede decirse si las fórmulas dinámicas serán conservadoras o inse­guras en un caso dado.

En vista de lo anterior ha de concluirse que las fórmulas dinámi­cas no representan un método racional de enfrentarse al problema de capacidad de carga en pilotes y, por ello, no deben usarse en ningún caso.

Sin embargo, con vista en el interés histórico que pudieran repre­sentar y por vía de información, en el Anexo IX-a, se analizan

Page 359: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

algunas de las fórmulas dinámicas que ganaron mayor popularidad en el pasado.

Las fórmulas empíricas tienen el inconveniente general de su localismo. Muchas veces se elaboraron sin bases racionales sólidas y. por ello, están sujetas a numerosas incertidumbres que hacen necesario aplicarles un coeficiente de miedo superior a lo que hoy es normal, lo que conduce a cimentaciones antieconómicas. Una buena parte de estas fórmulas tienen como base criterios dinámicos; otras son simples recetas que tratan de recoger experiencias locales inter­pretadas con un carácter totalmente burdo. Los autores de esta obra estiman que la época de estas fórmulas ya pasó y que hoy en ningún caso está justificado su uso como alternativa al procedimiento de la aplicación de una teoría de capacidad de carga razonable, comple­mentada con la adecuada exploración, el debido muestreo y el nece­sario trabajo de laboratorio. Pueden verse algunas fórmulas empíricas en la ref. 2.

Respecto a las teorías de Capacidad de Carga a emplear para el diseño de los pilotes trabajando por punta, ya se hizo un análisis detallado en el Capítulo VII, por lo que no se considera necesario añadir nada en este lugar. En cambio es preciso insistir en lo necesa­rio de un completo conocimiento de las propiedades mecánicas de los suelos, previo a la aplicación de cualquier fórmula. Dicho conoci­miento sólo podrá lograrse con una exploración completa y adecuada, para lograr la cual, el ingeniero no deberá ahorrar ningún esfuerzo. Las propiedades mecánicas del suelo se obtendrán entonces por pruebas de laboratorio realizadas sobre muestras obtenidas con cuida­do; en estos dos renglones fundamentales, tampoco debe el ingeniero regatear su vigilancia y su interés, pues de ellos depende en gran medida el éxito o fracaso de su diseño.

Las fórmulas mencionadas en el Capítulo V II dan la capacidad de carga de un pilote a la falla, el cual no es el valor recomendable de diseño. Es necesario afectar la capacidad de carga última por un factor de seguridad conveniente para llegar a la capacidad admisible en el proyecto. Ahora podría repetirse mucho de lo que se señaló en el estudio del factor de seguridad en cimentaciones poco profundas (capítulo V III). Los valores numéricos a usar para el factor de segu­ridad dependen de las incertidumbres inherentes al proyecto, especial­mente en lo referente a la homogeneidad del subsuelo y al método de construcción del pilote. Sin embargo, es costumbre en los diseños nor­males usar un factor de seguridad del orden de 3 cuando la cimenta­ción se calcula con cargas muertas y vivas permanentes, que es la forma usual de cálculo en trabajos de rutina; este factor puede redu­cirse algo cuando se haga un análisis más detallado de cargas.

MECANICA DE SUELOS (II) 335

Page 360: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

336 CAPITULO IX

IX-5. Pruebas de carga en pilotesGeneralmente el mejor método para estimar la capacidad de

carga de un pilote individual en un cierto lugar, es el realizar una prueba de carga a escala natural en ese lugar. El inconveniente de las pruebas de carga estriba en su costo y en el tiempo requerido para realizarlas; estas razones hacen que en numerosas obras de poca magnitud no se ejecuten. En obras de importancia, sin embargo, no es buen criterio evitar las pruebas de carga en nombre del costo o del tiempo y, por lo menos deben hacerse algunas pruebas en lugares representativos de las distintas condiciones prevalecientes; la elección correcta de tales lugares es, desde luego, de fundamental importancia, define el éxito del programa de pruebas y suele requerir bastante experiencia. El lugar apropiado para efectuar una prueba de carga no siempre es aquel en que el terreno presenta condiciones más críti­cas, pues debe contarse también con la magnitud de las cargas en cada pilote, con el número de pilotes que se colocarán en cada zona y con las consecuencias derivadas de la falla de un pilote.

Una limitación de importancia que afecta a las conclusiones obte­nidas de una prueba de carga es que ésta se realiza generalmente en un solo pilote y ya se ha mencionado que el comportamiento de un grupo es diferente del de una unidad aislada. Las pruebas de grupos de pilotes son muy escasas en la literatura, debido al costo y a la magnitud de las cargas que se requeriría movilizar en la prueba.

Con una prueba de carga puede obtenerse información sobre los siguientes aspectos

a) La capacidad de carga última por punta de un pilote.Una prueba de carga bien ejecutada da valores bastante satis­factorios en la capacidad de carga por punta, apóyese ésta en arena o arcilla dura. Para deslindar el valor de la capacidad por punta es necesario que la resistencia del pilote por fricción lateral se conozca con buena aproximación o que sea elimi­nada; esto último puede conseguirse colocando el pilote dentro de un tubo hueco del que sobresalga únicamente su punta.

b) La capacidad de carga de un pilote por fricción lateral.El resultado de una prueba de carga da la resistencia lateral por fricción o adherencia cuando la capacidad de carga por punta es despreciable, cual suele ser el caso de pilotes hincados en arcillas blandas o cuando se dispone en la punta del pilote un mecanismo a base de gatos que permite valuar la resisten­cia por punta independientemente de la resistencia total3.

c) El asentamiento total del pilote bajo la carga.Esta información es bastante confiable cuando la punta del pilote se apoye en suelos no compresibles. En pilotes desplan­

Page 361: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tados en suelos cohesivos o en pilotes de fricción colocados en arcillas blandas, en cambio, los asentamientos obtenidos en la prueba no representan los que se tendrían en un pilote cargado a largo plazo. La razón es que en estos casos, los fenómenos de compresibilidad están muy ligados al tiempo y los períodos de prueba no son de ningún modo representa­tivos. por los cortos, de los tiempos de vida de los pilotes prototipo. Por otra parte, siempre ha de tenerse presente que el asentamiento que produce un pilote puede ser mucho menor que el de un grupo de pilotes colocado en el mismo lugar. En la fig. IX-2 se ve de inmediato la diferencia de influencias en ambos tcasos, que explica el diferente asentamiento.

MECANICA DE SUELOS (II) 337

FIG. IX-2 Diferencia entre la influencia de un pilote y de un grupo de pilotee en loreferente a asentamiento!

En el Anexo IX-b se dan algunos detalles sobre la ejecución e interpretación de pruebas de carga a escala natural.

Otro tipo de pruebas de carga que cada día es objeto de mayor atención por parte de los investigadores, no tanto para fijar la capa­cidad de carga última en un caso particular, sino más bien para tratar de entender de un modo racional los diferentes factores que influyen en el comportamiento de los pilotes, es la investigación sobre modelos de laboratorio. Muchos son los problemas de dirícil solución que afectan a estas investigaciones, pero pese a ello puede decirse23— Mecánica de Suelos II

Page 362: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

338 CAPITULO IX

que ofrecen un futuro prometedor. En las refs. 4, 5, 6 y 7 pueden verse esfuerzos en esta dirección.

IX-6. Pilotes de punta hincados al golpeEn esta sección se consideran aquellos pilotes prefabricados que

se hincan en el terreno por medio de golpes dados por el martillo de una piloteadora o martinete. En todo lo que sigue se considerará, por antonomasia, que el material que forma los pilotes es el concreto.

La capacidad de carga de estos pilotes se determina, como ya se ha repetido, realizando como etapa previa imprescindible un estu­dio de campo lo más completo posible, que incluya una completa exploración y un muestreo adecuado; en seguida, es preciso realizar las pruebas de laboratorio requeridas para determinar con suficiente confiabilidad las constantes de resistencia que, a su vez, permitan aplicar una teoría de capacidad de carga adecuada. En obras de cierta importancia o en casos en que surjan dudas en el proyectista, será necesario verificar los resultados obtenidos con una o varias pruebas de carga.

Nunca se insistirá bastante en la necesidad de explorar el área que vaya a ocupar una cimentación piloteada. Los pilotes de punta, en especial, se apoyan en un estrato de suelo resistente, cuyo espesor y características han de ser cuidadosamente verificados en todas partes, pues cambios no previstos en espesor y resistencia han sido causa de numerosas fallas.

Se considera que tanto en esta sección como en otros muchos párrafos anteriores se insistió bastante en las ideas arriba expuestas, por lo que, en lo que sigue, se hará hincapié en otros problemas que afectan la colocación y el funcionamiento de los pilotes de punta hincados al golpe.

Algunas veces se ha dicho erróneamente que un pilote de punta es un elemento estructural que trabaja como una columna, transfi­riendo la carga de su cabeza a la punta, apoyada en el estrato resistente o en roca. Esta idea lleva a diseñar a los pilotes de manera que sus esfuerzos no sobrepasen a los que se tendrían en una colum­na del mismo material, mismas dimensiones y sujeta a la misma carga axial. Sin embargo, la experiencia ha demostrado que las fallas propiamente estructurales en los pilotes son tan raras, que no deben ser consideradas como un evento posible en el diseño. Tanto la teoría como la experiencia han demostrado que no puede presen­tarse pandeo por falta de confinamiento lateral, aún en los pilotes hincados en los suelos más blandos. Los esfuerzos de manejo previo al hincado, sí pueden jugar un papel importante en el diseño de los pilotes, especialmente los esfuerzos de izado en los elementos de concreto pres forzado. >

Page 363: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Así, la capacidad de carga de un pilote de punta depende exclu­sivamente de las características del suelo en el que se apoya y del área de su sección recta.

Antiguamente era costumbre hincar los pilotes hasta que ya no era posible introducirlos a mayor profundidad bajo los golpes de un martillo autorizado por la práctica. Este criterio era conocido como criterio efe rechazo para la hinca de los pilotes. Considerado así, como fundamental para definir el desplante del conjunto de los pilotes de una cimentación, este criterio es muy defectuoso y puede inducir a graves errores de trascendencia. Considérese, por ejemplo, el caso de la fig. IX-3, que se presenta como ilustrativo de una gran variedad de situaciones imposibles de individualizar.

MECANICA DE SUELOS (II) 339

MATERIALC O M P R E S IB L E

^ ^ E I^ P R E S ÍS T É íiT t '

FIG . IX-3 Esquema que ilustra los peligros de hincado de pilotes"A l Rechazo"

En la figura se señalan con un rayado lentes de materiales resis­tentes a los que se supone capacidad para producir rechazo en los pilotes que se apoyan en ellos. Siendo la distribución de estas lentes irregular, los pilotes del conjunto quedarán a diferentes profundi­dades, con la consecuencia a lo largo del tiempo de que los pilotes apoyados en la roca permanecerán totalmente fijos, en tanto que los apoyados en los lentes resistentes se asentarán de manera dife­rente unos de otros por ser distinto el espesor de material compresible que queda bajo cada lente. La estructura de la figura seguramente está destinada a sufrir daños por asentamientos diferenciales.

Otro peligro de un pilote hincado al rechazo es que cualquier sobrecarga que el pilote reciba o cualquier disminución de resistencia en el suelo a lo largo del tiempo, podrán hacer penetrar al pilote en un estrato resistente delgado que, sin embargo, hubiera presentado buenas condiciones en el momento de la hinca.

Page 364: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

340 CAPITULO IX

De lo anterior no debe deducirse que el rechazo de un pilote durante su hincado no sea un dato del que pueda extraerse una cierta utilidad. La profundidad de desplante de un pilote debe esta­blecerse con base en el conocimiento del suelo a través de la explo­ración; de esa manera puede localizarse el estrato resistente hasta el que debe ser llevado al pilote; en este caso, el criterio de rechazo es una buena comprobación de haber alcanzado en la hinca el estrato deseado. En otras ocasiones el estrato de apoyo es de resistencia variable, dentro de límites razonables, en profundidad y en extensión; este es otro caso en que una aplicación inteligente del criterio de re­chazo garantiza el buen apoyo. Un criterio de rechazo también es aplicable para no sobrehincar los pilotes, por lo que se entiende el dar un número excesivo e inconveniente de golpes de martillo al pilote sin lograr su avance, lo que lo perjudica estructuralmente.

Tanto para garantizar un buen apoyo, como para evitar sobrehin- cado es frecuente aceptar en la práctica un criterio de rechazo, según el que las condiciones del pilote son aceptables si con los últimos 3 a 5 golpes el pilote no se hinca más de 1 cm y siempre que esta situación se mantenga en los últimos 3 a 5 cm. Él criterio anterior, se repite, es aceptable sólo cuando se aplica dentro de las normas de un proyecto, para afirmarlo, en el cual la posición y la profundi­dad de desplante de cada pilote se determinó precisamente con base en exploración. Si el rechazo se satisface lejos de las condiciones de proyecto, no debe considerarse aceptable y el proyecto o el método de hincado deberán verificarse cuidadosamente.

La necesidad de llevar pilotes a profundidades de desplante previamente elegidas y correspondientes a estratos de plena garantía en lo que se refiere a apoyo, plantea el problema de atravesar estratos de cierta resistencia, que dificultan la hinca, sin llegar a garantizar un apoyo permanente. Cuando estos estratos son de naturaleza friccio­

Fl©. IX-4 Arreglos típicos pora inyección da agua a presión para facilitar el hincadode pilotes

Page 365: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 341

nante suele ser de buen resultado ayudar la hinca a golpes con la inyección de agua a presión. Los inyectadores de agua (chiflones) han de ser previstos y dispuestos con anticipación en el propio pilote, antes de construirlo. En la fig. IX-4 se muestran algunos dispositivos de inyección típicos.

Los inyectores son tubos de 5 a 7.5 cm de diámetro, con estre­chamiento en su extremo. Para inyección a través de arena debe preverse un gasto del orden de 1,000 1/min por pilote, con presiones de agua del orden de 10 kg/cm2. En materiales más gruesos ambas cifras pueden crecer considerablemente. Los arreglos con un solo inyector en la punta del pilote son indeseables, pues se tapan y, además, tienden a formar un tapón compacto bajo el pilote, dificul­tando el hincado. En el mejor arreglo, los chiflones deben salir lateralmente y dirigidos ligeramente hacia arriba. El número de salidas de agua debe ser tal que produzca dispositivos simétricos en torno al pilote, pues de otro modo éste no baja vertical o se desvía de cualquier dirección que se desee. Los tubos fuera del pilote se despegan fácilmente de éste y se desvían.

Frecuentemente se ha dicho que la inyección de agua no es efectiva para atravesar mantos de arcilla o de suelos finos plásticos en general. Sin embargo, la experiencia ha señalado buenos resul­

tados en estos casos, siempre que en torno al pilote no se cierre el espacio que permita la salida del agua hacia el exterior.

Cuando se hincan muchos pilotes ayudados por inyec­ción de agua, debe contarse muy especialmente con la ne­cesidad de eliminar el agua producto de la operación, lo que, en ciertas zonas, puede ser problemático.

Por último, es preciso se­ñalar que la operación de la inyección debe suspenderse por lo menos un metro sobre el nivel de desplante defini­tivo del pilote, pues de otro modo se corre el riesgo de aflojar el nivel de apoyo, dis­minuyendo su resistencia.

Cuando se hincan pilotes Operación de hincado al golpe en arcillas blandas, se despla­

Page 366: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

342 CAPITULO IX

za un volumen de suelo que puede ser tan grande como el volumen de los pilotes. Esto va produciendo en el terreno un lomo que levanta estructuras adyacentes o los pilotes vecinos; puede suceder que los pilotes ya hincados se separen del estrato resistente en que se apoya­ban bajo la arcilla. La situación puede remediarse rehincando los pilo­tes, pero en ocasiones la adherencia entre arcilla y pilote crece de tal manera con el tiempo, que esta operación se hace muy difícil o imposible. También ocurren en el caso que se analiza movimientos laterales de los pilotes que fácilmente pueden ser indeseables. Todos los problemas anteriores pueden reducirse o eliminarse removiendo parte del suelo que el pilote va a desplazar. Esta operación se deno­mina preexcavación y se realiza con multitud de herramientas corta­doras o rotatorias, desarrolladas al efecto; en otras ocasiones pueden hincarse ademes huecos que se retiran posteriormente.

La preexcavación es útil también cuando a profundidades no muy grandes se presentan estratos cohesivos más o menos duros que han de ser atravesados en la hinca, pero que la dificultarían. Si los bordes de un pozo preexcavado no se derrumban éste puede ser un excelente método para evitar las dificultades emanadas de la dureza del material por atravesar.

En el Anexo IX-c se dan detalles de algunos tipos comunes de pilotes precolados hincados al golpe.

IX-7. Pilotes de fricción hincados ai golpe

Como ya se ha dicho, se denominan pilotes de fricción a aquellos que están totalmente embebidos en material blando, de modo que su resistencia proviene total o casi totalmente de la adherencia que se desarrolla en el fuste, en el caso de suelos cohesivos o de la fricción entre suelo y pilote, en el caso de suelos friccionantes. La resistencia por punta se considera muy pequeña o despreciable para la exposi­ción que sigue dentro de esta sección.

La hinca de estos pilotes en arcilla blanda produce remoldeo, que disminuye su resistencia al esfuerzo cortante, tanto más cuanto más sensible sea; sin embargo, con el paso del tiempo la resistencia se va recuperando. Lo anterior se explica porque los esfuerzos y deforma­ciones tangenciales de hinca perturban la estructura de la arcilla, generando presiones neutrales que disminuyen los esfuerzos efectivos y, por ello, la resistencia al esfuerzo cortante; esto es tanto más notable cuanto más sensible sea la estructura de las arcillas. Así, es frecuente que en arcillas muy sensibles, los pilotes bajen por su propio peso. Con el paso del tiempo, se disipan las presiones en el agua en exceso de las hidrostáticas y se regenera la resistencia al esfuerzo cortante en el suelo. Los valores de la resistencia final del suelo son, por lo menos, del mismo orden de la resistencia inicial y aún pueden

Page 367: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 343

ser mayores, debido a la consolidación que se induce durante la disi­pación de las presiones neutrales.

La capacidad de carga de los pilotes de fricción no puede calcu­larse con el uso de fórmulas dinámicas. Ya se ha visto que la resis­tencia de un pilote bajo el impacto instantáneo puede ser totalmente distinta que la resistencia a largo plazo, bajo carga estática perma­nente. Por otra parte, en arcillas no sensibles, de falla plástica, la resistencia viscosa durante el impacto impide en cierto grado la pe­netración del pilote, que entraría con mayor facilidad bajo carga estática o lentamente aplicada. En este caso las fórmulas dinámi­cas sobreestiman la capacidad de carga de esos pilotes. Como resu­men, puede decirse que en ningún caso y bajo ninguna circunstancia pueden usarse fórmulas dinámicas para calcular la capacidad de carga en pilotes de fricción.

Para calcular la capacidad de carga de pilotes de fricción en arcilla blanda hay dos procedimientos practicables: a partir de los parámetros de resistencia al esfuerzo cortante del suelo o a partir de los datos de una prueba de carga.

La experiencia ha demostrado que en arcillas blandas saturadas es satisfactorio suponer que la adherencia entre el fuste del pilote y la arcilla es igual a la cohesión de ésta, calculada en prueba rápida o aún con base en una prueba de compresión simple. Es conveniente reducir este valor a la mitad para efectos de diseño, lo que equivale a utilizar un factor de seguridad de dos. Así, si f a es la adherencia entre pilote y suelo se tiene

Una vez estimada la adherencia, la capacidad total del pilote se obtiene multiplicando aquella por el área de pilote embebido.

Tomlinson8 ha propuesto, con base en numerosas pruebas, los valores de la adherencia de la Tabla 9-1, comparada con la cohe­sión en diferentes arcillas.

Nótese que la correspondencia entre la adherencia y la cohesión, muy aproximada en arcillas blandas, se hace menos cuanto más dura es la arcilla en la que se hinca el pilote. Esto es debido a que al hincar un pilote en arcilla más o menos dura tienden a formarse pequeños espacios huecos entre suelo y pilote, con lo que la adheren­cia promedio disminuye: este efecto, por supuesto, no se tiene en arcillas blandas. Además, en arcillas muy firmes, saturadas, füerte-

a la falla (9-1)

o bien

fat — — = — como valor de trabajo (9-2)

Page 368: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

344 CAPITULO IX

TABLA 9-1

Material del pilote Consistencia de la arcilla

Cohesión, c ton/trf

Adherencia, f, ton/m1

Concreto y madera Blanda 0 - 4 0 - 3 . 5Firme 4 - 8 3.5 - 4.5Dura 8 - 1 5 4 . 5 - 7

Acero Blanda 0 - 4 0 - 3Firme 4 - 8 3 - 4Dura 8 - 1 5 ?

mente preconsolidadas, la distorsión producida por el hincado induce tensión en el agua de los vacíos, por lo que la arcilla en la vecindad del pilote tiende a expanderse con disminución en su resistencia al corte; para ello toma el agua de la arcilla vecina que tiende a conso­lidarse algo. Los valores de la Tabla 9-1 de Tomlinson han probado ser bastante confiables en las aplicaciones prácticas, por lo que deben preferirse al uso de recetas y fórmulas como las arriba mencionadas (fórmulas 9-1 y 9-2), cuando la arcilla en que se hinca el pilote sea dura.

La capacidad de carga de pilotes de fricción hincados en arenas sueltas es aún más difícil de estimar actualmente. En estos casos los pilotes nunca trabajan únicamente por fricción lateral y la capa­cidad de carga por punta siempre juega un papel de importancia. La hinca de los pilotes tiene un efecto compactador en la arena, por lo que, a pesar de tener un manto originalmente suelto, puede vol­verse muy difícil y aún imposible hincar un pilote cuando en su vecindad se han hincado previamente otros.

La estimación de la capacidad de carga de los pilotes por fricción hincados en arenas es un problema prácticamente no resuelto en el campo teórico. Algunos autores suponen que la fricción lateral sigue una ley lineal a lo largo del fuste, aumentando la fricción con la profundidad; expresan dicha fricción como una fracción de la presión normal por peso propio del suelo que exista en un nivel determinado. Si a la profundidad z hay una presión vertical igual a yz. la presión lateral correspondiente es considerada como K0yz. donde K0 es un coeficiente de empuje de tierras. Esta presión actuando normalmente al fuste del pilote produce a lo largo de éste y a la profundidad z una fricción que vale

ffr = K0 yz tg S = K' yz

donde S es el ángulo de fricción a considerar entre suelo y pilote.

Page 369: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El valor de K„ que frecuentemente se ha mencionado oscila entre0.4 para las arenas más sueltas, hasta 0.6 en las arenas más com­pactas, en que sea posible hablar de pilotes de fricción. En cuanto al valor de 8, el más frecuentemente recomendado es 2/3 </>.

Algunos otros autores, aún sosteniendo como hipótesis básica la distribución lineal de la fricción, dan fórmulas más complicadas, en las que el valor K' es más complejo (ver, por ejemplo, la ref. 9).

Sin embargo, las experiencias han demostrado que la ley lineal de distribución para la fricción lateral puede ser muy discordante con la realidad. En la fig. IX-5, por ejemplo, se recogen experiencias en modelos de pilotes, hechas por Florentin, L’Heriteau y Farhi citadas en la misma ref. 9, en las que puede verse como la ley de distribución de la fricción se aparta de la lineal en gran medida, si bien, en este caso se acercó a ella cada vez más, según la carga sobre el pilote se aproximó a la de falla.

Kfl /Cm

MECANICA DE SUELOS (II) 345

FIS. IX-5 Experiencias sobre distribución de la fricción late­ral en el fuste de un pilote

Además, se ha visto que la resistencia de un pilote por fricción lateral en arena varía con muchos factores de influencia muy difícil de cuantificar en un caso dado, de los que los principales son la com­pacidad y otras características del suelo, la posición del nivel freático

Page 370: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

346 CAPITULO IX

y las perturbaciones que se induzcan sobre el pilote, como son la hinca de otros, nuevas excavaciones, etc.

Así, la fórmula 9-3, que puede dar la capacidad por fricción por un proceso de integración a lo largo del fuste o aún más senci­llamente adoptando un valor medio de la fricción en la ley lineal que se aplique a toda el área lateral del pilote, debe verse nada más que como una guía cuantitativa de los órdenes de magnitud de las fuerzas en juego, pero no como una base precisa de cálculo. En este proble­ma están claramente indicadas las pruebas de carga como guía del criterio del proyectista y a ellas deberá de recurrirse en todos los casos de cierta importancia.

Si se usa la fórmula 9-3 deberá aplicarse un factor de seguridad del orden de 3 o 4 y a veces mayor, para tener valores de trabajo de la fricción lateral.

IX-8. Pilotes colados en el lugarExiste una gran variedad de pilotes que se construyen directa­

mente en el lugar en que definitivamente van a cumplir su cometido; pilotes que no se construyen en otra parte para después ser hincados a golpes hasta su posición definitiva como los que hasta ahora se han venido tratando. Genéricamente se denomina a estos pilotes colados en el lugar o pilotes colados in situ.

Estos pilotes se distinguen y clasifican por los procedimientos que sirven para construirlos; éstos son sumamente variados y com­prenden la excavación de perforaciones, ademadas o no, que después se rellenan de concreto; gatos que hacen penetrar los ademes a pre­sión; chiflones que permiten hacer llegar los trabajos al nivel deseado o métodos que involucran la utilización de explosivos.

Muchos de los tipos de pilotes colados en el lugar de uso normal son patentes comerciales que difieren entre sí relativamente poco; esta competencia de carácter puramente comercial ha complicado el campo produciendo un gran número de variantes, respecto a unos pocos tipos básicos. En el anexo IX-d se reseñan brevemente los tipos más comunes de pilotes actualmente en uso.

La capacidad de carga en pilotes colados en el lugar se calcula básicamente en la misma forma que se describió para los pilotes pre- colados hincados al golpe.

IX-9. Pilotes compuestosSe denominan pilotes compuestos a aquellos constituidos por dos

materiales, seleccionados siempre entre madera, concreto y acero. También caen dentro de esta denominación los pilotes de concreto formados por una parte precolada y otra colada en el lugar.

Page 371: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 3 47

Cuando se use madera para formar pilotes ha de tenerse en cuenta que las fluctuaciones del nivel freático, con períodos alter­nados de humedecimiento y secado, son sumamente perjudiciales; en cambio, un pilote de. madera siempre bajo el nivel freático se conserva en forma excelente. Así, las secciones compuestas de con­creto y madera pueden usarse cuando el nivel freático no esté más profundo de 15 o 20 m, límite que suele considerarse para la sec­ción de concreto de un pilote compuesto; si el nivel freático está más profundo ya sería conveniente pensar en un pilote sólo de con­creto.

Un punto delicado en este tipo de pilotes es la unión entre las secciones diferentes, la que se logra actualmente con varios dispo­sitivos prácticos, generalmente patentados.

Cuando la sección superior haya de soportar esfuerzos de flexión que produzcan esfuerzos laterales de importancia, puede convenir construirla de acero, generalmente de secciones tubulares, obtenién­dose así un pilote compuesto de acero y madera.

Los pilotes compuestos de concreto y acero suelen tener de este material el tramo de punta, con lo que se logra una mayor facilidad de penetración en terrenos duros; las puntas de acero suelen entonces ser de sección H.

IX-10. Otros tipos de pilotes de concretoSe tratan en esta sección pilotes que no corresponden a las téc­

nicas descritas con anterioridad, es decir, que ni son hincados a golpes, ni colados en el lugar. El método de hincado puede ser ahora a presión u otros.

En el Anexo IX-e se describen algunos de los tipos más comu­nes de pilotes de esta clase.

IX-11. Pilotes de aceroSe llaman así los pilotes en que el acero es el material básico

o el único. Se construyen usualmente con secciones de tubo o con secciones H.

Los pilotes de acero de sección tubular se colocan en el terreno hincándolos o presionándolos y pueden tener su punta tapada o ser abiertos. Los pilotes suelen rellenarse con concreto una vez que alcanzaron la profundidad de desplante. Es común que sean com­puestos por secciones unidas entre sí por juntas especiales o solda­das; con esto se logra ventaja de maniobrabilidad y menor requeri­miento de espacio para la colocación.

Se ha dicho con frecuencia que estos pilotes son apropiados para ser hincados a golpes a través de suelos más o menos duros en los que es difícil el hincado de pilotes de concreto, aún con

Page 372: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ayuda de chiflonaje; sin embargo, la experiencia de los autores es decepcionante y de hecho han visto serios problemas en obras en que proyectistas menos excépticos habían esperado excelentes resultados. Los tubos cerrados en su extremo resultan tan difíciles de hincar como un pilote de concreto, si bien resisten más y más enérgicos golpes de un martinete; en los tubos abiertos, en suelos algo duros, el material que va penetrando durante el hincado dificulta grande­mente también esta operación.

Los pilotes de sección tubular son buenos para soportar cargas grandes, ahorrando así muchos pilotes en estructuras pesadas en que se estudian como solución alternativa a los pilotes de concreto usua­les. Los pilotes deberán protegerse por algún método apropiado10 cuando exista peligro de ataque por corrosión.

Los pilotes de acero de sección H, debido a su pequeña área transversal y a su gran resistencia son adecuados para penetrar materiales duros, en los que los otros tipos de pilotes darían pro­blemas de hincado. También son adecuados para lugares en que no se desea tener fuerte desplazamiento del suelo a causa del hincado Son capaces de soportar muy fuertes cargas, cuando están debida­mente apoyados. Requieren comparativamente poco espacio de alma­cenaje. A veces se ha usado para sustituirlos, pero guardando sus características y con gran economía en muchos casos, rieles de desecho.

IX-12. Fricción negativa. Pilotes de controlExiste un problema muy común en las cimentaciones piloteadas

con pilotes de punta, cuando se presenta una estratigrafía básica­mente formada por un cierto espesor compresible, subyacido por el estrato resistente de apoyo y cuando dicho manto compresible tiende a disminuir de espesor por algún proceso de consolidación inducido. Este es el caso de estribos de puentes en los que el estrato compre­sible disminuye de espesor y se consolida por el peso de los terra­plenes de acceso; también es el caso de algunos valles en los que el bombeo para fines agrícolas induce la consolidación; el caso ya famoso de la Ciudad de México es tipico, pues en ella existe un es­trato de apoyo a profundidades del orden de los 30 m arriba del cual las formaciones arcillosas, muy compresibles, se consolidan por efecto del intenso bombeo que para obtención de agua potable con fines de consumo se realiza en los estratos acuíferos.

Los pilotes de punta, apoyados en un estrato no consolidable y resistente permanecen comparativamente fijos, respecto a los suelos blandos que se enjutan, tendiendo a bajar a lo largo de su fuste. Esta tendencia induce esfuerzos de fricción en el fuste de los pilotes que, por ser en sentido descendente, sobrecargan a éstos al colgarse mate­rialmente el suelo circunvecino de los pilotes. Si estas cargas no han

348 CAPITULO IX

Page 373: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

sido tomadas en cuenta en el diseño, pueden llegar a producir el colapso del pilote por penetración en el estrato resistente. Este es el fenómeno de fricción negativa en los pilotes de punta. En el mejor de los casos, es decir, cuando los pilotes aguantan la sobrecarga, la estructura apoyada sobre los pilotes parece emerger sobre la super­ficie del terreno, con lo que fácilmente producirá daños a estructuras vecinas, (fig. IX -6).

MECANICA DE SUELOS (II) 349

FIG. IX-6 Inducción de la fricción negativa a lo largo del fuste de pilotes de punta por Consolidación de los estratos blandos

Aún en el caso en que la fricción negativa no induzca falla y sea resistida, fácil es comprender que su efecto es maléfico, pues ocupa una buena parte de la capacidad de carga del pilote, que está sopor­tando al suelo circunvecino y no carga útil.

Es fácil ver que en una estructura piloteada con pilotes de punta, en la que se tenga el efecto de fricción negativa, un pilote de una zona interior de la cimentación podrá ser sobrecargado con un peso que sea, como máximo, igual al del volumen de arcilla tributario a dicho pilote. En un pilote de borde, sin embargo, la sobrecarga podrá ser mayor, por razones obvias y este efecto puede aún acen­tuarse más en un pilote de esquina, teniéndose como limite únicamente el valor de la adherencia entre suelo y pilote a lo largo de todo el fuste del mismo. Por ello, si el estrato resistente es susceptible de alguna cedencia, el pilote de esquina será el que más asentamientos pueda presentar, seguido de los de borde, quedando los mínimos

Page 374: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

hundimientos en las zonas interiores del área piloteada. Esto da lugar a una distribución de asentamientos opuesta a la que se tendría en una cimentación por superficie, flexible, bajo carga uniforme. Si la cimen­tación tiene rigidez y los pilotes están sólidamente unidos a ella en su cabeza, el efecto diferencial de fricción negativa en las esquinas y bordes puede llegar a hacer que los pilotes en esas zonas trabajen a tensión en su parte superior.

El valor de la sobrecarga que por fricción negativa puede llegar a tener un pilote de punta tiene, como se señaló, como cota superior el valor del producto de la adherencia entre suelo y pilote multiplicada por el área lateral de éste. En la práctica este valor de la adherencia suele tomarse igual al de la cohesión del suelo. En pilotes interiores el cálculo anterior suele ser conservador y, como se dijo, la sobre­carga no puede exceder el peso de la arcilla de un volumen tributario al pilote que puede ser valuado con cierta aproximación por simples consideraciones geométricas.

L. Zeevaert” ha hecho notar una consecuencia adicional de los efectos de fricción negativa cuya importancia práctica es quizá mayor de lo que a primera vista pudiera pensarse. Este efecto consiste en lo siguiente: al colgarse el suelo del pilote por fricción negativa, parte del peso que gravitaba, en la zona de la punta del pilote sobre el estrato resistente se ha aliviado: si el estrato resistente es de natu-

350 CAPITULO IX

F IS . IX-7 Pilotes de punta atravesando libremente la cimentación

Page 375: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 351

raleza friccionante, esta disminución de la presión efectiva conlleva una disminución de la resistencia al esfuerzo cortante y de la capa- cidad de carga y, por lo tanto, propicia la penetración del pilote en el estrato de apoyo.

Los efectos dañinos en las estructuras vecinas, la pérdida de capacidad de carga útil por fricción negativa y los peligros que entraña la penetración diferencial de los pilotes en los estratos firmes, han hecho pensar en soluciones que permitan manejar a los pilotes de punta superando estos problemas, so pena de desecharlos como cimentación posible en lugares en que existe enjutamiento de terrenos blandos y fricción negativa.

La primera solución que se ocurrió se ilustra en la fig. IX-7.Se trata simplemente de construir la cimentación de forma que los

pilotes la atraviesen libremente, de modo que no haya ningún contacto o unión entre ambos elementos. La estructura se carga entonces directamente contra el suelo, el cual comenzará a ceder bajo su peso. Esta cedencia hace que el suelo accione sobre los pilotes por un mecanismo de fricción negativa, con lo que éstos toman por lo menos parcialmente la carga de la estructura, con la correspondiente dismi­nución de las presiones efectivas en el suelo blando; así, los pilotes originalmente separados de la cimentación llegan a trabajar con cargas importantes, haciendo además que los asentamientos de la estructura disminuyan grandemente.

Vista de la instalación de un pilote de control

Aunque el modo de trabajar la cimentación anterior puede com­prenderse fácilmente, cualitativamente hablando, la cuantificación de

Page 376: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

las cargas que tome cada pilote o la predicción de los asentamientos diferenciales de la estructura son muy poco seguras) si no imposibles de efectuar. En algunas estructuras con este tipo de cimentación en la Ciudad de México se ha observado, de hecno, un comportamiento bastante imprevisible, tanto en lo que se refiere a asentamientos dife­renciales, como a penetraciones diferenciales en el estrato resistente.

La necesidad de controlar la carga en los pilotes y los asenta­mientos diferenciales y totales de la estructura llevaron al investigador M. González Flores12 a su difundida idea de los Pilotes de Control. Estos son, en esencia, pilotes de punta del tipo que atraviesa libre­mente la cimentación, sobre cuya cabeza se coloca un puente unido a la losa de cimentación de la estructura; este puente consiste de una vigueta de acero anclada a la losa con tornillos largos de acero. La unión entre la cabeza del pilote y la vigueta del puente se establece con un dispositivo formado por superposiciones sucesivas de placas delgadas de acero y sistemas de cubos pequeños de una madera con características esfuerzo-deformación especiales (fig- IX -8).

352 CAPITULO IX

El mecanismo arriba descrito tiene como finalidad hacer trabajar al pilote a la carga que se desee, claro está, siempre inferior a la carga de falla. Cada cubo de madera tiene una gráfica esfuerzo- deformación con un rango plástico amplio (fig. IX -9). Cuando se alcanza su carga de falla plástica previamente determinada, puede garantizarse que el cubo está transmitiendo una cierta carga fija

Page 377: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 353

FIG . IX-9. Gráfica esfuerzo-deformación en compresión simple de un cubo de Caobilla,utilizada en los pilotes de control

Pilotes de Control. Nótese el edificio separado del terreno, permi­tiendo realizar traba¡os de recimentación con comodidad

Page 378: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

a la cabeza del pilote, para un amplio rango de deformación en el cubo. Conocida la carga que se desea que tome el pilote, bastará dividir ese valor entre la carga de falla del cubo de madera para determinar el número de cubos que han de colocarse por capa, entre dos placas de acero. Como quiera que el sistema está sujeto a defor­mación, al cabo de un tiempo los cubos llegan al límite de deformación plástica, momento en que habrá que modificar la posición del puente y cambiar los cubos de madera. El lapso para estas operaciones puede ampliarse si se colocan varias capas de cubos de madera.

El objetivo fundamental de los pilotes de control es lograr que la estructura baje simultáneamente con la superficie del suelo. La carga transmitida por la estructura es tomada parte por el suelo y parte por los pilotes. Si la estructura tiende a bajar más aprisa de lo que lo hace la superficie del suelo (se supone que el suelo está bajando por algún proceso de consolidación independiente, por ejem­plo el bombeo en el caso de la Ciudad de México), los pilotes se harán trabajar a mayor carga, aumentando el número de cubos por capa, con lo que se alivia la parte de carga transmitida directamente al suelo y se frena el descenso relativo de la estructura; reciproca­mente, si la estructura tiende a emerger resnecto al terreno, los pilotes se harán trabajar a menor carga, disminuyendo el número de cubos de madera por capa, de modo que la estructura transmita más carga al suelo, con lo que su asentamiento se verá acelerado.

Si la estructura desciende de un modo no uniforme, con asenta­miento diferencial, las técnicas arriba descritas podrán aplicarse a diferentes zonas del área de cimentación, con lo que es posible igualar los asentamientos.

La aplicación de las técnicas descritas exige, desde luego, un nú­mero de pilotes adecuado en la cimentación; con pocos pilotes la es­tructura se hundirá irremediablemente, ya que los pilotes no podrán sobrepasar su carga de falla; por otra parte, si el número de pilotes es excesivo, puede llegar a suceder que la estructura emerja aún cuando en la cabeza de los pilotes no se aplique carga.

IX-13. Grupos de pilotesComo ya se ha indicado reiteradamente, el comportamiento de

un grupo de pilotes es distinto del de un pilote aislado, tanto en lo que respecta a capacidad de carga, como en lo que se refiere a asen­tamientos. Si en el caso de un pilote solo, que es el que se ha venido tratando hasta ahora en este capítulo, las incertidumbres de diseño son grandes todavía, en el caso de una agrupación de pilotes que constituya una cimentación real, estas incertidumbres son tanto mayo­res, que puede decirse que todo el conocimiento teórico del que hoy se dispone no pasa de ser un marco de referencia que sirva para enca­sillar debidamente el criterio y la experiencia del proyectista, que

354 CAPITULO IX

Page 379: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 355

juegan un papel decisivo todavía en el logro de los buenos resultados prácticos. De hecho, se dice con razón que el diseño de una cimen­tación piloteada es más un arte que una cuestión científica, en el que factores tan primarios como el instinto del proyectista juegan un papel preponderante; sin embargo, también es un hecho bien sentado que son los hombres con mayor conocimiento teórico y mejor infor­mación general sobre el campo, los que logran sacar mayor partido de experiencia e instinto. Es evidente, por otra parte, que cualquier cosa que se piense o ejecute en torno a una cimentación real debe estar respaldada por un conocimiento exhaustivo de la estratigrafía del suelo por pilotear, conocimiento que debe llegar a profundidades suficientes, excedentes del valor del fuste de los pilotes en lo que sea necesario (fig. IX -2).

Poco es lo que puede decirse con seguridad desde un punto de vista teórico, sobre capacidad de carga en grupos de pilotes. Sin embargo, existen algunas reglas que se admite generalmente deben ser cumplidas por toda cimentación piloteada. Alguna de ellas se trata en lo que sigue.

En pilotes de punta apoyados en roca firme, no subyacida por ningún estrato compresible, la capacidad de carga de un grupo de pilotes es igual a la suma de las capacidades de carga de los pilotes individuales, siempre y cuando el espaciamiento entre pilotes sea tal que la hinca de uno de ellos no interfiera con sus vecinos ya hincados; esta interferencia puede ser haciéndoles perder el apoyo por levantamiento originado por el suelo que se desplaza en la hinca, o por interacción material de un pilote contra otro, por desviación durante el hincado. En la práctica suele considerarse como espacia­miento mínimo razonable el de 2 o 3 diámetros, medidos centro a centro entre los pilotes. Los problemas de interferencia se eliminan prácticamente usando pilotes preexcavados, algunos de cuyos tipos se describen en este capítulo.

En pilotes de punta apoyados en estratos resistentes no roco­sos, pero no subyacidos por estratos compresibles, la capacidad de carga del grupo es tanto más parecida al caso anterior cuanto más firme y rígido sea el apoyo; en general, para los estratos comunes en que se apoyan pilotes de punta, puede decirse que la capacidad de carga de un conjunto de pilotes es similar a la que se obtiene multiplicando la carga soportada por un pilote individual por el número de los pilotes. Sin embargo, existe una gran cantidad de incertidumbres todavía sin dilucidar, en especial si el estrato de apoyo es de naturaleza friccionante. Por ejemplo, hay autores que opinan que un conjunto de pilotes puede tener mayor capacidad que la que se deduce del valor correspondiente a un pilote individual13; la razón es que se supone que el conjunto de pilotes trabaja como una pila equivalente que tuviera las dimensiones de dicho conjunto. Otros

Page 380: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

autores, por el contrario, suponen que en ocasiones la capacidad del grupo es algo menor que la obtenida al multiplicar la carga de un pilote por el número de ellos.

Si debajo del estrato de apoyo hay suelos blandos compresibles, la capacidad de carga de los pilotes está limitada por la capacidad de carga del estrato' blando y sobre todo por los asentamientos que en este caso aumentan considerablemente con el ancho del área pi­loteada (fig. IX-2).

No hay un método que pueda considerarse satisfactorio para calcular los asentamientos de una cimentación piloteada, apoyada en un estrato bajo el que haya suelos compresibles. El método que qeneralmente se aplica consiste en considerar la carga de la estruc­tura aplicada en la punta de los pilotes, como carga uniformemente repartida en el área piloteada (fig. IX-10).

356 CAPITULO IX

Page 381: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La dificultad estriba en valuar los esfuerzos que lleguen al manto compresible desde el estrato de apoyo. El procedimiento más con­servador sería suponer una distribución de esfuerzos con la teoría de Boussinesq (Capítulo II) y con ella calcular los asentamientos en la forma tratada en el Capítulo III. Esto equivale a ignorar el efecto de losa que el estrato resistente produce, por el que los esfuer­zos en el estrato subyacente son menores que los calculados. Si se co­nocen las propiedades mecánicas de los estratos resistentes y blandos subyacentes, podría obtenerse una distribución de esfuerzos más aproximada utilizando la Teoría de Burmister (Capítulo II).

En pilotes de fricción, el efecto de grupo más importante en lo

3ue se refiere a la capacidad de carga es la posibilidad de una falla e la cimentación en conjunto (fig. IX-11).

MECANICA DE SUELOS (II) 357

\\

FFIG . IX -II fa lia de conjunto do una cimentación con pilotes de fricción

La posibilidad de esta falla estriba en que la resistencia por ad­herencia y fricción en el área lateral del prisma de altura L, envol­vente de los pilotes, sea menor que la suma de la resistencia de todos los pilotes considerados individualmente. Si n es el número de pilo­

Page 382: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tes en la cimentación, p el perímetro de cada uno, P el perímetro del conjunto y fa es la adherencia entre pilote y suelo, supuesta igual a la resistencia al esfuerzo cortante del material, el peligro de falla de conjunto dejará de ser crítico si se cumple la desigualdad:

npL¡a < PfaLde donde

n p < P (9-4)

lo que expresado en palabras da lugar a la conocida regla práctica de que no hay riesgo dominante de falla de conjunto siempre y cuando el perímetro del área ocupada por los pilotes sea mayor o igual que la suma de los perímetros de los pilotes individuales.

Algunos autores toman en cuenta en el razonamiento anterior la resistencia que ofrece a la falla la base inferior del prisma formado por el conjunto de los pilotes; huelga decir que la fórmula 9-4 es conservadora respecto a este criterio.

358 CAPITULO IX

Falla de un conjunto de pilotes

En lo que se refiere a asentamientos de grupos de pilotes de fricción, puede decirse que no guardan ninguna relación con el asen­tamiento de un pilote aislado. En general, el asentamiento de una cimentación piloteada con pilotes de fricción es menor que el que se tendría si la misma carga se aplicase al nivel de la cabeza de los pilotes, directamente sobre la misma área que se pilotea. Por supuesto que pueden imaginarse casos en los que la regla anterior no valga o que, inclusive, se invierta; por ejemplo, si la estratigrafía

Page 383: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 359

comprende una costra potente dura, bajo la que hay suelo muy blando, el efecto de los pilotes, al transmitir esfuerzos directamente al suelo blando es contraproducente y se originan fuertes asenta­mientos, quizá mayores que los que se tendrían sin pilotes. La razón por la que los pilotes de fricción producen menor asentamiento que las cargas superficiales es doble; por un lado, los pilotes transmiten una parte substancial de la carga a zonas profundas, en las que por haber mayor presión inicial, el material es menos compresible; en segundo lugar, al repartir la carga a lo largo de todo el fuste, el nivel del mayor esfuerzo transmitido al suelo es menor que si la carga se transmitiera con una zapata.

Tampoco existe un método científico convincente para calcular los asentamientos en grupos de pilotes de fricción; las reglas que existen para ello están “prefabricadas” de modo que lleguen a resul­tados que sean razonables de acuerdo con la experiencia de que se dispone; después se les proporciona una apariencia más o menos formal, que permita asociarlas con más o menos éxito a alguna teoría admitida. Algunas de esas reglas se exponen a continuación.

Quizá el método más extendido para los fines prácticos es el debido a Terzaghi y Peck14, según el cual la carga tomada por los pilotes puede considerarse aplicada en el tercio inferior de los mis­mos, como uniformemente repartida en el área piloteada, calculando el asentamiento de ese nivel hacia abajo ( Capítulos II y II I ), como si no existiese pilote alguno; ello implica la suposición de que el espesor de suelo correspondiente a los dos tercios superiores de los pilotes no se consolida. Los propios autores presentan este método como lo que ellos llaman una solución aproximada. En la mayoría de los casos, la estimación por este procedimiento resulta conserva­dora; es decir, los asentamientos reales son menores que los calcu­lados. Precisamente por esta razón, algunos autores han propuesto considerar la carga uniforme equivalente aplicada al nivel de la punta de los pilotes, con lo que se reduce el espesor de material consolidable y se obtienen asentamientos menores.

IX -14. Deterioro y protección de pilotes

En esta sección se tratarán brevemente las causas más comunes que producen el deterioro de los pilotes y los procedimientos que más se han usado para la protección de los mismos. Primeramente se tratará el caso de los pilotes de madera para seguir con los de concreto y terminar con los pilotes de acero.

La calidad estructural de los pilotes de madera puede verse afec­tada por pudrimiento, por ataque efectuado por insectos u organismos marinos, por abrasión mecánica y por acción del fuego.

Page 384: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El pudrimiento de la madera es causado por el desarrollo de hongos en las zonas expuestas a períodos de humedecimiento y secado alternativos. La temperatura es otro factor que afecta el des­arrollo de los hongos, considerándose que temperaturas entre 20°C y 35°C son las óptimas para su crecimiento. El pudrimiento de la madera es prácticamente nulo si el pilote permanece siempre seco, siempre saturado o ha sido tratado químicamente para impedir el crecimiento de los hongos. Sin embargo, los tratamientos usuales tie­nen la desventaja de proteger la madera únicamente superficialmente, por lo que la parte interior está expuesta al pudrimiento una vez que se produce alguna discontinuidad en su protección superficial (agu­jeros, cortes o zonas desprotegidas por abrasión mecánica).

La regla práctica más segura es la de que el uso de la madera en pilotes debe restringirse a zonas bajo el nivel freático mínimo que se tenga en la zona piloteada.

Puede considerarse que no existe ninguna variedad de madera inmune al ataque de insectos y organismos vivos, de modo que el único procedimiento seguro para evitar el problema es el uso de trata­mientos preservativos adecuados. Desde luego esta forma de deterioro es particularmente grave en pilotes sujetos a la acción de aguas de mar, pues éstas suelen contener gran variedad de organismos que originan deterioro en la madera.

La protección de pilotes de madera se logra con dos métodos básicos, sujetos a multitud de variantes: o se envenena la madera con substancias químicas que la hacen inapropiada a la vida animal o se la protege mecánicamente, por ejemplo cubriéndola con metal o concreto.

Los principales agentes de deterioro en pilotes de concreto son las substancias susceptibles de producir destrucción o ataque al con­creto, tales como algunos álcalis, ácidos o sales, la acción mecánica de la congelación del agua del subsuelo, la descomposición química del concreto, especialmente si está expuesto a la acción de agua salada y, finalmente, el manejo inapropiado en las operaciones de izado y colocación.

Los métodos de protección para pilotes de concreto cuando se hacen necesarios, consisten en el uso de pinturas, recubrimientos me­tálicos o de substancias como la gunita u otras similares.

El principal enemigo de los pilotes de acero es la corrosión. Las principales medidas para evitarla son el aumentar la sección, pintar los pilotes con pinturas especiales o utilizar recubrimientos, sobre todo de concreto. Modernamente se ha utilizado con gran éxito la protec­ción catódica, sujeta, por otra parte, a problemas de conservación.

Todo lo anterior hace necesario efectuar inspecciones periódicas a toda cimentación piloteada, a fin de constatar sus condiciones de conservación.

360 CAPITULO IX

Page 385: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 361

IX-15. Pilas, cilindros de cimentación y cajones

Como ya se ha dicho en el comienzo de este capítulo, los ele­mentos que dan título a esta sección se distinguen de los pilotes por su tamaño creciente; sin duda tal distingo debe producir diferencias más fundamentales de comportamiento, pero éstas no están hasta aho­ra suficientemente dilucidadas, por lo que los criterios de cálculo de capacidad de carga y asentamientos son los mismos empleados en pilotes.

En el Anexo IX -f se dan algunas indicaciones sobre estos ele­mentos de cimentación, sus métodos constructivos y su manejo en general.

ANEXO IX-a

Fórmulas dinámicas para la capacidad de carga de pilotes hincados al golpe

La primera fórmula dinámica que ganó popularidad por su sim­plicidad es la conocida con el nombre de fórmula del Engineering News, presentada por Wellington en 1888. La fórmula se presentó para ser usada en pilotes de madera hincados con martillos de caí­da libre y se modificó más tarde para su aplicación a martillos de acción simple y doble. La fórmula para martillos de caída libre y de acción simple proviene de igualar la energía del impacto con el trabajo de penetración, más las pérdidas de energía que tengan lugar

Wh = Qd s + Pérdidasdonde

W = peso del martillo h = altura de caída

Qa = resistencia dinámica en la punta del pilote s = penetración de la punta del pilote en el impacto considerado.

Si las pérdidas se expresan con cQd, la fórmula queda

WhQd = - ^ - (9-a.l)s + c

Para el caso de martinetes de doble efecto, la fórmula se modifica al considerar que la fuerza que produce el impacto es el peso del

Page 386: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

362 CAPITULO IX

martillo más el empuje del vapor, expresado por la presión de éste,p, multiplicada por el área del émbolo, A. Así la fórmula queda

5 + C

Obsérvese que c tiene unidades de longitud; su valor, obtenido empíricamente, es

c = 2.5 cm, para martillo de caída librec = 0.25 cm, para martillo de vaporc = 0.25 P /W cm, siendo P el peso del pilote, para el caso de

martillos de vapor, si se considera la influencia de la inerciay el peso del pilote en las pérdidas de energía.

Otra de las fórmulas dinámicas más populares, inclusive hoy en día, es la debida a Hiley1, en la que se trata de establecer las pérdidas de energía durante el hincado de un modo más detallado. En lo que sigue se dan los lincamientos básicos para la deducción de esta fórmula.

En el momento del impacto, el martillo posee una energía que corresponde a una cantidad de movimiento igual a su masa por su velocidad en dicho instante. El primer efecto del martillo sobre el pilote es una compresión de éste y al final de este período de com­presión la velocidad del martillo y la del pilote serán la misma. Si W es el peso del martillo, g la aceleración debida a la gravedad y v la velocidad del. martillo en el momento del impacto, la cantidad del movimiento del martillo en ese momento vale

WM v9

Si M t es la cantidad de movimiento que corresponde a la energía que el pilote absorbe al comprimirse, al final del período de compre­sión la cantidad de movimiento del martillo se habrá reducido en esta cantidad y será

M' - M - M t

También la velocidad del martillo se habrá reducido al fin del período de compresión al valor:

M'g M Tgvc —------- — v -----------

W W(9 -a .3 )

Page 387: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Si se supone que el pilote tiene la posibilidad de moverse algo hacia abajo y que el efecto del hincado en el rebote hace que sepierda el contacto del pilote con la tierra, entonces la cantidad demovimiento del pilote al fin del período de compresión puede supo­nerse igual a M t y, por lo tanto, la velocidad del pilote será

M TgVc = (9' aA)

donde Wp es el peso del pilote.Las velocidades del martillo y pilote deben ser iguales al fin del

período de compresión, por lo que las expresiones 9-a.3 y 9-a.4 pueden igualarse

M Tg _ M Tg v W (9' a'5)

MECANICA DE SUELOS (II) 363

P

Después del período de compresión el pilote se restituye, tratando de recuperar su forma original. Si e es el coeficiente de restitución del sistema pilote-martillo, entonces eMT será la magnitud del impulso que causa la restitución, por definición de coeficiente de restitución. Así al final del período de restitución, la cantidad de movimiento del martillo será

M” = M - M T- e M T = M - M T{l + e) (9-a.6)

Si vm representa la velocidad del martillo al final del período de restitución, se tendrá

M"g M, gVm ~ ~ \\T ~ v W ~ ^ X + e ) ( 9 ' a -7 )

de la expresión 9-a.5 se deduce que

JIM 1 W I V »M’ = g W + w : <9-a-6)

Valor que substituido en (9-a.7) conduce a

-. = -[1 - T V T W (l+e)]de donde

Page 388: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

364 CAPITULO IX

Si vp es la velocidad del pilote al final del período de restitución y teniendo en cuenta que en ese instante la cantidad de movimiento

ue corresponde a la energía total absorbida por el pilote es ~T + eMT, se tiene que

M t{ 1 + e)g v p - ^ y (9-a.lO)

Substituyendo el valor dado por la ec. 9-a.8 para M T, se tiene que:

_ W U + e ) __W + e W ( n . i nv» - w + W , v ~ W + W , p

Con las velocidades vm y vf del martillo y pilote, respectivamente, correspondientes al fin del período de restitución, puede calcularse la suma de las energías que se tienen en esos elementos en dicho momento, la cual ya podrá usarse en hincar el pilote en el suelo, venciendo la resistencia de éste. Sin embargo, ha de notarse que parte de esa energía se empleará aún en producir compresiones de índole elástica temporal en la cabeza de acero que se le coloca al pilote para el hincado, en el pilote y en el suelo.

Así la energía disponible en el sistema martillo-pilote, al fin de la restitución, será:

w w .+ - P K , ) 2 (9-a.l2)2 9 2 9

introduciendo las ecs. 9-a.9 y 9-a.ll en la (9-a-12) se llega a

D _ W v* ( W - e W PY , W , v * ( W + e W\* _ n * - - 2 r \ W + Wp J + 2 g \ W + Wv) -

" W v2 W + e2 Wp W v2 WP{1 - e2) ]L1 _ w + w p ]2 g W + W p ~ 2 g

(9-a.l3)

De la expresión final de la ec. 9-a.l3, teniendo en cuenta que la energía del martillo en el momento del impacto fue E — W v2/ 2 g se tiene que la energía perdida vale

Page 389: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La energía disponible E¿, dividida entre la energía total E, da la eficiencia del golpe del martillo; puede verse en la penúltima expre­sión de las ecs. 9-a.l3 que dicha eficiencia vale

, = ^ + í ^ ( * * » >

MECANICA DE SUELOS (II) 365

W + W plo cual puede escribirse

111 _ + Wr,

1 4 - — 5 1 + — -1 + W + W

El segundo término del segundo miembro de la ecuación anterior es despreciable normalmente en la práctica, dado el pequeño valor de e- en la mayoría de los casos. Si esto es así, resultará

„ = - V ( 9 - . I 6 )1 + —1 + w

La ec. 9-a.l6 indica la importancia de tener un martillo pesado en comparación al peso del pilote que se desee hincar; así la relación

/ W será chica y la eficiencia del golpe, q, será grande. Este punto ilustra el inconveniente más grave de describir un martillo de hinca por la energía de su golpe en kgm. En efecto, un cierto número de kgm puede lograrse con un martillo muy ligero, cayendo de gran altura o con un martillo muy pesado, que caiga de pequeña altura; en ambos casos la energía puede ser la misma, pero la eficiencia delgolpe es tan diferente que puede decirse que los martinetes de mar­tillo ligero son siempre inapropiados para la hinca y que debe tenderse, en lo posible, al uso de maquinaria pesada aue opere eficientemente y logre hincar pilotes en lugares en donae ello es factible, pero donde equipo ligero fracasa inevitablemente, por su baja eficiencia.

La energía cinética en el momento del impacto ( W/ 2g) v 2 pro­viene de la caída del martillo, por lo que puede escribirse

W— v'- = W h 2)7

donde h es la altura de caída libre del martillo.Si no hubiera pérdidas de energía en el impacto, no hubiera

pérdidas de naturaleza elástica y la eficiencia del golpe fuera 100%, evidentemente podría escribirse

Page 390: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Qa s — W h

En un martinete real existe una eficiencia mecánica, ef, que se debe a que el martillo va guiado y se roza en sus guías, a la resis­tencia del aire, etc. Teniendo esto en cuenta, deberá escribirse

Qd s — e¡ W h

La energía del golpe está, a su vez, afectada por otro factor de eficiencia, rj, según se vio y, en consecuencia, la ecuación anterior deberá modificarse para tomarla en cuenta

W + e2 W„Qds = T] e, W h = e, W h J T f (9-3.17)

de donde resulta:^ W h W + e2 Wp m 1|M

— r + w r (9' a-I8)

Si la punta del pilote se mueve hacia abajo una cierta cantidad, s, como resultado del golpe, la parte superior de la pieza metálica que se coloca en la cabeza del pilote para su protección, se mueve esa distancia más una cantidad adicional c = Ci + c2 + c3, debido a las compresiones elásticas temporales en el propio cabezal de protección, en el pilote y en el suelo.

Entonces se tiene que el trabajo efectuado por el golpe es en realidad

366 CAPITULO IX

Qd

ya que el trabajo adicional efectuado contra las fuerzas elásticas mencionadas es 1/2 (Qd c ) .

Por lo tanto

o, si se prefiere

^ W h W + e2 WvU i ~ Cf s + c/2 W + Wp (9-a.l9)

^ _ et W h W + e * W , /nQ i ~ s + l/2(Cl + c2 + c3) W + W p (9'a-20)

que es la fórmula de Hiley, que se trataba de obtener.

Page 391: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 367

La expresión anterior, es válida, según se desprende de su obten­ción, para martillos de caída libre o de acción simple. Para martillos de doble acción, la fórmula se modifica substituyendo el valor W h por el término E n , energía por golpe, proporcionada por el fabricante de la unidad.

Las fórmulas anteriores no son aplicables en rigor al caso de pilotes hincados al rechazo en material muy duro o hincados sobre roca dura, en donde la punta del pilote no se mueve libremente; sin embargo, aún en esos casos, el autor de esta fórmula sostiene que con ella se obtienen resultados que no difieren mucho de los obte­nidos con fórmulas más apropiadas, pero también más complicadas.

En la fórmula 9-a.20 el sentido detallado de los símbolos utili­zados es el siguiente:

= Resistencia última al hincado, supuesta igual a la capa­cidad de carga última del pilote.

W — Peso del martillo que hinca al pilote. h ~ Altura de caída libre de un martillo de este tipo o carrera

del martillo en uno del tipo de acción simple. e¡ = Eficiencia mecánica del martillo de hincado. Los valores

que se recomienda en la práctica en algunos casos fre­cuentes son los siguientes:100% para martillos de caída libre de control automático. 75% para martillo de caída libre accionado con cable y

malacate de fricción.85% para martinetes McKieman-Terry de acción simple. 75% para martinetes Warrington-Vulcan de a c c i ó n

simple.85% para martinetes de doble acción McKieman-Terry,

Industrial Brownhoist, National y Unión.100% para martinetes Diesel.80% para martinetes de acción simple B.S.P., semiauto-

máticos.W p = Peso del pilote y todos sus accesorios necesarios pára la

hinca.I — Longitud del pilote. Si en la resistencia del pilote al hin­

cado juega papel importante la fricción lateral, l será la distancia de la cabeza del pilote al centro de las fuerzas de resistencia al hincado,

e = Coeficiente de restitución, que varía de cero en pilotes con cabeza de madera deteriorada sin protección o en pilo­tes con amortiguadores en la cabeza, a 0.55 en pilotes con cabeza protectora de acero. Deberá usarse el valor 0.40 cuando la cabeza protectora en el pilote de acero esté pro­vista de un amortiguador poco resistente; 0.25 en pilotes de madera o de concreto con cabeza de madera.

Page 392: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

s = Penetración del pilote con el golpe.Ci = Compresión temporal de la cabeza del pilote y de su

protección; incluye la compresión de los seguidores, si los hubiere.

c2 — Compresión temporal del pilote.

= (9-a 2 ’ >

c3 = Compresión del suelo bajo el impacto. Oscila de 0.5 cm en suelos relativamente resistentes hasta cero en suelos muy duros. Un valor normal es 0.25 cm.

A = Sección recta del pilote. Si ésta no es constante, se deberá tomar un promedio entre los valores en la cabeza y en la punta. En pilotes de concreto reforzado, precolados, debe­rá transformarse el área de acero a un área equivalente de concreto.

E = Módulo de elásticidad del materiaí del pilote.Ci varía de 0 a 1.25 cm, dependiendo de varios factores.

Valores altos de Ci se tienen cuando el suelo es muy re­sistente, la cabeza del pilote tiene colchón amortiguador de importancia y el pilote es de concreto; Ci es cero si el golpe se le aplica directamente a un pilote de acero.

368 CAPITULO IX

ANEXO IX-b

Pruebas de carga en pilotes

El dispositivo para dar la carga al pilote, una vez que éste está en la posición de prueba, puede seguir alguna de las siguientes variantes:

1. Aplicación directa de la carga, colocando un lastre sobre una plataforma que descanse directamente en la cabeza del pilote.

2. Aplicación de la presión de un gato hidráulico cuya reacción la absorbe una plataforma lastrada, el peso de una estructura existente, una viga de acero anclada al terreno generalmente por medio de otros pilotes, etc.

3. Aplicación de una carga por mecanismo de palanca, usando una viga piloteada en un extremo a la que se carga en el otro extremo.

Page 393: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En la fig. IX-b.l se muestran esquemas de algunos dispositivos típicos.

MECANICA DE SUELOS (II) 369

d ) DISPOSITIVO CON GATO CONTRA PILOTES

FIG. IX-b.l Dispositivos típicos paro pruebas de carga en pilotes (según R. D. Chelis)

El lastre suele estar constituido por rieles, lingotes, bloques de concreto, depósitos de agua o, simplemente, peso de tierra.

De los métodos empleados para la carga, ha de señalarse la dificultad de operación que plantea el primero de los citados, espe­cialmente si han de seguirse, como es norma general, procesos de descarga, muy engorrosos con el sistema del lastrado y muy expe­ditos, por el contrario, si se usan gatos.

La secuela de realización de una prueba de carga en pilotes consiste esencialmente en cargar al pilote en incrementos, hasta llegar

Page 394: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

370 CAPITULO IX

F IG . IX-b.2 Diagrama de correlación típico entre carga, asentamiento y tiempo, en unaprueba de carga en un pilote

Page 395: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

al valor máximo previsto en la prueba, generalmente del orden del doble de lo que se estima que sea la carga de proyecto y en medir por algún procedimiento los asentamientos correspondientes en la cabeza del mismo pilote.

Cada incremento de carga deberá dejarse el tiempo necesario como para que el asentamiento prácticamente cese. El asentamiento de la cabeza del pilote se debe a deformaciones elásticas (recupera­bles al retirar la carga) tanto en el suelo como en el propio pilote y a deformaciones plásticas (que permanecen al retirar la carga) del suelo. Estas deformaciones son las que causan generalmente los asentamientos excesivos en las estructuras y son, por lo tanto, las que deben evitarse. En una prueba de carga deben deslindarse los dos tipos de deformación, puesto que las deformaciones plásticas son las que realmente interesa definir en la prueba. Para esto es necesario efectuar procesos cíclicos de carga y descarga, durante los cuales el pilote llegue a cargas máximas cada vez mayores. En la fig. IX-b.2 puede verse una gráfica que ilustra resultados típicos de una prueba de carga.

En la parte a) de la figura se ilustra el proceso de cargar en incrementos, detallando los tiempos en que se colocaron y anotando los asentamientos que produjeron. Cada incremento se dejó un lapso de 6 h sobre el pilote, lo que se supone fue suficiente para que los asentamientos cesaran en todos los casos. La primera descarga se efectuó cuando la carga había llegado al valor de 35 ton; elasentamiento del pilote en dicha descarga se recuperó totalmente,lo que indica que era de naturaleza elástica. Al llegar, en el nuevo proceso de carga, a las 100 ton se descargó de nuevo, quedando ahora un asentamiento remanente de 0.4 cm.

La tercera descarga ocurrió al llegar el pilote a las 150 ton, con un asentamiento no recuperable de 1.75 cm.

En la parte b) de la figura se ha dibujado la gráfica carga-asen­tamiento total, con línea llena; la gráfica correspondiente a los asentamientos plásticos aparece con trazo de punto y raya. Estaúltima se obtuvo de los resultados de la parte a) de la figura, quepermitieron trazar en forma aproximada las trayectorias de descarga (de las que sólo se conocen el primero y el último puntos). Con la deformación permanente en carga cero y el valor de la carga a partir de la que se descargó el pilote se obtienen puntos sobre la curva de asentamientos plásticos. En la parte b) de la figura se ilustra la obtención del punto correspondiente a la carga de 150 ton.

Una vez obtenida la curva de asentamientos totales y plásticos contra la carga pueden suceder dos cosas. Primero, que en las curvas se defina el punto de falla por un quiebre tan evidente, que no haya duda respecto a la carga de falla. En este caso, lo único que se requerirá para determinar la carga de trabajo del pilote será escoger

MECANICA DE SUELOS (II) 371

Page 396: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

un factor de seguridad adecuado para dividir por él la carga de falla: este factor de seguridad es frecuentemente del orden de 2.

Existe un segundo caso más frecuente, en el que no es fácil determinar el punto de falla, debido a lo gradual del cambio de pendiente de las curvas asentamiento-carga. En este caso es preciso definir lo que se considerará carga última del pilote por medio de algún criterio conveniente, y hasta cierto punto, arbitrario. Existen varias reglas de esta naturaleza: las menos están elaboradas para aplicarse sobre la curva del asentamiento total, las más se refieren a la curva de asentamientos plásticos. Algunas de las reglas de ma­yor uso actual se mencionan a continuación:

/. Determínese la carga para la cual, en 48 h corresponda un asentamiento permanente no mayor de 0.5 cm y divídase ese valor por un factor de seguridad de 2, obteniéndose así la carga de proyecto. (Departamento de Carreteras del Esta­do de Louisiana, EE.UU., y Departamento de Obras Públicas del Estado de Nueva York, EE. U U .).

2. Hágase la prueba hasta aplicar una carga doble que la que se desee que soporte el pilote en la obra. La prueba se consi­derará satisfactoria cuando dicha carga no produzca un asen­tamiento total neto mayor de 0.025 cm por cada tonelada de carga aplicada, midiendo el asentamiento al retirar la carga, después de 24 h de permanencia (Código de Edifi­cios de la Ciudad de Nueva York, EE. U U .).

3. Obtenida la curva carga-asentamientos plásticos, trácense tan­gentes a sus tramos inicial y final; la carga correspondiente a la intersección de los dos trazos, dividida entre un factor de seguridad de 1.5 ó 2 será la carga de proyecto.

4. Obténgase el punto en el que el asentamiento total comience a exceder de 0.125 cm por cada tonelada de carga adicional o en el que el asentamiento plástico comience a exceder de 0.075 cm por cada tonelada de la misma carga. La carga correspondiente a cualquiera de esos puntos se considera la última del pilote; para obtener la carga de proyecto, su valor deberá dividirse por 2, si el pilote trabaja bajo cargas estáti­cas o por 3 si ha de estar sujeto a cargas dinámicas. (Dr. R. L. Nordlund, Compañía Raymond de pilotes de concreto).

ANEXO IX-c

Algunos tipos comunes de pilotes precolados apropiados para ser hincados al golpe

Los pilotes de concreto apropiados para ser hincados a golpes suelen ser de sección rectangular o circular, con calibres compren­

372 CAPITULO IX

Page 397: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

didos usualmente entre 30 cm y 60 cm; sus longitudes oscilan entre 8 6 10 m como límite inferior y 30 m o algo más, como superior. Estos pilotes requieren lugar de colado, tiempo para curado, espacio para almacenaje y equipo especial para izado y manejo. Frecuente­mente se cuelan en tramos manejables, que se unen en la posición de hincado por medio de juntas cuya resistencia garantice amplia­mente la del conjunto.

Los pilotes pueden ser simplemente reforzados o presforzados. A continuación se describen algunos tipos especiales de pilotes

que han sido usados en la práctica de las obras.

a) Pilote presforzado tipo RaymondMuy apropiado para grandes longitudes de pilotes que han de soportar grandes cargas. Los pilotes se hacen de seccio­nes de concreto con armado longitudinal y espiral de 5 m de longitud, aproximadamente. A lo largo de todo el pilote, coin­cidiendo en todas las secciones, existen perforaciones próximas a la periferia de calibre suficiente para contener a los alam­bres longitudinales de presfuerzo, los que, armado el pilote, se tensan con gatos y se sujetan rellenando las perforaciones con mortero de cemento.Estos pilotes pueden llegar a diámetros de 1 m aproxima-

) Pilotes HawcubeEstos pilotes son una patente inglesa. Consis­ten en tramos de concreto precolado de 1.5 m a 3.0 m de longitud, que se van hincando y uniendo por machihembrado ayudado por mor­tero. Contribuyen a evitar difíciles maniobras de manejo, inevitables en pilotes largos.

) Pilotes GigantesEstos son pilotes de concreto protegidos por canales de acero que hacen de camisa (fig.IX -c .l).

Los canales protegen al pilote de los golpes del martinete, absorbiendo una gran parte de la energía del impacto. Además embonan con una zapata de acero que cubre la punta del pilote, lo que sirve para transmitir la energía del impacto directamente a la punta, con lo que se logra mayor eficiencia de hincado y los pilotes puede alcanzar mayores profundi­dades o pueden usarse eficientemente marti­netes de menor energía de hincado. El golpe se da en un cabezote de acero directamente co-

MECANICA DE SUELOS (II) 373

damente.

F IS . IX -C .I Ula- ie Gigante

Page 398: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

374 CAPITULO IX

nectado a la armadura de canales. Al término del hincado se extraen los canales halándolos; el hincado de pilotes adya­centes elimina posteriormente el espacio vacío dejado por la remoción de los canales.

ANEXO IX-d

Tipos de pilotes colados en el lagar

Como se dijo en el cuerpo de este capítulo hay una gran variedad de tipos de pilotes colados en el lugar, la mayor parte sujetos a patente. Los pilotes pueden construirse sin ademe permanente o con él; los primeros se usan donde no se derrumbe o cierre la excavación previa que se haga para la construcción del pilote, en donde el agua no anegue a la misma y en donde no se perjudique a un pilote recién construido al efectuar las excavaciones para los pilotes vecinos. Este tipo de pilotes tiene la ventaja de no precisar espacio de almacenaje, ni equipo para su manejo; además, no están sujetos a daños por maniobras de manejo o por hincado.

A continuación se describen brevemente los tipos más comunes de pilotes colados en e! lugar sin ademe permanente.

a) Pilote McArthur de concreto comprimido. Pilote Western Este pilote puede construirse hasta un diámetro del orden de 60 cm en forma satisfactoria a través de cualquier suelo, siempre que no ceda lateralmente cuando el concreto sea presionado.El equipo de construcción comprende un ademe tubular y un émbolo que ajusta bastante bien en su interior. El procedi­miento de construcción es el siguiente: en primer lugar se hinca el ademe circular con el émbolo bajado hasta su parte inferior; logrado el nivel deseado, se retira el émbolo y se rellena el ademe de concreto; en seguida, se extrae el ademe por tracción, asegurando al concreto con el peso del émbolo, para evitar que sea arrastrado hacia afuera, (fig. IX -d .l). Los pilotes Western son una variante de los anteriores en la que se acciona el émbolo con un mecanismo de poleas, de modo que al ser extraído el ademe utilizando el martinete de hinca, dicho mecanismo hace que el émbolo presione al concreto para garantizar que éste quede en posición dentro del ademe, sin arqueo y sin arrastre, cuando éste es extraído.

b) Pilotes de concreto comprimido con base ampliadaEstos pilotes tienen ventaja en lugares en que el estrato resis­tente es relativamente delgado y no es muy profundo; la base ampliada da menores esfuerzos de contacto, haciendo el papel

Page 399: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 375

Q

■M ^ Tí|SUELOBLANDO

SUELO DURO (Q )

P n i

■ ; L

I " .| '4í 1

-V ftrsitn m

(b) (c)FIS . IX-d.l PHofe M cA rthu r

I T i p s

(d)

de una zapata. También son útiles para lograr un buen apoyo en estratos de roca muy inclinada.El equipo utilizado incluye un ademe tubular hueco, con un émbolo interior que ajuste bien con él. La operación para formar al pilote es la siguiente, (fig. IX-d.2)Se hinca el ademe con el émbolo metido hasta el fon­do; a continuación se levanta el émbolo hasta retirarlo del ademe y se llena éste hasta una cierta altura, asegurando el concreto con el émbolo y se rehinca el ademe, con el émbolo de nuevo llevado hasta el fondo, a través del concreto fresco, con lo que se produce la ampliación de base característica de estos pilotes. Se retira ahora otra vez el émbolo y se rellena de concreto todo el ademe. Finalmente se retira el ademe con presión hacia arriba, a la vez que con el émbolo se da sobre el concreto la suficiente contrapresión hacia abajo para garan­tizar que el concreto no sea arrastrado y que el pilote resulte bien conformado.Las operaciones anteriores y la calidad del suelo condicionan la ampliación que se obtenga; formas alargadas son preferi­bles si el pilote ha de penetrar algo en un estrato de suelo

Page 400: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO IX

o

HfewewSUELO DURO

( a ) (b) (c) (d) (e)

FIG . IX-d.2 P/7ofe cfo concreto comprimido de bote ampliada

resistente; formas aplanadas dan buen resultado para apoyo en roca.En los pilotes McArthur de concreto comprimido y con base ampliada, ésta se forma dando golpes al concreto que se vació en el ademe, en lugar de rehincar el sistema ademe-émbolo a través de él. Existe también un tipo similar de pilote Western.

c) Pilotes SimplexEste tipo de pilotes se puede hincar a través de suelos blandos o relativamente duros. Se requiere que al retirar el ademe quede formado un buen molde para el vaciado de concreto, por lo que deberá colocarse un ademe interior ligero en el caso de que la consistencia del suelo no garantice dicho molde. En la fig. IX-d.3 se muestra esquemáticamente la operación de construcción, en la que debe notarse que la punta del dispositivo'de hincado se pierde en cada pilote.Este tipo de pilotes es usado frecuentemente en Inglaterra.

Page 401: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 377

FIG . IX-d.3 Pilote Simplex

d) Pilotes VibroSon estos pilotes apropiados para ser construidos a través de un suelo que, aun siendo blando tenga la consistencia nece­saria para que el concreto no se difunda lateralmente a su través. Los pilotes suelen hacerse de concreto reforzado, con un armado que usualmente es objeto de especificación previa. El dispositivo de fabricación es análogo al de los pilotes Sim­plex; la extracción del tubo y la formación del pilote se logran por medio de golpes del martillo hacia arriba y hacia abajo. En el golpe hacia arriba, el ademe sube algo y una parte del concreto que lo llena fluye hacia abajo y lateralmente para llenar el espacio anular dejado por la parte del ademe que se movió; en ese golpe hacia arriba, se supone que el peso de la columna de concreto es suficiente como para que no haya arrastre del material; durante el golpe hacia abajo, el ademe y la columna de concreto suprayacente actúan como un pisón que compacta al concreto a nivel inferior. El golpe hacia abajo se da con menor carrera que el ascendente, con lo que resulta un desplazamiento neto del ademe hacia arriba. Los

Page 402: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

378 CAPITULO IX

golpes se dan a razón de 80 por minuto y la velocidad de ascenso del conjunto es de 1.20 m por minuto.El pilote Vibro resulta, al fin de la construcción, de superficie lateral corrugada y logra una buena adherencia con el suelo circundante.

A continuación se describen brevemente algunos tipos de pilotes colados en el lugar que requieren ademado permanente. Se usan generalmente allí donde surjan los inconvenientes mencionados al principio de este Anexo. El ademe permanente es generalmente de lámina delgada corrugada y va colocado dentro del ademe de hinca, más pesado, que posteriormente se remueve. Frecuentemente, la falta de confinamiento lateral seguro hace necesario usar pilotes de con­creto reforzado.

En general, estos pilotes se forman de modo similar a los que no requieren ademe permanente y que fueron tratados en párrafos anteriores de este Anexo. La diferencia estriba en que ahora se introduce en el ademe de hinca y una vez colocado este, el ademe ligero y generalmente corrugado de que se habló, antes de vaciar el concreto. Pueden así fabricarse pilotes similares a los tipo Me Arthur o a los de base ampliada que se describieron, dependiendo de la técnica particular que se siga en cada caso. Sin embargo, exis­ten ahora algunos tipos de interés especial, que se mencionan en lo que sigue

a) Pilotes Button~BottomSe utilizan cuando se desea un incremento en el área de apoyo del pilote. Se han llevado a profundidades de 30 m con facilidad, soportando cargas del orden de 50 ton o algo mayores.Hincado el ademe exterior hasta la profundidad deseada, llevando en su extremo inferior una zapata independiente de concreto precolado que se pierde en cada pilote, se introduce el ademe corrugado permanente hasta su fondo; este ademe se fija a la zapata por un dispositivo especial que atornilla am­bas partes. Realizada esta operación el ademe se rellena de concreto y se extrae el tubo de hinca sin peligro, gracias a la fijación del ademe interior, (fig. IX-d.4).Este tipo es patente Western.

b) Pilotes Raymond con ademe metálico delgado hincados con mandrilEstos pilotes pueden usarse tanto para trabajar por punta como por fricción y en cualquier clase de suelo. El ademe corrugado es hincado por medio de una pieza, denominada

Page 403: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 379

FIG. IX-d.4 Pilote Button-Bottom

mandril, que penetra en su interior, adoptando su forma y que se extrae una vez alcanzada la profundidad deseada (fig. IX-d.5).El ademe puede ser inspeccionado una vez colocado y an­tes de ser rellenado con concreto, que puede ser simple o reforzado.

Recientemente se ha utilizado una variante del pilote presenta­do en la fig. IX-d.5, en el que se adopta una forma telescópica para el ademe y correspondientemente para el mandril interior, con tramos de diámetro cada vez menor según se desciende a lo largo del fuste del pilote.

ANEXO IX-e

Pilotes hincados a presión o preexcavados

a) Pilotes preexcavadosEstos pilotes son sumamente ventajosos cuando se trabaja con un

suelo blando que se desplace lateralmente durante la hinca de un pi­lote, perjudicando a otros previamente hincados; también lo son cuan-

Page 404: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO IX

FIG . IX-d.5 Pilote Raymond

Page 405: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 381

do existe un gran número de pilotes muy próximos, con lo que se presenta el peligro de levantar y desplazar a un pilote ya colo­cado con el hincado de otro vecino. El método de la preexcavación es también ventajoso cuando se trata de construir pilotes de gran diámetro.

Básicamente, estos pilotes se construyen siguiendo los lincamien­tos que se describen a continuación (fig. IX -e .l) .

Se hinca un tubo de acero con punta biselada hasta el estrato de apoyo; se extrae el tubo con el material que quedó en su interior. El material se vacía elevando el tubo y colocando un mandril fijo en su extremo superior que impida que el material suba con el tubo. Después se vuelve a meter el cilindro con el mandril en su interior hasta el nivel de apoyo; se extrae el mandril y se llena el cilindro de concreto; en seguida se presiona el mandril sobre el concreto y se extrae el tubo.

u

- »i.

= a = i l i ie m i n i;

TERRENO DORO

(0) (b) (C) (d) M H)FIG . IX-e.l Pilota praaxcavado

l l l la i ite .

(9)

Si el hueco de la excavación se cierra al sacar el tubo o si hay dificultades de hincado al tratar de meter el tubo de una vez, puede trabajarse con dos tubos, uno dentro del otro, retirando en tramos el interior, vaciándolo y volviéndolo a hincar otra fracción; durante estas operaciones, el tubo exterior actúa como ademe, que puede finalmente retirarse o ser dejado permanentemente.

Page 406: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

b) Pilotes MigaEstos son pilotes hincados a presión en pequeños tramos de

unos 50 cm de longitud. Son muy útiles para trabajos de recimen­tación en que se disponga de poco espacio de maniobra. Las seccio­nes, generalmente cuadradas o circulares, tienen un hueco en el centro de unos 8 cm de diámetro; este hueco sirve tanto para veri­ficar la construcción del pilote, como para armarlo al fin del hincado.

El método de construcción consiste en hacer una pequeña exca­vación en cuyo fondo se coloca la primera sección del pilote con punta metálica, que se presiona con un gato para lograr su hincado; en trabajos de recimentación, la reacción del gato la da la estruc­tura existente. Hincada la primera sección, se le une una segunda, por medio de un collar de acero, repitiéndose esta operación el nú­mero de veces que sea necesario.

Este tipo de pilote está patentado por la compañía Franki.

382 CAPITULO IX

FIG. IX-e.2 Pilofe Franki

c) Pilotes FrankiEstos pilotes tienen la ventaja de poseer una base ampliada, de

modo que transmiten esfuerzos menores, a misma carga, lo que es conveniente si el estrato resistente no es de mucho espesor- Otra ven­taja radica en no precisar gran espacio de maniobra, pues el marti­llo de hinca corre solo dentro del tubo que sirve de ademe al pilote.

El procedimiento de construcción es el que se menciona en lo que sigue (fig. IX -e.2):

Page 407: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En primer lugar se coloca la primera sección del tubo de hinca sobre la superficie del suelo, parcialmente llena con una carga de concreto seco. A continuación, se golpea el concreto con un martillo de caída libre, haciéndolo penetrar en el suelo, seguido del tubo. Una vez que se ha alcanzado un nivel un poco por encima del de desplante, se fija el tubo por medio de cables y, por medio del mar­tillo, se fuerza al tapón de concreto hacia abajo y hacia fuera del tubo, colocando más concreto, siempre golpeando con el martillo: así se forma la base ampliada del pilote. Formada la base, se va vaciando concreto en el tubo, golpeándolo con el martillo, a la vez que se extrae lentamente el tubo.

Como su nombre lo indica, este pilote es manejado por la Com­pañía Franki.

d) Pilotes hincados por rotaciónSon estos pilotes de concreto con agujero longitudinal en el que

se aloja una barra, en cuyo extremo inferior, fuera del pilote va una hélice de diámetro mayor que el del pilote. Por rotación, el pilote alcanza el nivel deseado, tras lo cual se retira la barra y se rellena el agujero del pilote con concreto. La hélice se pierde en cada pilote.

MECANICA DE SUELOS (II) 383

ANEXO IX-f Pilas, cilindros de cimentación y cajones

Como ya se ha dicho en este mismo capítulo, no existe entre pilas y pilotes una diferencia más substancial que su diámetro: ya se establecieron al respecto los límites que la costumbre suele fijar para diferenciar ambos elementos. La capacidad de carga y los asenta­mientos en pilas pueden establecerse en la misma forma descrita para los pilotes.

Las pilas suelen ser preexcavadas a mano o con maquinaria espe­cial, pues sus dimensiones prohíben su hinca a golpes. El procedi­miento denominado del pozo seco consiste simplemente en fabricar manualmente un pozo hasta el estrato resistente, convenientemen­te ademado y de dimensiones tales que un hombre por lo menos pueda trabajar en su interior; como su nombre lo indica, el método sólo puede aplicarse en terrenos secos o en los que las filtraciones sean muy pequeñas. El llamado método Chicago es una variante del anterior, en la que se va excavando el material hasta una pro­fundidad del orden de 1 a 2 m, según su consistencia; la excavación se adema con largueros verticales de madera, que se mantienen con anillos de acero; se continúa después la excavación, repitiendo las

Page 408: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

384 CAPITULO IX

operaciones de ademado en cada tramo; al alcanzar el nivel de apoyo, suele ampliarse la base, para mejorar el poder portante del elemento; el hueco así producido, se rellena de concreto. Si las fil­traciones de agua resultan grandes puede usarse el método Gow en el cual se van introduciendo en el terreno secciones tubulares de acero, telescópicamente, excavando a mano el material que va que­dando dentro de cada sección (fig. IX -f .l) .

Los métodos de excavación a mano resultan muy costosos en la actualidad, por lo cual se han desarrollado últimamente máquinas capaces de construir pilas, que además no tienen la limitación que la presencia de agua impone a los métodos manuales. Entre éstas destaca la máquina Benoto, de patente francesa, que fabrica pilas del orden de 1 m de diámetro.

(o)

FIG . IX f . l Pilas

o) Excavada por el método Chicago b) Excavada por el método Gow

La excavación se realiza hincando un tubo exterior resistente, del que se va extrayendo el material usando una cuchara de almeja. El tubo se hinca con un efecto combinado de presión y rotación al­ternado, con lo que se asegura que no se adhiera al suelo. Al termi­nar la perforación se vacía dentro concreto, a la vez que se extraela tubería de perforación.

Los cilindros son secciones circulares de concreto reforzado, que por su mayor diámetro (superior generalmente a los 3 m) se cons­truyen huecos. El procedimiento de construcción consiste en colocar sobre el terreno el elemento, excavando en su interior con una cucha­

Page 409: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ra de almeja para retirar el material; el cilindro va descendiendo a medida que se retira el material bajo él, hasta llegar al estrato resis­tente. La penetración se facilita con punta biselada o cuchilla de acero en la parte inferior. Cuando son de gran longitud (y se han llegado a construir de 40 m) se construyen por tramos, colando cada sección sobre la superficie, monolíticamente unida a la parte que se haya hincado con anterioridad. Frecuentemente, en cilindros largos, se hace necesario lastrarlos a fin de vencer la fricción lateral que se opone a su descenso; en otras ocasiones se utilizan chiflones para el mismo fin. Una vez colocado el elemento en posición se cuela un tapón en su parte inferior y una tapa en la superior, quedando el interior hueco.

La capacidad de carga y los asentamientos de estos elementos se pueden estimar con los métodos descritos para pilotes, con las mismas incertidumbres analizadas en aquel caso, incrementadas in­clusive ahora, por la falta de pruebas a escala natural, pues por ser los cilindros de cimentación elementos más costosos que los pilotes, son más escasas en la literatura las descripciones de pruebas de carga en cimentaciones construidas con ellos.

Los cajones de cimentación, como se dijo en el cuerpo de este capítulo, se distinguen de los cilindros sólo por su forma paralele- pipédica. Las técnicas para su construcción y manejo se describen brevemente en lo que sigue, debiéndose observar que mucho de todo ello es aplicable también al manejo de cilindros.

Pueden distinguirse dos casos que obligan a adoptar técnicas diferentes: que exista o no un tirante de agua en el lugar de colo­cación del cajón. Si no hay agua, el cajón de una o varias celdas puede hacerse como se describió para el caso de los cilindros, extra­yendo el material de su interior y colando el elemento en tramos, a medida que se va hundiendo en el subsuelo. Obviamente, las celdas deben tener las dimensiones apropiadas para permitir la excavación. En cajones muy altos es frecuente también recurrir al lastrado o al chiflonaje para vencer la fricción lateral.

Cuando en el lugar existe un tirante de agua, puede recurrirse a dos técnicas distintas. En la primera se lleva flotando al lugar un molde de acero, que constituirá la sección inferior del cajón; el molde reproduce la forma del cajón, de modo que los futuros muros de las celdas de éste aparecen como cámaras huecas entre dos lámi­nas de acero en aquel. Ya en el lugar se vacía concreto en el molde, para ir colando los muros de las celdas del cajón; este concreto sirve de lastre y hace que el molde de acero descanse en el fondo. Y a en esta posición, se trabaja excavando el material dentro de las celdas, con lo que el cajón es llevado a la profundidad deseada bajo el fondo del río, lago, etc. Por supuesto el molde debe tener una altura algo25—Mecánica de Suelos II

MECANICA DE SUELOS (II) 385

Page 410: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

386 CAPITULO IX

mayor que el tirante de agua en el lugar; si este es muy grande, el molde podrá formarse por secciones, conforme se va hundiendo.

En la segunda técnica, se coloca un tablestacado de acero que sobresalga del agua y que encierre la zona de construcción. El espa­cio interior se va rellenando de arena, hasta que ésta sobresale del agua, a modo de isla. Así se logra hincar el cajón como si no hubiera tirante de agua.

En el cajón neumático, el trabajo en seco se logra creando por medio de aire a presión una cámara de trabajo en su extremo infe­rior. La técnica está limitada por la presión que soportan los traba- adores que ocupan la cámara y excavan al terreno bajo el cajón, íasta llevar a éste a su posición final. El factor anterior hace que as profundidades en que se usa el método oscilen entre 10 y 30 m.

R EF EREN 1 OIAS

1. Hiley, A. — Pile Dríving Calculations with Notes on Driving Forces and Ground Resistance—-Structural Engineering — Vol. 3 — 1930.

2. Chelis, R. D. — Pile Foundations — Apéndice 1— McGraw Hill Co.— 1951.3. Correa, J. J., Quintero, J. y Aztegui, E. — Pruebas de carga en pilotes para

cimentación del puente Alvarado — Congreso sobre Cimientos Profunde» — México, D. F. — Dic., 1964.

4. L’Herminier, R. — Remarques sur le poingonnement continu des sables et gravieres — Anales del Instituto Técnico Francés de Obras Públicas — Nú­meros 63 y 64 — Marzo-Abril— 1953.

5. Saffery, M. y Tate, A. P. K. — Model Test on Pile Groups in a Clay Soil with Particular Reference to the Behavior of the Group when it is Loaded Eccentrically — Memoria del V Congreso Internacional de Mecánica de Suelos y Cimentaciones — Paris— 1961.

6. Sowers, G. y Martin, B. — The Bearing Capacity of Friction Pile Groups in Homogeneous Clay [rom Model Studies— Memoria del V Congreso In­ternacional de Mecánica de Suelos y Cimentaciones — Paris — 1961.

7. Correa, J. J., Rico, A., Moreno, G. y Esquivel, R. — Pruebas de carga en modelos de cimientos profundos en arenas — Congreso sobre Cimientos Pro­fundos — México, D. F. — Dic. — 1964.

8. Tomlinson, M. J. — The Adhesión of Piles Driven in Clay Soil — Memoria del IV Congreso Internacional de Mecánica de Suelos y Cimentaciones — Londres — 1957.

9. Jiménez Salas, José A. — Mecánica del Suelo — Capitulo XIV — Ed. Dos- sat, S. A. — 1954. Cita una fórmula de Lehuérou-Kérisel.

10. Chellis, R. D. — Pile Foundations — Cap. 7 — Foundation Engineering — Edi­tado por G. A. Leonards — McGraw Hill Book Co. — 1962.

11. Zeevaert, L. — Reducción de la capacidad de carga en pilotes apoyados de punta, debida a la fricción negativa — 1er. Congreso Panamericano de Mecá­nica de Suelos y Cimentaciones — Vol. I — México, D. F. — 1959.

12. González Flores, M. — Enderezado de dos edificios; un metro en el caso más desfavorable — 1er. Congreso Panamericano de Mecánica de Suelos y Ci­mentaciones — Vol. I — México, D. F. — 1959.

13. Meyerhof, G. G. — Reporte General presentado a la Sesión I — Congreso sobre Cimientos Profundos — México, D. F. — 1964.

14. Terzaghi, K. y Peck, R. B. — Mecánica de Suelos en la Ingeniería Práctica — (Traducción O. Moretto) — Artículo 56— El Ateneo Ed. — 1955.

Page 411: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 387

BIBLIO G R A FIA

^Foundations— A. L. Little — Edward Arnold — Londres — 1961.* Foundation Engineering — Editado por G. A. Leonards — McGraw Hill Book / Co. — 1962.

v Foundation Engineering — R. B. Peck, W . E. Hanson y T. H. Thomburn — John / Wiley and Sons — 1957.

* Pile Foundations — R. D. Chellis — McGraw Hill Book Co. — 1951.•y Foundation Design — W . C. Teng— Prentice Hedí — 1962.

Foundations nf Rrjrfges and Buiidinas — H. S. Jacoby y R. P. Davis — McGraw Hill Book Co. — 1941.

y La Mecánica de Suelos en la Ingeniería Práctica — K. Terzaghi y R. B. Peck — (Trad. O. Moretto) — El Ateneo Ed. — 1955.

Foundations — E. E. Seelye — John Wiley and Sons, Inc. — 1956.

Page 412: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 413: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO X

PRINCIPIOS PARA E L DISEÑO DE PAVIMENTOS EN CAMINOS Y AEROPISTAS

X -l. Generalidades y Definiciones

El problema de la ejecución de obras de pavimentación que ga­rantice la posibilidad de tránsito de vehículos de transporte es, en realidad, tan antiguo como el hombre mismo.

Las civilizaciones clásicas del Medio Oriente, Egipto, China, etc. y los imperios Inca y Maya dejaron evidencias históricas de mucho interés respecto a redes incipientes de caminos, con un grado de desarrollo sorprendente. El Imperio Romano ofrece quizá el primer ejemplo en el sentido moderno de cómo una red caminera bien cons­truida y conservada ayuda a la conquista y sostenimiento de un do­minio universal. La Era Napoleónica ofrece otro ejemplo del mismo fenómeno que suele citarse insistentemente; el talento del notable técnico Tressaguet hizo más que algún ejército en favor de la ex­pansión francesa.

Sin embargo, el verdadero auge del pavimento, en el sentido actual de la palaíbra, ha tenido lugar con la aparición del automóvil, en primer lugar y, más recientemente, con el advenimiento de la aviación en la escala en que hoy se conoce.

Los pavimentos romanos consistían de grandes bloques rocosos con buen acomodo, directamente apoyados én el terreno natural y, en muchos casos, se han conservado hasta la actualidad. Los Incas y los Mayas construyeron sus caminos aglutinando los bloques de piedra con morteros naturales y afinando la superficie de rodaje. El mencionado Tressaguet inició la construcción de pavimentos por ca­pas ordenadas según el tamaño de sus partículas constitutivas; sus ideas fueron más tarde recogidas y mejoradas en Inglaterra por Telford y McAdam, quienes construyeron pavimentos con secciones que, en algunos casos, aún están hoy en uso.

Las fuertes cargas actuales, su velocidad de tránsito, el número de sus repeticiones, etc., hicieron que en la actualidad las técnicas de construcción de pavimentos hayan sufrido una evolución muy rápida, con una definida tendencia, infortunadamente no siempre acompa­ñada por el éxito, a adquirir cada vez mejores bases teóricas que refuercen, justifiquen y permitan aplicar con buen criterio, el ya

389

Page 414: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

muy grande conocimiento observacional que a la fecha se va te­niendo. A este respecto ha de hacerse notar que la inversión nacio­nal en obras de pavimentación constituye para cualquier país un renglón fundamental que justifica cualquier inversión realizada en búsqueda de un mejoramiento especifico; baste decir que en muchos caminos la pavimentación puede suponer un 50% del costo total, para visualizar su importancia ingenieril.

Para los efectos del presente capítulo se entenderá por Pavi­mento la capa o conjunto de capas comprendida(s) entre la subra- sante y la superficie de rodamiento de una obra vial, cuya finalidad es proporcionar una superficie de rodamiento uniforme, resistente al tránsito de los vehículos, el intemperismo producido por los agentes naturales y a cualquier otro agente perjudicial. Como función estruc­tural un pavimento tiene la de transmitir adecuadamente los esfuer­zos a la subrasante, de modo que ésta no se deforme de manera perjudicial.

Por subrasante se entiende la superficie de una terracería termina­da, siendo ésta última el conjunto de cortes y terraplenes de una obra vial.

Existen actualmente dos tipos básicos de pavimento: rígido y flexible.

Los pavimentos rígidos están formados por una losa de concreto hidráulico, con recubrimiento bituminoso o sin él, apoyada sobre la subrasante o sobre una capa de material seleccionado ( grava y are­na). Los concretos usados son de resistencia relativamente alta, generalmente comprendida entre 210 kg/cm2 y 350 kg/cm2 a los 28 días. En general, se usa concreto simple y, ocasionalmente, re­forzado. Actualmente existe una tendencia al empleo de concreto presforzado. Las losas de concreto simple son de dimensiones pe­queñas, del orden de 4 m a 8 m; estas dimensiones aumentan al usar algún refuerzo y llegan a los 100 m en concretos presforzados. Los espesores usados para las losas son del mismo orden usando o no refuerzo.

Los pavimentos flexibles están formados por una carpeta bitu­minosa apoyada generalmente sobre dos capas no rígidas, la base y la sub-base; la calidad de estas capas es descendente hacia abajo. En la fig. X -l se muestra un corte típico de un pavimento flexible en terraplén.

En general, cualquier suelo natural es aprovechable para terrace­ría; se exceptúan los suelos muy orgánicos o aquellos cuyo rebote elástico sea importante y, por lo tanto, produzcan deformaciones ex­cesivas a las capas suprayadentes. Cuando el material de la terra­cería sea de mala calidad puede hacerse necesario el empleo de una verdadera capa subrasante de material de mejor calidad que haga de transidón entre él y el pavimento; cuando el material de térra-

390 CAPITULO X

Page 415: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CARPETA

SUB-BASE t r c r

TERRA!

FIG . X -l Sección típica de un pavimento flexible en terraplén

cerías sea de mejor calidad, la capa subrasante está formada por el propio material de terracería con tratamiento constructivo algo mejor, sobre todo en lo referente a compactación.

Aparte de los tipos de pavimentos mencionados existe actualmen­te el llamado semirígido que es, esencialmente, un pavimento flexible a cuya base se ha dado una rigidez alta por la adición de cemento o asfalto (base negra).

De lo anterior se desprende que, en general, un pavimento está formado por diversas capas de mejor calidad y mayor costo cuanto más cercanas se encuentran a la superficie de rodamiento; ello es, principalmente, por la mayor intensidad de los esfuerzos que les son transmitidos.

Para cumplir sus funciones, un pavimento debe satisfacer dos condiciones básicas: ofrecer una buena y resistente superficie de rodamiento, con la rugosidad necesaria para garantizar buena fricción con la llanta de los vehículos y con el color adecuado para evitar reflejos y deslumbramientos; en segundo lugar, debe poseer la resis­tencia apropiada y las características mecánicas convenientes para soportar las cargas impuestas por el tránsito sin falla y con defor­maciones que no sean permanentes y que garanticen un tráfico en buenas condiciones. Obviamente un pavimento debe ser capaz de soportar los ataques del intemperismo.

Las características de resistencia y deformabilidad se satisfacen con una capa de material que se encargue de distribuir los esfuerzos de tal modo que a la subrasante lleguen en niveles tolerables, que no produzcan falla, ni asentamientos u otras deformaciones perjudi­ciales. Esta capa debe estar formada por materiales friccionantes que son los más adecuados para llenar esta función estructural; esta capa es la base en pavimentos flexibles. La losa de concreto en pavimen­tos rígidos cumple la misma función estructural.

La capacidad de carga de los materiales friccionantes es baja en la superficie por falta de confinamiento, razón por la que se requiere que sobre la base exista una capa de material cohesivo y con resis­tencia a la tensión; esta es la carpeta asfáltica que tiene además que cubrir las condiciones de buena superficie de rodamiento ya seña­

MECANICA DE SUELOS (II) 391

Page 416: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ladas atrás. En los pavimentos rígidos la misma losa de concreto llena esta necesidad, por sus características de cohesión.

Puede observarse entonces que en pavimentos flexibles la carac­terística requerida en la superficie es la cohesión, en tanto que en el interior del mismo, la característica deseada es la fricción.

392 CAPITULO X

X-2. Funciones de las distintas capas de un pavimento

a ) P a v im e n t o s F l e x i b l e s

Sub-base

Para muchos, una de las principales funciones de la sub-base de un pavimento flexible es de carácter económico. Se trata de formar el espesor requerido del pavimento con el material más barato po­sible. Todo el espesor podría construirse con un material de alta calidad, como el usado en la base, pero se prefiere hacer aquella más delgada y substituirla en parte por una sub-base de menor ca­lidad, aún cuando esto traiga consigo un aumento en el espesor total del pavimento, pues, naturalmente cuanto menor sea la calidad del material colocado será mayor el espesor necesario para soportar los esfuerzos transmitidos.

Otra función consiste en servir de transición entre el material de base, generalmente granular más o menos grueso y la propia sub- rasante. La sub-base, más fina que la base, actúa como filtro de ésta e impide su incrustación en la subrasante.

La sub-base también se coloca para absorber deformaciones perjudiciales en la subrasante, por ejemplo cambios volumétricos asociados a cambios de humedaa, impidiendo que se reflejen en la superficie del pavimento.

Otra función de la sub-base es la de actuar como dren para des­alojar el agua que se infiltre al pavimento y para impedir la ascen­sión capilar hacia la base de agua procedente de la terracería.

Base

Hasta cierto punto existe en la base una función económica aná­loga a la discutida para el caso de la sub-base, pues permite reducir el espesor de la carpeta, más costosa, pero la función fundamental de la base de un pavimento consiste en proporcionar un elemento resistente que transmita a la sub-base y a la subrasante los esfuerzos producidos por el tránsito en una intensidad apropiada. La base en muchos casos debe también drenar el agua que se introduzca a través de la carpeta o por los acotamientos del pavimento, así como impedir la ascensión capilar.

Page 417: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CarpetaLa carpeta debe proporcionar una superficie de rodamiento ade­

cuada, con textura y color convenientes y resistir los efectos abra­sivos del tráfico. Hasta donde sea posible, debe impedir el paso del agua al interior del pavimento.

b) P a v im e n t o s R íg id o s

BaseSus funciones son análogas a las de una sub-base en un pavi­

mento flexible y sirve también para proporcionar una superficie uni­forme que sirva de apoyo a la losa y facilite su colado; protege también a la losa de cambios volumétricos en la subrasante, que de otra manera inducirían esfuerzos adicionales a aquella. Los efectos de bombeo y otros análogos, que después se mencionarán, pueden controlarse bastante bien con una base apropiada. En este caso, la base no tiene ningún fin estructural, pues la losa debe ser sufi­ciente para soportar las cargas; la base casi no influye en el espe­sor de la losa en caminos e influye muy poco en aeropistas.

LosaLas funciones de la losa en el pavimento rígido son las mismas

de la carpeta en el flexible, más la función estructural de soportar y transmitir en nivel adecuado los esfuerzos que se le apliquen.

X-3. Factores que afectan el diseño de los pavimentos

Los factores que, independientemente del método y calidad del diseño de un pavimento, afectan en forma predominante a éste, pue­den considerarse comprendidos en los siguientes tres grupos:

a) Características de los materiales que constituyen la terraceria yla capa subrasante

Los materiales que constituyen la terraceria y la capa subrasante de un camino o aeropista juegan un papel fundamental en el com­portamiento y espesor requerido de un pavimento flexible e influyen poco en el espesor de la losa, pero bastante en su comportamiento, en un pavimento rígido. Por ello la determinación de las caracte­rísticas del suelo que formará la terraceria y la capa subrasante, en su caso, es vital. El fin se logra aplicando los principios y métodos de trabajo usuales en la Mecánica de Suelos y es precisamente en

MECANICA DE SUELOS (II) 393

Page 418: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

este sentido en el que los pavimentos caen dentro de la Especialidad objeto de esta obra y ello no sólo en lo que se refiere a terrecería y subrasante, sino también a sub-base y base, cuyas propiedades mecánicas e hidráulicas definen en buena parte un problema de pavimentación.

En realidad, ya han sido mencionados en esta obra una buena parte de los métodos a usar en .pavimentos para determinar las pro­piedades de los suelos. En lo que sigue se hace referencia a algunas ideas respecto a exploración y muestreo y más adelante habrá opor­tunidad de tratar algunas pruebas específicas de este campo, que no han sido mencionadas previamente.

Los métodos de exploración y muestreo en una obra vial pueden dividirse en dos tipos, según los objetivos que se persigan. En primer lugar es preciso conocer las características de los materiales con los que se formará la terrecería. Hay dos modos clásicos de obtener material para este fin: por préstamo lateral y por préstamo de banco: en el primer caso el material de los terraplenes se obtiene de exca­vaciones laterales poco profundas a lo largo del camino y a relativa poca distancia de éste: en el segundo caso, naturalmente casi siem­pre más costoso, el material se acarrea de algún lugar donde exista en la cantidad y calidad requeridas (el caso de terrecerías compen­sadas longitudinalmente, en el que se forma un terraplén con material que proviene de un corte próximo, para los fines de la presente ex­plicación, puede considerarse una variante del segundo caso).

En el primer caso, la exploración se circunscribe normalmente a la realización de pozos a cielo abierto en el número y profundidad adecuados, de los que se extraen muestras alteradas que permitan clasificar el suelo, a fin de establecer su posibilidad de utilización en el cuerpo de la terrecería. Si no realizan estos estudios expertos ca­paces en Mecánica de Suelos en cuyo criterio se pueda confiar, lo que es sin duda la mejor opción, se podrá señalar un criterio rutinario para la separación de pozos (generalmente a cada 100 m).

En el segundo caso habrá que localizar el banco conveniente­mente y muestrear sus materiales a fin de fijar sus características.

El segundo tipo de exploración consiste en conocer las caracte­rísticas del terreno de cimentación en que la obra vial estará colocada. Se explorarán especialmente aquellas zonas en que se récele la presencia de fuentes de problemas específicos. Los métodos de exploración en estos casos son los ya mencionados en el apéndice del Volumen I de esta obra.

b) El climaEl principal factor climático que afecta a los pavimentos suele

ser la precipitación pluvial, ya por su acción directa o por elevación de las aguas freáticas. Frecuentemente, el proyectista se ve obligado

394 CAPITULO X

Page 419: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

al diseño y construcción de estructuras adicionales de drenaje, aparte del drenaje normal que nunca podrá faltar en la obra vial o al empleo de diseños especiales para el pavimento.

Las heladas, en los climas rigurosos y en suelos susceptibles, pueden ser fuente de un gran número de problemas en pavimentos. En México, sin embargo, esta condición no es crítica.

La temperatura y sus variaciones abruptas afectan los diseños, so­bre todo en losas de concreto, pues inducen esfuerzos muy importantes en tales estructuras.

c) El tránsitoEl tránsito produce las cargas a que el pavimento va a estar

sujeto. Respecto al diseño de los pavimentos interesa conocer la mag­nitud de esas cargas, las presiones de inflado de las llantas, así como su área de contacto, su disposición y arreglo en el vehículo, la frecuencia y número de repeticiones de las cargas y las velocidades de aplicación.

Una buena parte de estas características de las cargas son muy difíciles o imposibles de reproducir en los laboratorios con fines de investigación y en ello radica una buena parte de la dificultad que se deja notar en este campo. A este respecto podría hacerse el siguien­te comentario de carácter general. Por distintas razones, el estudio de los pavimentos es hasta hoy algo casi puramente empírico; en muy pocos casos, algunos de los cuales se mencionarán en lo que sigue, se ha logrado incorporar la Teoría en forma satisfactoria. Esto es, desde luego, una limitación del campo, que no guarda un balance correcto entre teoría y experiencia. El criterio experimental se ha aplicado, por razones económicas, muy pocas veces al estudio de modelos a escala natural; es cierto que se han construido y estu­diado algunos tramos de prueba, sobre todo en caminos, de donde ha podido obtenerse información prometedora; el tramo de prueba 1 construido por la AASHO en Ottawa, 111., E. U. A., es quizá el esfuerzo más ambicioso realizado hasta la fecha; en México, recien­temente, han entrado en explotación algunos de esos tramos y otros varios se construirán en un futuro próximo. A pesar de esto, es cierto el hecho fundamental de que la investigación experimental actual tiene lugar, en su mayor parte, en el laboratorio, con la rea­lización de algunas pruebas que se suponen confiables. Y es aquí donde surgen los problemas de adaptación, pues no es posible repro­ducir en el laboratorio las condiciones de movilidad, variabilidad y frecuencia de las cargas, ni el efecto de su repetición. De hecho, la inmensa mayoría de las pruebas de laboratorio que se utilizan hoy son de carácter estático; su aplicación a un problema esencialmente dinámico constituye una de las deficiencias más grandes en la actual técnica de investigación de pavimentos.

MECANICA DE SUELOS (II) 395

Page 420: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La magnitud de las cargas que se aplican a los pavimentos es bastante importante; llega de 8 ton (16,000 Ib) por eje, en camiones, hasta las 150 ton (300,000 Ib) que pesa aproximadamente en total, un avión DC-8. Las presiones de inflado de las llantas son del orden de 4 a 6 kg/cm2 (60 a 90 lb/pulg2, aproximadamente) en los camiones y llegan a 13 ó 14 kg/cm2 (aproximadamente 200 lb/pt»lg2), en los aviones más pesados.

Las aplicaciones de las cargas suelen referirse al concepto repe­tición. Se dice que en un camino o aeropista ha tenido lugar una repetición cuando ocurren dos pasadas sucesivas de una misma llanta por un mismo punto. En caminos suele considerarse que han de pasar dos unidades de un cierto tipo para que se produzca una repetición en el pavimento; en aeropistas, la Tabla 10-1 da una idea del número de operaciones necesario de un avión para que se produzca una repetición

TABLA 10-1

396 CAPITULO X

N ú m e r o d e r e p e t ic io n e s p o r c ie n o p e r a c io n e s

Avión Pista Calle de Rodaje

DC-3 3.3 7DC-4 9.6 27DC-6 10.4 30Convair 7.6 21

Los términos pista y calle de rodaje se refieren a la zonificatión de un aeropuerto; la calle de rodaje es la superficie por la que el avión transita entre la plataforma y la pista.

En caminos, la vida útil de la obra representa millones de repeti­ciones, en aeropistas miles.

El efecto de las repeticiones es tal que los espesores de pavimento en caminos y aeropistas pueden ser del mismo orden, a pesar de las cargas mucho mayores aplicadas en las segundas, por el mucho mayor número de repeticiones que se producen en los caminos.

Un efecto importante de la repetición de cargas en pavimentos rígidos es la fatiga del concreto bajo tal condición de carga. La expe­rimentación ha probado que se precisa un esfuerzo más alto que un 50% del de ruptura para que, por repetición, provoque fatiga de importancia; un esfuerzo menor que aquel valor parece ser que puede ser aplicado al concreto un gran número de veces sin efecto perju­dicial; por el contrario, un esfuerzo cercano al de ruptura produce la falla del concreto con un número pequeño de repeticiones. El ef«c- to de fatiga es mucho menos importante en pavimentos flexibles,

Page 421: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

pero en éstos la repetición de la carga produce o bien deformaciones acumuladas de carácter plástico o rebote elástico, en suelos suscep­tibles a ello.

En general, se ha visto que el deterioro que sufre un pavimento por la repetición de la carga sigue una ley logarítmica con el nú­mero de repeticiones de dicha carga; las primeras repeticiones son de gran efecto y éste va disminuyendo cuando el número de apli­caciones aumenta.

En los materiales de base las repeticiones producen trituración de las partículas e interpenetración en las capas inferiores. En los suelos bajo la subrasante la resistencia y el módulo de deforma­ción aumenta con las repeticiones de carga; este es un efecto benéfico.

En los pavimentos rígidos existe un efecto que por su frecuencia e indeseabilidad merece mención especial. Cuando la carga pasa sobre una grieta o junta de la losa, esta desciende y transmite presión al material bajo ella. Si este material está muy húmedo o saturado, la mayor parte de esta presión la tomará el agua, que tiende a escapar por la grieta o junta. Después de pasar la carga, la losa se recupera y levanta y este movimiento produce una succión que ayuda el mo­vimiento del agua bajo la losa. Si el agua tiene capacidad de arras­trar partículas del suelo, saldrá sucia, creando progresivamente un vado bajo la losa, que tiende a hacer que el fenómeno se acentúe; además, el remoldeo que este efecto produce al suelo tiende a hacer que éste forme un lodo o suspensión con el agua, con lo que el fenómeno se agudiza. El fin del proceso es la ruptura de la losa bajo carga, por falta de sustentación. Este efecto recibe el nombre de bombeo. Para que exista bombeo es preciso que el material de soporte de la losa sea plástico, sobre todo del tipo CH y que esté fuertemente humedecido o saturado y es condición indispen­sable que se produzca un gran número de repeticiones de carga; por eso el fenómeno es frecuente en caminos y relativamente raro en aeropistas. Obsérvese que en principio nunca un suelo CH debe colocarse bajo una losa, por lo que el párrafo anterior debe aplicar­se más bien a la fracción arcillosa que la base pudiera contener, especialmente si es alto su porcentaje. En orden de susceptibilidad al bombeo siguen a los suelos CH, los CL, M H y ML. Si los suelos en que se apoya la losa son granulares, puede producirse en ellos un fenómeno muy similar al bombeo y de análogos efectos destruc­tivos en lo que se refiere al agrietamiento y ruptura de la losa, por falta de apoyo inferior.

La velocidad de aplicación de las cargas ejerce influencia sobre el pavimento. En general, las cargas estáticas o lentas ejercen peo­res efectos que las más rápidas. Por esto, en los caminos en rampa, es frecuente ver más destruidos los tramos de subida que los de

MECANICA DE SUELOS (II) 397

Page 422: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

398 CAPITULO X

Bombeo producido por la carga circulante entre dos losas de concreto

bajada y también, por lo mismo, los pavimentos en calles de rodaje y cabeceras de aeropistas, en aeropuertos, han de ser más resisten­tes que los del centro de las pistas.

X-4. Análisis de la resistencia en los pavimentos

Los esfuerzos que las cargas u otras causas producen en los pavimentos se analizan en dos casos diferentes: los que se refieren a pavimentos flexibles y a los rígidos.

a) Esfuerzos en pavimentos flexiblesSe estudian únicamente los esfuerzos debidos a las cargas del

tránsito.Existen, hasta el presente, dos criterios principales para tal estu­

dio, la Teoría de Boussinesq y la de Burmister. Ambas han sido estudiadas en el Capítulo II. Al aplicar la Teoría de Boussinesq se utiliza en pavimentos la condición de área circular uniformemente cargada, representando el contacto entre la llanta y la superficie de rodaje. La Teoría de Burmister se aplica tal como se expuso en el mencionado Capítulo II.

Los cálculos han permitido obtener algunos resultados de inte­rés en lo que se refiere a la transmisión de esfuerzos verticales en el interior del pavimento. Si dos llantas, con la misma presión de

Page 423: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 399

inflado transmiten cargas di­ferentes, la de mayor carga transmite esfuerzos mucho mayores a lo largo de la pro­fundidad y su efecto se deja sentir mucho más abajo.

Dos llantas con la misma carga, pero diferente presión de inflado transmiten esfuer­zos muy distintos en zonas próximas a la superficie de rodaje, pero los efectos tien­den a igualarse a mayor pro­fundidad tanto más rápida­mente cuanto menor sea la carga.

El esfuerzo transmitido por cualquier llanta en zonas muy próximas al apoyo de la mis­ma se considera siempre igual a la presión de inflado, des­preciando los efectos de la deformación y redistribución de esfuerzos de la propia llanta. Otro hecho interesan­te revelado por las aplicacio­nes de las teorías es que el efecto de una sola llanta de una cierta carga es práctica­

mente el mismo, en lo que se refiere a esfuerzos verticales transmiti­dos que el de un arreglo de doble llanta, cada una de las cuales soporte la misma carga que la rueda simple.

Aparte de la transmisión de esfuerzos verticales provocados por las llantas, que se calculan como arriba se dijo, interesa estudiar la posibilidad de que un pavimento flexible ceda lateralmente en torno a la llanta, provocando el hundimiento de ésta asociado con una elevación de los materiales a sus lados. Para esto puede adop­tarse un método de tanteos basado en la aplicación de un análisis de posibilidad de falla a lo largo de un arco de espiral logarítmi­ca de ecuación.

r = r 0e9t (10-1)

El sentido de las letras de la ec. 10-1 aparece explicado en la fig. X-2.a. El método consiste en probar diferentes arcos de la espi­ral hasta llegar al crítico, construida ésta para las características

Pavimento mostrando tallas por deficiencia es­tructural

Page 424: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

400 CAPITULO X

FIS. X-2 Método do la ospiral pora voriticar la posibilidad do talla totoral on onpavimento tlexiblo

del material de que se trate. Se comparan los momentos de las fuerzas actuantes, debidas a la carga transmitida por la llanta, con las resistentes, de sobrecarga a la profundidad z, espesor de la car­peta, y de cohesión a lo largo de la superficie potencial de desliza­miento. Debe notarse que la resultante de las fuerzas resistentes de fricción y de los esfuerzos normales, pasa por el centro de la espi­ral. Si en la superficie la huella de la llanta de radio a aplica la pre­sión p, a la profundidad z se tendrá una presión p', bajo el centro del área cargada, supuesta constante en toda el área y que puede calcularse con las Teorías de Boussinesq o de Burmister; también puede suponerse que esa presión p' actúa en un área circular de radio a' (fig. X-2.b) tal que:

a ' = ^ . (10-2)

Se considera aceptable en este balance de momentos un factor de seguridad mínimo de 1.5. Un análisis similar de capacidad de carga puede hacerse al nivel de la sub-base. El procedimiento ante­rior resulta suficientemente aproximado para las aplicaciones prác­ticas. McLeod2’8 propuso una extensión del anterior método de tanteos, válido para el caso de perfiles estratificados, más apropiado para pavimentos.

b) Esfuerzos en pavimentos rígidos

Los esfuerzos se analizan en la losa de concreto y provienen de varios efectos:

1) Por efecto de las cargasEstos esfuerzos son, en general, de los más importantes que

pueden producirse.

Page 425: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 401

Como quiera que la resis-

■ tencia del concreto a la com­presión es importante, los esfuerzos de tensión produ­cidos en la flexión de la losa, son los críticos. Para su cálculo se utilizan fórmulas originalmente obtenidas por Westergaard4. Estas fórmu­las están sujetas a las hipó­tesis de que la losa está for­mada por un material elástico homogéneo e isótropo; que los esfuerzos de interacción entre ella y el suelo soporte son verticales y proporciona­les a las deflexiones de la propia losa y que ésta es ho­rizontal y de espesor cons­tante. La segunda hipótesis implica continuidad entre lo­sa y apoyo. Westergaard es­tudió tres condiciones de car­ga: en esquina, en el borde y en el centro de la losa.

Para la carga en esquina, la tensión máxima se produ­ce en el plano bisector y en

Falla por cedencia lateral de la carpeta en el lecho Superior de la losa. torno a la llanta en un pavimento flexible. La carga en el borde produce

la tensión máxima en el lecho inferior y en la dirección paralela al borde de la losa. Cuando la carga obra en el centro, el esfuerzo máximo actúa en el lecho inferior y es, teóricamente, el mismo en cualquier dirección.

Las fórmulas detalladas aparecen en la ref. 5 y las mismas, modificadas por Teller y Sutherland para tomar en cuenta ciertos efectos reales, en la ref. 6.

2) Esfuerzos por temperaturaEstos esfuerzos pueden llegar a significar en la losa incluso más

que los debidos a las cargas. Son principalmente de dos tipos: los de alabeo, que se producen cuando un lecho de la losa y el otro están a temperatura diferente, estableciéndose por ende flujo de calor transversalmente a la losa y los provocados por la restricción impuesta por el suelo de apoyo cuando la losa, calentada o enfriada uniformemente, trata de expanderse o contraerse.26— M ecánica de Suelos II

Page 426: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

402 CAPITULO X

Los esfuerzos de alabeo se producen cuando la tempera­tura ambiente sufre una al­teración más o menos brus­ca, por ejemplo cuando una noche fría sigue a un día cálido.

En la ref. 5 pueden con­sultarse métodos y fórmulas detalladas para el cálculo de estos esfuerzos.

3) Además, existen otros esfuerzos posibles en la losa de concreto, tales como los de fraguado inicial, los causa­dos por cambios de humedad en el concreto o los de infil­tración, debidos al acuña- miento de agregados y ma­terias extrañas en las grietas que puedan formarse en la losa, pero en general estos esfuerzos son de pequeña magnitud y no suelen tomar­se en cuenta en los análisis.

Variaciones volumétricas importantes en el suelo so­porte pueden inducir en la losa de concreto esfuerzos considerables de valuación muy difícil, por lo que deben evitarse cuidadosamente.

Debe notarse que la condición crítica para el diseño de la losa no se obtendrá calculando todos los esfuerzos mencionados y su­mándolos. Esto sería, sin duda, una condición excesivamente conser­vadora. Por ejemplo, en un día caluroso tras noche fria habría una combinación de esfuerzos por carga, más esfuerzos por alabeo, pero la losa contraída en la noche, tenderá a expanderse en el día, por lo que la reacción de la restricción en el suelo soporte será de com­presión; por lo tanto, ahora:

0 * c r i t — ^ "cargas 0*a lab eo ^ r e s t r i c c i ó n

X-5. Pruebas especiales en la tecnología de pavimentosLa actual tecnología de pavimentos ha desarrollado algunas prue­

bas especiales en las que se fundan métodos de diseno determinados.

Page 427: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 403

De ellas se menciona a con­tinuación la de Valor rela­tivo de Soporte (C.B.R.), la de placa y las pruebas triaxiales.

La prueba de placa se ha­ce para valuar la capacidad soportante de las subrasan- tes, las bases y, en ocasiones, los pavimentos completos. Se utiliza tanto en el diseño de pavimentos rígidos como flexibles.

La prueba consiste en car­gar una placa circular, en contacto estrecho con el sue­lo por probar, midiendo las deform aciones correspon­dientes a diferentes cargas. Es frecuente el uso de pla­cas de 76.2 cm (30 pulg) de diámetro o de placas de área igual al contacto de una llanta. Para impedir la fle­xión del elemento se colocan encima otras placas de diá­

metros decrecientes, que dan al conjunto la rigidez deseada. La carga se transmite con gatos hidráulicos con reacción dada ge­neralmente con camiones cargados. Las deformaciones de la pla­ca suelen medirse en cuatro puntos, dos a dos opuestos y dispuestos ortogonalmente, por medio de extensómetros ligados a un puen­te, cuyo apoyo se coloca lo suficientemente lejos de la placacomo para poder conside- j Irarlo fijo. En la fig. X-3 aparece esquemáticamente el conjunto.

Por medio de una prueba de placa puede calcularse el módulo de reacción de una subrasante dada. Este con­cepto se de f i n e como la presión que ha de transmi­tir la placa para producir en el suelo una deforma­ción fijada previamente.

Dispositivo de compo para uno prueba de placa

ESTRUCTURA DE REACCION LA CARGA

MANOMETRO

PUENTEHIDRAULICO

EXTENS0METR0

PLACA/////////////////////////////////////

FIG. X-3 Esquema del dispositivo para prueba de placa

Page 428: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

404 CAPITULO X

Es obvio que el módulo de reacción así definido depende del diámetro de la placa que se use para calcularlo, pues como se ha indicado en el Capítulo II, a presión constante, el asentamiento de una placa circular crece con el diámetro de la misma, por lo que si se fija un asentamiento dado, la presión necesaria para obtenerlo será mayor cuanto más pequeño sea el diámetro de la placa. Esta es la razón por la que para las aplicaciones prácticas se ha tendido al uso de la placa estándar de 76.2 cm (30 pulg) de diámetro, con la que se supone que se reproducen satisfactoriamente las áreas comunes de apoyo de las cargas reales. A pesar del amplio uso que se ha hecho del concepto módulo de reacción en la tecnología de los pavimentos, ha de señalarse su falta de significación intrínseca como medida de cualquier propiedad fundamental de los suelos; su valor estriba más bien en servir como parámetro de cálculo, al comparar módulos obtenidos de la misma manera en suelos diferentes.

Este valor interviene en la aplicación de las fórmulas de Wester- gaard al diseño de pavimentos rígidos y para su cálculo se presenta un problema, por otra parte muy frecuente en diseño de pavimentos. Es obvio que el módulo de reacción, como cualquier otro parámetro de comportamiento de la subrasante, depende de la humedad del suelo. En el laboratorio o en una prueba de campo debería traba­jarse con la humedad que llegue a tener el suelo en el pavi­mento, la llamada humedad de equilibrio (en general diferente de la óptima de compactación), pero ésta no se conoce a priori. Lo que se hace es trabajar en el laboratorio con alguna humedad que se consi­dera critica; algunas instituciones lo hacen con la que corresponde a la saturación; otras, como las del estado de Texas, en los E. ti. A., con la que resulta de un proceso de curado que se describe adelante. El punto es delicado e indudablemente uno en el que el criterio del ingeniero resulta decisivo. Cuando se usa el criterio de la saturación total como la situación más desfavorable, los resultados de las prue­bas de campo, en condiciones no saturadas, se corrigen con un factor que depende de la relación de resistencias a la compresión simple en dos especímenes del suelo probado, uno en condición natural y otro saturado.

La carga se aplica a las placas por incrementos. Un nuevo incre­mento se coloca cuando la velocidad de deformación bajo el anterior sea del orden de 0.001 cm/min (en realidad 0.002 pulg/min).

La segunda prueba especial del campo de pavimentos es la prue­ba de valor relativo de soporte o prueba de C.B.R. que fue desarro­llada originalmente en el Estado de California, E.U.A., para atender a los proyectos viales de aquella entidad federativa, pero pronto su

Page 429: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 405

utilización se hizo general en muchos otros lugares, sobre todo por el sencillo método de diseño de pavimentos que en ella se funda. El valor relativo de soporte se obtiene de una prueba de penetración en la cual un vastago de 19.4 cm2 (3 pulg2) de área se hace pe­netrar en un espécimen de suelo a razón de 0.127 cm/min (0.05 pulg/min); se mide la carga aplicada para penetraciones que varíen en 0.25 cm (0.1 pulg). El C.B.Rt se define como la relación, ex­presada como porcentaje, entre la presión necesaria para penetrar los primeros 0.25 cm (0.1 pulg) y la presión para tener la misma penetración en un material arbitrario, adoptado como patrón, que es una piedra triturada en la cual se tienen las presiones en el vástago para las penetraciones indicadas en la Tabla 10-2.

TABLA 10-2

Penetración Presión en el vástago

cm pulg kg/cm1 Ib/pdlsf

0.25 0.1 70 1,0000.50 0.2 105 1,5000.75 0.3 133 1,9001.00 0.4 161 2>3001.25 0.5 182 2,600

Como se dijo, la penetración que se usa para calcular el C.B.R. es la de los primeros 0.25 cm (0.1 pulg); como regla general, el C.B.R. disminuye cuando la penetración en que se hace el cálculo es mayor, pero a veces si se calcula con la penetración 0.5 cm (0.2 pulg) resulta mayor que el calculado con la penetración 0.25 cm (0.1 pulg); en tal caso se adopta como C.B.R. el valor obtenido con la penetración 0.5 cm (0.2 pulg).

El espécimen de suelo en que se hace la prueba está confinado en un molde de 15.2 cm (6 pulg) de diámetro y 20.3 cm (8 pulg) de altura. En el método de prueba original desarrollado en Cali­fornia, el espécimen se preparaba en tres capas varilladas que llenasen el molde; después el material se presionaba con una carga total de 140 kg uniformemente aplicados en su superficie superior. En estas condiciones, eran preparados especímenes con humedades di­ferentes, hasta encontrar una en la que los 140 kg provocaran la exudación de agua por la base inferior del molde; este espécimen,

Page 430: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tras un período de saturación de 4 días, se suponía que representaba las condiciones más desfavorables de humedad prevalecientes en el futuro pavimento.

En épocas más recientes el U. S. Army Corps of Engineers ha desarrollado un método de prueba que difiere del original en los procedimientos de preparación del espécimen. Este método se des­cribe con más detalle en el Anexo X-a. Se emplea ahora un método dinámico de compactación de los especímenes, para lo que se usan las pruebas Proctor estándar, modificada u otra con diferente energía de compactación (Capítulo XIII del Volumen I de esta obra). Con esto se trata de reproducir mejor tanto las condiciones de compac­tación logradas con el equipo de campo, como el control que de esa compactación se efectúa en el laboratorio.

Con el objeto de reproducir la sobrecarga que en el pavimento real vaya a tener una determinada capa debido a las capas superio­res, cuando se haga la prueba con material de aquella capa se coloca sobre él una placa con perforación central, cuyo peso comunique al espécimen una presión equivalente a la sobrecarga que se tendrá en el pavimento; la perforación central en la placa tiene por objeto permitir el paso del pistón que efectuará la penetración.

Los factores que más afectan los valores obtenidos en la prueba del C.B.R. son la textura del suelo, su contenido de agua y el peso específico seco. En los suelos friccionantes, la expansión durante la saturación es despreciable, por lo que el monto de la sobrecarga dada por la placa perforada que simula el peso de las capas supe­riores del pavimento no es muy significativo durante la saturación; sin embargo, este valor de la sobrecarga sí influye mucho en los resultados de la prueba en la etapa de penetración, pues el confina­miento afecta mucho la resistencia en suelos friccionantes. En suelos arcillosos ocurre precisamente lo opuesto; la expansión durante la saturación depende mucho de la presión de sobrecarga, mientras que ésta influye poco en la etapa de penetración.

Generalmente la curva presión-penetración obtenida de una prue­ba de C.B.R. es lineal para bajas penetraciones, y tiende a hacerse ligeramente curva, con la concavidad hacia abajo, a penetraciones mayores; en ocasiones, sin embargo, la gráfica resulta curva con concavidad hacia arriba en un pequeño tramo correspondiente a las penetraciones iniciales; esto ocurre, sobre todo, cuando el pistón no está exactamente normal a la superficie de la muestra al iniciarse la prueba, en estas ocasiones es preciso corregir los resultados de la prueba; desplazando la gráfica hacia la izquierda, de modo que su parte recta, prolongada haciendo caso omiso de la pequeña curva­tura inicial, pase por el origen. Los nuevos valores de C.B.R. así obtenidos se denominan el "C.B.R. corregido”.

406 CAPITULO X

Page 431: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 407

Los resultados de una prueba completa para determinación del C.B.R. se vacían en una combinación de tres gráficas; a ellas se refiere la fig. X-4.

( o) ( e l

FIG. X-4 Representación gráfica de pruebas C.B.R.

En la parte a) de la figura aparecen gráficas resultado de las pruebas de compactación que se realizaron para fabricar los especí­menes en que se efectuaron pruebas de C.B.R. Las curvas I, II y III se obtuvieron en este caso usando energías de compactación decre­cientes. En la parte b ) de la misma figura aparecen los resultados típicos de las pruebas de C.B.R. para los mismos especímenes a que se refiere la parte a ); nótese que dicho valor no es una caracterís­tica constante del suelo, sino que depende en forma primordial del contenido de agua con que se preparó el espécimen. Existe un C.B.R. máximo, el cual corresponde a una humedad por lo menos muy cer­cana a la óptima de compactación en la prueba de que se trate y obsérvese también que para suelos con alta humedad el C.B.R. del suelo compactado con mayor energia específica puede ser menor que

Page 432: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

el que se obtiene usando una energía menor; sin embargo el C.B.R. máximo obtenible si es mayor cuanto mayor sea la energía específica con que se haya compactado el espécimen. En la parte c) de la fig. X-4 se muestra una gráfica de la que pueden extraerse con­clusiones de interés práctico grande. Se han dibujado los valores del C.B.R. corregido contra los pesos específicos secos de los espe­címenes probados; cada curva dibujada corresponde a pruebas de penetración en que el suelo tenía la misma humedad de compactación, pero fue compactado con diferente energía específica y se obtiene fijando una humedad, por ejemplo 14% (curva marcada en el nú­mero 14). En la parte a) pueden obtenerse los tres pesos especí­ficos que en el caso tratado corresponden a la humedad 14%, en diferentes energías de compactación; en la parte b) pueden obtenerse los valores de C.B.R, obtenidos en esos tres casos. Se tienen así tres pesos específicos y tres valores de C.B.R. obtenidos en tres espe­címenes compactados con 14% de humedad, usando las tres energías específicas que se han manejado; con estos tres pares de valores se construye la curva 14 en la parte c) de la fig. X-4. Las curvas de la fig. X-4.c indican que no siempre a mayor peso específico se tienen mayores valores de C.B.R. Por ejemplo, en la curva 20 se tienen, de hecho, peores condiciones. Todo depende del contenido de agua del suelo. Lo anterior proporciona un método de trabajo práctico. Supóngase que en el campo se va a trabajar con una humedad com­prendida entre 14% y 18% (véase la fig. X-4.a). Supóngase tam­bién que se desea obtener en el campo un peso específico seco comprendido entre el 95% y el 99% del máximo obtenido con la energía I. Estos valores (ver zona rayada en la fig. X-4.a) determi­nan el intervalo de humedades y pesos específicos que deben exigirse en el campo. Ahora, en la parte c) de la fig. X-4, se ve que para humedades entre 14% y 18% y para los pesos específicos arriba mencionados, el C.B.R. puede oscilar entre 11% y 26% aproximada­mente; puede también verse lo peligroso que sería en el campo de que la humedad subiese de 18%, con lo cual el valor del C.B.R. del suelo se abatiría fuertemente. Con base en lo anterior podría fijarse un C.B.R. de diseño próximo al limite inferior del orden de 12%, por ejemplo. Con gráficas análogas a las de la fig. X-4, el proyec­tista puede entonces adoptar un C.B.R. de diseño lógico, acotar el peso específico seco máximo que ha de exigirse en el campo y tener un criterio respecto a la gravedad de un error por defecto o exceso en el control de la humedad de campo.

La tecnología de pavimentos ha desarrollado un conjunto de pruebas tipo triaxial en las que están basados métodos de diseño de pavimentos. En las fuentes bibliográficas especializadas que se citan al fin de este capítulo podrán verse estas pruebas con detalle. En este lugar se mencionan únicamente en forma superficial, haciendo

408 CAPITULO X

Page 433: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) -109

hincapié, por otra parte, en que desde el punto de vista teórico poco añaden a lo discutido en relación a las pruebas triaxiales para deter­minación de la resistencia al esfuerzo cortante en suelos (Capítu­lo XII del Volumen I de esta obra).

Las pruebas se han aplicado a determinar las propiedades de la subrasante y las capas de pavimento propiamente dichas, incluyendo en algunos casos a las carpetas. En general las pruebas se asimilan a la Rápida de la práctica común de la Mecánica de Suelos.

En el Estado de Texas, E. U. A., las autoridades responsables han desarrollado un tipo de prueba cuyos fines son obtener las envol­ventes de resistencia de los suelos en la forma usual. En este caso es de interés el método de curado del espécimen con el cual tratan de reproducirse las condiciones más desfavorables en la vida del pavi­mento. El material es compactado en cuatro capas en un cilindro aná­logo al usado en pruebas de C-B.R., después secado en un homo a 60°C durante 8 h y, finalmente dejado en contacto con una fuente de agua por un tiempo mínimo de 10 días o igual al índice plástico del suelo. Durante este período de absorción capilar el suelo está sujeto a una sobrecarga de 0.07 kg/cm2 (1 lb/pulg2). La cámara triaxial usada es un tubo de acero inoxidable con una membrana interior de hule; entre la membrana y la cámara se introduce aire a presión para dar el esfuerzo de confinamiento.

En el Estado de Kansas, E. U. A., se ha desarrollado otro tipo de prueba triaxial, en el cual se trata de medir el módulo de deforma­ción, definido como la pendiente de la curva esfuerzo-deformación, en un espécimen grande (unos 10 cm de diámetro) previamente saturado.

En California, E.U.A.7 Hveem ha desarrollado un aparato, llamado Estabilómetro, que es básicamente una cámara triaxial que mide la relación entre las presiones verticales comunicadas al espécimen y las horizontales transmitidas por éste, sin permitir deformación horizon­tal. Un esquema del aparato aparece en la fig. X-5.

Seguramente uno de los puntos de mayor interés en la técnica de prueba con el estabilómetro radica en la preparación del espéci­men, para cuya tarea Hveem ha desarrollado un compac- tador especial que trata de reproducir de un modo más fiel que el usual la acción del equipo de campo, sobre todo la del rodillo pata de cabra.Un pisón especial comunica al espécimen una acción de amasado que desplaza las partículas del suelo, en es-

MAN0METR0

ACEITE

-ABEZAL

MEMBRANA DEHULE

BASE

F IS . X-5 Esquema de estabilómetro de Hreem

Page 434: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

pedal lateralmente. El pisón ejerce una presión de 24.5 kg/cm2 (350 lb/pulg2), 100 veces repartidas en toda la superficie del es­pécimen.

Ya en la cámara se aplican al espécimen presiones verticales de 5.6 y 11.2 kg/cm2 (80 y 160 lb/pulg2) y se mide en el manómetro la presión lateral transmitida al fluido.

La prueba se complementa midiendo la presión de expansión y de exudación de otros especímenes del mismo suelo. La primera se mide saturando un espédmen y permitiendo que, al tratar de expanderse, empuje una viguita estándar, cuya flecha se mide. La presión de exudación es la requerida para que el agua empiece a salir del es­pécimen.

Hveem mide la cohesión de los suelos usando un cohesiómetro7 7 s.

X-6. Métodos de diseño para pavimentos flexiblesLos métodos de diseño que se han desarrollado hasta la fecha,

para determinar los espesores requeridos en las diferentes capas de un pavimento para un camino o aeropista distan de ser satisfac­torios. De hecho puede decirse que no existe uno al que no puedan hacerse serias objeciones de carácter teórico. Por esta razón, en la técnica de los pavimentos existen muy rígidas especificaciones res­pecto a la calidad de los materiales que vayan a ser usados en sub-bases, bases y carpetas.

Estas especificaciones se refieren a granulometría, contenido de finos y actividad de éstos, compactación, resistencia al desgaste y al intemperismo, adherencia con los productos bituminosos y otras características. Se supone, y la experiencia parece confirmarlo hasta hoy, que si los materiales son satisfactorios desde esos puntos de vista, los métodos de diseño actuales pueden garantizar un buen comportamiento de los pavimentos construidos. Ésta situación no es idónea, pero es la que actualmente prevalece.

Existe una enorme variedad de métodos de diseño para los pavi­mentos. Baste decir que en los E.U.A., por ejemplo, muchos estados tienen sus propios métodos para comprender la variedad de criterios que imperan. En otros países, las técnicas de distintas instituciones y estados de los E.U.A. se han adoptado con modificaciones más o menos grandes. En general, los métodos de diseño actualmente en uso son de tres tipos:

a) Métodos con base teórica. El representante típico del grupo es el desarrollado para sus aeropistas por organismos de la Armada de los E.U.A. (U.S. Navy).

b) Métodos semiempíricos, que aplican los resultados de alguna teoría más o menos modificada a las conclusiones derivadas

410 CAPITULO X

Page 435: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 411

de una prueba de laboratorio específica. Los métodos de Me Leod, Hveem, y del C.B.R. pertenecen a este tipo.

c) Métodos empíricos, apoyados únicamente en la observación y en la experiencia. La Agencia Federal de Aviación (F.A.A.) de los E.U.A. ha desarrollado un método de este tipo9.

1) Método de la Armada de los E.U.A. (Navy)

Este método se aplica sobre todo a aeropistas, por resultar posi­blemente poco práctico en caminos. El método es, esencialmente, una aplicación práctica de la Teoría de Burmister y hace un uso extensivo de pruebas de placa.

En primer lugar se requiere realizar una prueba de placa en la subrasante por utilizar. Se mide la presión que es necesario aplicara una placa de 76.2 cm (30 pulg) de diámetro para producir una de­formación de 0.508 cm (0.2 pulg). Como la subrasante es una capa que puede considerarse semi-infinita, la Teoría de Boussinesq puede considerarse aplicable; por lo tanto

A = 1 .1 8 -^ (10-4)

donde

A = deformación de la placa rígida sobre la subrasante (según Boussinesq), en centímetros

p = presión aplicada a la placa, en kg/cm2 r — radio de la placa, en centímetros

E 2 = módulo de elasticidad de la subrasante, en kg/cm2

En la fórmula 10-4 todo es conocido, al realizar la prueba excepto E ¡ ¡ que, por lo tanto, puede calcularse.

En seguida se construye una plataforma de 5 X 5 m de 15 cm de espesor mínimo (aproximadamente 6 pulg) con el material de que se disponga para constituir la base del futuro pavimento. Se realiza otra prueba de placa sobre esa capa; aplicando la fórmula 2-33.

A = 1.18 (2-33)C* 2

puede calcularse F, acotando la deformación A al valor 0.508 cm (0.2) pulg (ver Capítulo II).

Con este valor de F, la gráfica de la fig. 11-21 permite calcular la relación E ¡JE lt de donde puede calcularse Ex, módulo de elasti­cidad de la base.

Page 436: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Ahora pueden manejarse los datos reales de la llanta de diseño, cuya carga y presión de inflado, p\, se suponen conocidas. Con estos datos es posible calcular el área y el radio de la huella de la llanta, supuesta circular. En este momento, si se aplica la fórmula 2-32 (pues la llanta puede asimilarse a una placa flexible)

A = 1 .5 F - ^ (2-32)E>2

es posible calcular el nuevo valor de F, correspondiente a la placa flexible real, trabajando de nuevo con una deformación A acotada a 0.508 cm (0.2 pulg). Con este nuevo F, real y la gráfica de la fig. 11-21, usando la relación E J E X ya calculada, puede obtenerse el espesor de la base, necesario para satisfacer las ecuaciones de Bur­mister, con las deformaciones dentro del valor que se ha venido uti­lizando de 0.508 cm (0.2 pulg), en función del radio de la llanta real; como éste ya se conoce, se tiene en definitiva un espesor de la base del pavimento, H.

En realidad, el espesor anterior debe verse únicamente como una estimación, pues sólo por casualidad el cálculo saldrá coincidente con el espesor de base experimentada inicialmente. Para satisfacer las exigencias prácticas se recomienda a continuación construir bases de prueba con espesor de base de 2/3 H, H y 1.5 H; para ello puede disponerse una plataforma de unos 5 X 5 m; una de estas plataformas ha de construirse para probar los materiales en secciones en corte, otra en terraplén y aún una tercera en el casó intermedio de sección a pelo de tierra, si existen estos tipos de sección.

En estas secciones y en cada espesor de base se debe realizar una prueba con una placa de radio igual al de la llanta real de diseño,

412 CAPITULO X

0.50 8 CM. DEFORMACION(0 .2 PULG.) DE LA PLACA

FIG. X-6 G rá f ic a p a ra e n co n tra r ti espesor d o p ro y e c to d e un p a r im e n to , con e l m é to d o d e la a rm a d a d e los B .U A .

{Nory)

Page 437: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 413

ya obtenido arriba y con una presión aplicada igual a la de inflado de la llanta de diseño. La prueba consistirá en medir la deflexión de la placa en cada caso. En estas condiciones se obtienen, en general, nueve valores de la deformación; con estos datos debe construirse una gráfica análoga a la mostrada en la fig. X-6; el espesor promedio correspondiente a la deformación acotada de 0.508 cm (0.2 pulg) es el de proyetco para el pavimento, teniendo en cuenta que parte del valor obtenido es espesor de la carpeta.

En realidad, en este método se recomienda corregir las deforma­ciones graficadas en la fig. X-6, para tomar en cuenta las condiciones futuras más desfavorables de humedad. Para ello se debe usar la expresión

Acor = A c a m p o — (10-5)9 U0 P + 2 %

donde

Acor = deformación corregida.Acampo = deformación obtenida en la prueba.

q<V = resistencia a la compresión simple de una muestra del material de la subrasante compactada al 95% con la humedad óptima.

9“op+2% = Id., pero compactado el espécimen con una hume­dad 2% arriba del valor óptimo.

Lo anterior equivale a admitir que la deformación bajo la placa es función lineal de la resistencia a la compresión simple y que la humedad más desfavorable no es mayor que la óptima más un 2%.

2) El Método de McLeod

McLeod propone la fórmula de diseño:

e = K lo g y (10-6)

donde

e = espesor requerido de la base granular para colocar sobre la subrasante, en cm

K = constante de diseño, en cm P = carga de la rueda de diseño, en kilogramos

S = soporte total de la subrasante, en kilogramos

Page 438: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

414 CAPITULO X

La aplicación práctica de la fórmula puede hacerse como se expo­ne a continuación:

Conocida la carga y presión de inflado de la rueda de diseño, puede calcularse el radio de su área de contacto, supuesta circular y, por lo tanto, la relación P JA , de su perímetro a su área.

Sobre la subrasante por usar deberá hacerse una prueba de placa de 76.2 cm (30 pulg) de diámetro en aeropistas y 30.5 cm (12‘ pulg) en caminos con 10 aplicaciones sucesivas de una misma pre­sión, de modo que se produzca una deformación final total de 0.508 cm (0.2 pulg). Esta presión debe anotarse. En la fig. X-7 aparece una gráfica resultado de las experiencias de McLeod9 con placas de diferentes diámetros y con diferentes suelos. En la parte a) aparece la gráfica a usar en trabajos de aeropistas y en la parte b) la que debe usarse en diseños de caminos. En las gráficas pueden obtenerse valores para distintas deflexiones admisibles bajo la rueda de diseño.

En esta gráfica puede obtenerse la relación empírica entre el soporte unitario de la subrasante en cualquier caso y el soporte uni­tario cuando se prueba una placa de 76.2 cm (30 pulg), en aero- pistas o de 30.5 cm (12 pulg) en caminos, con deformación acotada de 0.508 cm (0.2 pulg). Con la relación P JA de la llanta y aco­tando la deformación que ésta produzca en el pavimento por ejemplo a 1.27 cm (0.5 pulg), que es un valor usual en pavimentos, es decir, usando esta curva, puede encontrarse la relación de soporte unitario mencionada. Este valor es igual, por lo tanto al cociente del soporte unitario correspondiente al área de contacto real, s, entre el soporte de la placa de prueba de 76.2 cm (30 pulg) o de 30.5 cm (12 pulg), el cual se conoce, pues iguala a la presión que se haya tenido que aplicar en la prueba realizada a esta placa, para producir la deformación acotada de 0.508 cm (0.2 pulg). Así finalmente, el valor de s puede ser obtenido. Este, por el área de contacto de la llanta real, de radio igual a la llanta de diseño, da el soporte total 5 que interviene en la fórmula 10-6- La única cantidad desconocida de la fórmula 10-6 es ahora la constante K, que puede determinarse por medio de la gráfica de la fig. X-8.

Así puede obtenerse el espesor ae ia capa que debe colocarse sobre la subrasante. A este valor deberá descontársele el espesor de la carpeta que se coloque.

En este caso, como en todos los demás, si se desea substituir parte del espesor protector de base por una súbase de inferior calidad, puede repetirse el método, aplicándolo no a la subrasante y el mate­rial de base de que se disponga, sino al material que se desee colocar como sub-base y al de base. Así, procediendo de abajo hacia arriba puede substituirse cualquier espesor de un material por otro equiva­lente de un material diferente.

Page 439: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 415

DIAMETRO DE LA PLACA,EN PUL6.

( a )

ARIA

( b )

FIG . X-7 G ráfica para la aplicacián del método de McLeod para diseño de pavimentoflexible

Page 440: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

D e b e n o t a r s e q u e McLeod, al especificar 10 repeticiones de aplicación de carga en su prueba de pla­ca, base del método, trata de tomar en cuenta el efec­to de las repeticiones de las cargas, tan importante en los movimientos.

Finalmente, puede men­cionarse que McLeod reco­mienda que en el diseño de calles de rodaje en aeropis- tas la deformación de la ba­se se acote el valor 0.89 cm (0.35 pulg), en lugar del valor 1.27 cm (0.5 puig)

FIS. X-8 Gráfica para calcular el valor de K se mencionó arriba CO- de la fórmula de McLeod fflO usual.

3) El método del C.B.R.

Este método está basado en la prueba de valor relativo de soporte(C.B.R.) descrita en páginas anteriores y tiene, por lo demás, uncarácter puramente empírico. Probablemente es el más ampliamente difundido en el mundo, lo cual no quiere decir que sea el mejor, pues adolece de algunos graves defectos que posteriormente se men­cionarán. En la actualidad se utiliza tanto en pavimentos para cami­nos, como para aeropistas.

Con base en observación del comportamiento de pavimentos construidos durante más de 20 años y en correlaciones de tal com­portamiento con el valor de C.B.R. exhibido por las diferentes capas de tales pavimentos, el Cuerpo de Ingenieros del Ejército de los E.U.A. llegó a la siguiente expresión para determinar el espesor de un pavimento en aeropistas

1 ) 1 eo -7 )V V8.1(CBR)/ pitdonde

e = espesor del pavimento para proteger la subrasante, enn pulg .P = carga de la rueda de diseño, en libras

CBR = valor relativo de soporte de la subrasantep — presión de inflado de la rueda de diseño en Ib/pulg*

416 CAPITULO X

DIAMETRO OE LA PLACA (PULG.)

Page 441: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La ecuación anterior sólo es válida para valores del C.B.R. me­nores que 10 ó 12%, lo cual, por otra parte, cubre el intervalo de C.B.R. de subrasante más frecuente en la práctica. También ha de decirse que en la ecuación figura la carga por rueda para un tren de aterrizaje formado por un sistema de ruedas sencillas; si el avión de diseño tiene tren de ruedas múltiples, para usar la fórmula será preciso encontrar la carga sencilla equivalente al sistema múltiple de que se trate, para lo que deberá seguirse el criterio que más ade­lante se detalla (sección X -8).

La fórmula anterior representa para C.B.R. < 12% la forma y tendencia de las curvas de diseño, a las que se llegó por métodos puramente empíricos. Para valores mayores del C.B.R., la fórmula anterior ya no representa a dichas curvas de diseño, por lo que debe­rá recurrirse a ellas en cada caso particular. En atención a esta necesidad, en el Anexo X-b se han recopilado las curvas que cubren las condiciones de diseño más comunes. También aparecen en el Anexo las curvas válidas para el diseño de carreteras, para las que no se ha desarrollado ninguna fórmula representativa que haya alcan­zado difusión. Por otra parte, ha de señalarse que, tanto en aeropuer­tos como en caminos, existen especificaciones, muchas veces locales, sobre los espesores mínimos de base y carpeta a usar; en el Anexo X-b figuran también algunas referencias a estos valores mínimos.

Si se desea substituir una capa parcialmente por otro material de inferior calidad, el espesor necesario de éste puede encontrarse tratándolo como material por proteger, determinando su C.B.R. y viendo cual es el espesor de mejor material que requiere encima; este valor restado del espesor inicial de la capa da el espesor que puede colocarse del material de inferior calidad.

Nótese que, en este método, el espesor de material protector queda definido sólo en función del material por proteger, pero no se toma en cuenta, excepto al fijar ciertas normas mínimas de calidad, las características mecánicas del propio material protector; esto es, evidentemente, criticable y ha sido uno de los inconvenientes princi­pales que se han puesto al método. Otra objeción es que los criterios empiricos, basados en experiencias de pavimentos pasados resultan peligrosos para aplicar a un campo tan cambiante como lo es la tecnología de los pavimentos; por ejemplo, criterios empíricos basados en comportamiento de estructuras bajo ciertas cargas no son fáciles de extrapolar a cargas crecientes prácticamente de año a año; esto es cierto sobre todo en el caso de aeropistas.

4) Método de Kansas10

Este método, usado muy principalmente en caminos, se funda­menta en la Teoría de Boussinesq, y utiliza la prueba triaxial tipo Kansas, ya mencionada. Según Boussinesq, la deformación vertical,2 8 — M ecánica d e Suelos II

MECANICA DE SUELOS (II) 417

Page 442: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

a una profundidad z bajo el centro de un circulo uniformemente cargado vale

A = 2¿-C ( 1 0 - 8 )

donde

p = presión de contacto del círculo cargado r = radio del círculo

E ~ módulo de deformación de la subrasante C = es una función de z que vale

418 CAPITULO X

M t )2 jl/ 2

Si en la ec. 10-8 se substituye la presión por su equivalente en términos de la carga total de la rueda de diseño y se despeja z, igua­lándola al espesor del pavimento se obtiene

= * = " ° - 9)

A es la deformación bajo la carga P de la rueda de diseño. En la fórmula 10-9 se supone que el espesor e no contribuye a esa defor­mación; así A es producido únicamente desde ese nivel hacia abajo, según la teoría de Boussinesq. La ec. 10-9 es la fórmula que usa el método de Kansas; con ella puede calcularse un espesor sobre la subrasante tal que, según la Teoría de Boussinesq, al aplicar al pavi­mento una carga P, la deformación bajo la llanta no sobrepase el valor A que se use en la fórmula 10-9.

El método de Kansas se basa también en los resultados de la prueba triaxial del mismo nombre; en esta prueba las condiciones de humedad más desfavorable para la vida del pavimento se repro­ducen a base de saturación del espécimen, pero se reconoce que esta condición puede resultar en exceso conservadora, por lo que se introduce un coeficiente corrector n, función de la precipitación pluvial en la zona de construcción, según la Tabla 10-3.

Page 443: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 419

TABLA 10-3

Coeficiente de Saturación Precipitación pluvial promedio anualn cm

0.5 3 8 - 5 00.6 51 - 6 30.7 6 4 - 7 60.8 7 7 - 890.9 9 0 - 1011.0 1 0 2 -1 2 7

La intensidad del tránsito es tomada en cuenta introduciendoun coeficiente de tránsito, m. Se aceptó que la máxima carga porrueda era de 4,100 kg (9,000 Ib); suponiendo que el porcentaje devehículos de diferentes pesos es el mismo siempre, es decir, que ladistribución del tránsito es prácticamente constante, puede descri­birse la intensidad del tráfico simplemente por el volumen total deéste. Sobre esas bases, el coeficiente m, queda dado en la Tabla10-4 en función, simplemente, del volumen total de tránsito delcamino.

TABLA 10-4.

Coeficiente de Tránsito m

Vehículos por día en el camino

1/2 5 0— 4002/3 401 — 8005/6 801— 1,200

1 1,201— 1,8007/6 1,801 — 2,7008/6 2,701— 4,0009/6 4,001— 6,000

10/6 6,001— 9,00011/6 9,001 — 13,500

2 13,501— 20,000

Ya con estos coeficientes la fórmula 10-9 es modificada por las autoridades del Estado de Kansas, para dar lugar a la siguiente fórmula práctica de diseño.

e = I m nJ P 2 i t E A j

- r 2 (10-10)

Page 444: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

dondeE — módulo de deformación de la subrasante.

E c = módulo de deformación de la carpeta, suponiendo como primera aproximación, que todo el pavimento protector sobre la subrasante estará formado por ese material.

El factor (E /E c) 1/3 se propuso con base en la teoría de factores de riqidez en losas y se verificó contra el desplazamiento vertical elástico debido a una carga concentrada en un sistema de dos capas. Los módulos E y E c se determinan sometiendo a los materiales co­rrespondientes a la prueba triaxial de Kansas.

Se ve así la secuencia del método. En primer lugar se considera que todo el pavimento sobre la subrasante estará formado por una capa única de material de carpeta asfáltica. Posteriormente se substi­tuirá parte de su espesor por un espesor equivalente de material granular de base y, por último, parte de este espesor de base podra aún substituirse por un espesor equivalente de sub-base, de interior

03 *La deformación A es acotada ahora al valor 0.25 cm (0.1 pulg) y r se refiere al radio del área de contacto de la llanta de diseño. Con esos datos, la fórmula 10-10 da el espesor total del pavimentorequerido para proteger la subrasante.

Si se supone un espesor tc de una carpeta cuyo modulo de defor­mación resulte ser E c, el espesor de base de módulo E b correspon­diente puede calcularse con la fórmula

dondee — espesor del pavimento, calculado con la expresión 10-10.

ec = espesor supuesto de carpeta.

Supónqase ahora que se desea usar un cierto espesor de base e b de módulo de deformación E h y el resto de una sub-base de inferior calidad, con módulo de deformación E sb. El espesor equiva­lente de ésta puede encontrarse con el criterio mostrado por la formu­la 10-11.

_ - , v 3¡E ie , b - ( e b e i > y ¡ E sb

dondee,b = espesor requerido de sub-base.

— espesor de base calculado con la fórmula 10-11. e'j = espesor parcial de base, que se desea colocar.

420 CAPITULO X

Page 445: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 421

El problema está en la correcta determinación de los módulos de deformación de los materiales en la prue­ba triaxial. Un criterio sería obtener la curva esfuerzo- deformación en la prueba y determinar el módulo pa­ra el esfuerzo desviador (ffi — a3) real que vaya a obrar en el pavimento. La fig. X-9 muestra gráfica­mente este criterio. Las au­toridades de Kansas han elaborado curvas esfuerzo desviador-módulo de deformación para diferentes valores de m y n, que permiten calcular fácilmente los espesores, una vez que se dispone de los datos de la prueba triaxial de Kansas, realizada en los diferentes materiales con que se cuenta para construir el pavimento.

5) Método de Texas12,13En este método, principalmente usado en caminos, se hace uso

de envolventes de falla de Mohr, obtenidas en la prueba triaxial de Texas, ya mencionada. La experiencia ha permitido a los ingenieros de aquel estado zonificar un plano esfuerzo normal-esfuerzo cortante en la forma mostrada en la fig. X-10.

En esta carta se sitúan las envolventes de falla obtenidas para los materiales de la subrasante o de la sub-base a los cuales se les asigna un valor de clasificación interpolando entre las curvas de frontera: en la figura se ven dos curvas obtenidas y los números que les fueron asignados. Con estos datos puede entrarse en la carta mostrada en la fig. X - l l .

Por ejemplo, una subrasante arcillosa de calidad 5.5. como la ejemplificada en la fig. X-10 necesita 53.34 cm (21 pulg) de cubri­miento protector; si se supone una carpeta de 5 cm (2 pulg) se requerirán 48.3 cm (19 pulg) de base propiamente dicha. Si se deseara colocar una sub-base podría procederse con ésta con idéntico criterio, una vez probado su material constituyente en la cámara triaxial de Texas.

Nótese en la fig. X -l 1 que en el eje en que se anotan las cargas de la rueda de diseño aparecen dos escalas: la superior debe usarse en diseños definitivos en caminos de alto tránsito, la otra, que da espesores menores, en diseños más o menos provisionales, con vida útil no superior a unos 10 años.

ESFUERZO DESVIADOR ( f f i . - C » ) •

FIG . X-9 Criterio para obtener el módulo de deformación en la prueba de Kansas

Page 446: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

422 CAPITULO X

NEo

X<0c o o

o

Ul

m

FIG . X-10 C arta de lonificación de Texas

6) Método de Hveem13,1*

Hvcem y Carmany han desarrollado en el Departamento de Caminos del Estado de California, E.U.A. un método relativamente simple para diseño de pavimentos de caminos que está basado en la prueba del estabilómetro, ya mencionada.

En la prueba del estabilómetro se obtiene para el suelo un valor de resistencia dado por la expresión

R = 1 0 0 - 1002.5TX

(10-12)1 + 1

Page 447: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

dondeR = valor de resistencia del suelo en el estabilómetro. p„ = presión vertical aplicada en el estabilómetro, igual a 11.2

kg/cm2 (160 lb/pulg2). ph — presión horizontal transmitida por el espécimen en el esta­

bilómetro, cuando pv tiene el valor señalado arriba.D 2 — desplazamiento necesario del fluido del estabilómetro para

aumentar la presión horizontal de 0.35 kg/cm2 a 7 kg/cm2 (5 a 100 lb/pulg2), medida en revoluciones de la manivela de una bomba calibrada.

CARGA POR RUEDA (4 .5 ton.-IOOOO Ib )PARA CARRETERAS DE LARGA VI0A 120-30 AÑOS)

2 4 6 8 10 12 14 16i_____ i__ i______i__ i____ i_____ i____iPARA CARRETERAS DE VIDA CORTA (1 0 AÑOS)

MECANICA DE SUELOS (II) 423

A partir de aquí los autores del método proponen una fórmula para la obtención del espesor de pavimento necesario para proteger una subrasante

dondee = espesor protector requerido de pavimento, en pulgadas

K = constante de correlación (0.0175). p = presión de inflado de la llanta, en lb/pulg2 r = radio del área de contacto de la llanta de diseño, en pulg

n =■ número de repeticiones de esfuerzo.C = valor obtenido para el material en prueba en el cohesiómetro.

Page 448: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO X

Esta expresión 10-13 aun puede escribirse en forma completacomo

P - K , j l T ) j 9 0 - R l (10-14)

donde

K' — constante igual a 0.095 para rueda de diseño de 2,270 kg (5,000 Ib), con presión de inflado de 4.9 kg/cm2 (70 Ib/

pulg2) y que incluye un factor de seguridad.IT — índice de tráfico del camino

El tráfico de un camino es generalmente muy poco uniforme, por lo que, para efectos de diseño, los ingenieros de California lo refieren a la carga de rueda de 2,270 kg (5,000 Ib), por medio de unos facto­res empíricos de equivalencia que toman en cuenta las cargas por rueda de los vehículos y sus repeticiones sobre el pavimento. Se requiere, en primer lugar, hacer una estimación del número diario de vehículos, agrupados según sus números de ejes, que transitarán por el camino. La reducción a la carga estándar se hace usando las constantes empíricas de equivalencia de la Tabla 10-5, las que multi­plicadas por el número de vehículos diario de cada tipo, dan el número anual de vehículos de carga estándar que producirán los mismos efectos sobre el pavimento que los vehículos reales, circulando en un año.

TABLA 10-5

No. de ejes en el vehículo Constante de equivalencia a cargas están­dar de 2,270 kg (5,000 Ib) por rueda

23456

3301,0702,4604,6203,040

El índice de tráfico se calcula con la fórmula

IT = 1.35 (N E )0" (10-15)

En la expresión anterior N E es el número de veces que debería pasar la carga estándar de 2,270 kg (5,000 Ib) sobre un punto del

Page 449: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 425

pavimento durante la vida útil que se le considere a éste, para pro­ducir los mismos efectos que produce el tránsito real en ese lapso. Se obtiene como la suma de los productos de cada número diario de vehículos de un cierto número de ejes, por la constante empírica que le corresponda; así se llega al número equivalente de repeticiones de la carga estándar en un año. Este valor, por la vida útil del pavi­mento, proporciona el NE final*. En California se ha considerado que la vida útil del pavimento, para fines de aplicación del presente método, son 10 años. Cabe hacer notar que el número diario de vehículos que figuran en la Tabla 10-5 se refiere al promedio de los que circulan cada día en un solo sentido.

En la fig. X-12 aparece un nomograma que es la solución de la ec. 10-14.

acUJH-

3E_)UJOo

O. V i UJ QO

F IS . X-12 Nomograma paro aplicar el método de Hveem

* Este valor suele multiplicarse todavía por un coeficiente mayor que la unidad para hacer una previsión del crecimiento futuro del tráfico en el lapso de la vida útil del pavimento.

Page 450: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

426 CAPITULO X

El nomograma funciona como sigue: se entra con el valor corres­pondiente de R; con una recta se une ese punto con el índice de trá­fico previamente calculado. Esta recta se prolonga hasta cortar la línea central del nomograma. Este punto se une ahora, con una recta, con el valor de la cohesión obtenida en prueba de cohesiómetro; la prolongación de esta recta hasta la línea de espesores de pavimento proporciona este valor.

Así se tiene un espesor requerido según la prueba del estabi­lómetro.

Al hacer la prueba de presiones de expansión, ya mencionada, puede obtenerse otro espesor de pavimento, precisamente el necesario para contrarrestar esa presión, expresando ésta como colchón de tierra.

En general se prueban en estabilómetro y en expansión especi- menes a diferentes humedades, tratando de cubrir el intervalo en que trabajará el pavimento futuro, por lo que se tendrán juegos de espe­sores, correspondientes a cada humedad de prueba.

Puede ahora trazarse una gráfica de espesores requeridos por estabilómetro y por expansión ( fig. X -13); los datos anteriores permi­ten dibujar una curva que cortará a una línea a 45° en un cierto punto. Este punto es el espesor de pavimento que satisface las dos condiciones de trabajo.

PRESIONES

POR EXPANSION CM.

FIG. X-13 Determinación del espesor de diseño con el método de Hreem

Independientemente deben calcularse las presiones de exudación de los distintos especímenes usados, contra el espesor del pavimento. Por especificación, Hveem fija la presión de exudación de 28 kg/cm2 (400 lb/pulg2) como la norma para definir un espesor de pavimento

Page 451: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 42 7

para esta condición. Se tienen así dos espesores de pavimento en definitiva: uno por estabilómetro y expansión y otro por exudación. El mayor será el de proyecto.

X-7. Métodos de diseño en pavimentos rígidosEn pavimentos rígidos existen métodos de diseño basados en las

fórmulas para el cálculo de esfuerzos en las losas debidas a Wes- tergaard, pero éstos generalmente conducen a cálculos laboriosos, por lo que en la práctica se usan poco.

La Asociación de Cementos Portland (Portland Cement Asso- ciation, PC A) ha desarrollado gráficas que permiten calcular los espesores de losa de un modo inmediato, a condición de conocer la carga de la rueda de diseño, la presión de inflado de la llanta de dise­ño, el módulo de reacción de la subrasante, k, y el módulo de resis­tencia del concreto a la tensión en flexión, MR. El módulo de reacción puede calcularse haciendo una prueba de placa; como ya se ha dicho, este valor influye relativamente poco en el espesor de la losa, sobre todo en cargas no muy grandes, por lo que es frecuente que se le obtenga de correlaciones empíricas. El módulo MR se expresa como un esfuerzo y puede determinarse experimentalmente probando una viga estándar, pero es más frecuente obtenerlo a partir de correlacio­nes con el valor f'c, resistencia del concreto a la compresión simple con 28 días de fraguado. Esta correlación, empero, depende de los agregados que se utilizan en el concreto, así como del tipo de cemento.

En general MR varía entre 0.10 y 0.17 f'c, correspondiendo el valor 0.10 Fc a las resistencias a la compresión más bajas y el valor 0.17 f'c a las f'c más altas. En México parece conveniente usar el valor

MR = 0.12 f'c (10-16)

Este valor de MR corresponde a la condición de ruptura. En las gráficas de la PCA el valor de MR que aparece es de trabajo, con un factor de seguridad de 1.75 a 2 respecto al de ruptura.

En las figs. X-M, X-15 y X-16 aparecen gráficas de la PCA que proporcionan el espesor de losas de pavimentos para aeropistas en diferentes condiciones de carga.

Las gráficas están obtenidas a partir de la teoría para ruedas simples, arreglo doble y tándem, colocadas en el interior de la losa. Se supone en ellas un módulo de elasticidad del concreto de 280,000 kg/cm2 (4 X 10® lb/pulg2) y una relación de Poisson igual a 0.15. La suposición de que la carga actúa en el interior de la losa es razo­nable en aeropuertos, e implica que debe existir buena unión entre las losas, con juntas apropiadas que permitan que trabajen solida­riamente en la suficiente proporción.

Page 452: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

428 CAPITULO X

8 0 0

7 0 0

OlJtí»

OO.<s>«tacea

6 0 0

5 0 0

4 0 0tooisiae

3 0 0

200

FIG. X -14 Gráfica del P.C.A. para cálculo de espesor de pavimentos rígidos enaeropistas, carga de rueda simple

En la fig. X-17 aparece una gráfica que proporciona el espesor de la losa en pavimentos de carreteras; en ella se supone que la carga está aplicada sobre la junta entre losas y que éstas tienen sus esqui­nas protegidas, es decir, provistas de los elementos adecuados para transmitir carga a las losas adyacentes. La gráfica supone car­gas transmitidas por sistema dual de ruedas.

En estas gráficas no se toman en cuenta esfuerzos por tempera­tura, pues se tiene el criterio de que la superposición de todos los

Page 453: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

M ECANICA D E SU ELO S (II) 429

esfuerzos desfavorables ocurre tan raramente que no ejerce efectos nocivos en cuanto a fatiga y los factores de seguridad son tales que dicha superposición no supera al esfuerzo de ruptura en una sola repetición. Se supone también que se satisfacen los requerimientos del pavimento en cuanto a juntas.15 ,

Las gráficas funcionan entrando con el MR de trabajo, llevando una horizontal hasta el módulo de reacción correspondiente, refirien-

Page 454: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

430 CAPITULO X

22

21

20

I 9

I 8

I 7

I 6

I 5

I 4

I J

I 2

I I

I 0

9

8

7

P!G. X-16 Gróf'ea de P.C.A. para el en aeropistas,

cálculo de espesor de pavimentos rígidos , carga de rueda en tándem

do este punto verticalmente a la línea de presión de inflado y leyendo horizontalmente el espesor requerido.

El cuerpo de Ingenieros del Ejército de los E.U.A. ha desarro­llado otras gráficas con base en su experiencia de construcción de aeropistas y obras viales; estas gráficas podrán consultarse en cualquier fuente bibliográfica especializada y, en general, tienen el

Page 455: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELO S (II) 431

inconveniente de referirse a módulos de aviones militares que, fre­cuentemente, difieren bastante de los civiles.

X-8., Rueda de diseño. Criterios de carga equivalente

Ya se ha dicho que el tránsito que circula por un camino es, en general, sumamente variado en lo que se refiere al tipo de los vehículos. Ningún método de diseño toma en cuenta tanta comple­jidad de un modo absoluto; de hecho, es normal proyectar los pavi­mentos, por lo menos los flexibles, para el efecto de una carga

Page 456: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

transmitida por una sola rueda. En primer lugar se necesita escoger un vehículo como representativo del tránsito; éste es generalmente el más frecuente o el más pesado. Además se necesita establecer una equivalencia entre el arreglo de llantas de tal vehículo y una sola rueda ideal que lo substituya racionalmente en lo que sé refiere a efectos sobre el pavimento. Esta es la rueda de diseño.

Para llegar a la rueda de diseño se han seguido generalmente dos criterios: buscar la rueda simple que produzca a una cierta profundi­dad los mismos esfuerzos que el sistema, por ejemplo dual, del vehícu­lo real o que produzca las mismas deflexiones que éste. Quizá este último criterio sea el más común.

La Teoría de Boussinesq, por ejemplo, permite establecer un cri­terio de equivalencia. Según esta teoría, el esfuerzo en cualquier punto bajo una carga circular uniformemente repartida depende de tres cantidades: la profundidad, z; el radio del área de contacto de la carga r y la presión de inflado de la llanta p. Para diferentes cargas totales P, los efectos de diferentes llantas de misma presión de inflado dependen de z/r; o sea que, para puntos de misma rela­ción z/r, los esfuerzos son iguales independientemente de la carga total, siempre que la presión de inflado sea la misma. Por ello, para p constante y fijado un cierto esfuerzo prefijado, se tiene

- Í = K' (10-17)

pero

432 CAPITULO X

_ — ¡P _V p it

de donde

K'V ptT

que puede escribirse

z = K^JP (10-18)

O sea, el espesor requerido de pavimento flexible es igual a una constante por la raíz cuadrada de la carga total de la rueda simple; el valor de K depende de la presión de inflado y del esfuerzo normal vertical admisible.

Page 457: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En la fig. X-18 se muestra una idealización del efecto de un sistema dual en lo que se refiere a la distribución de los esfuerzostransmitidos.

MECANICA DE SUELOS (II) 433

h -* — I

Tanto la teoría como las mediciones experimentales muestran que el efecto de las dos llantas empieza a superponerse apreciablemente a la profundidad d/ 2 bajo la superficie de rodamiento; también mues­tran que la superposición de esfuerzos de las dos llantas es práctica­mente total a la profundidad 2S; es decir, que en un punto colocado abajo de ese nivel actuaría un esfuerzo ya igual al que se tendría si en la superficie y en el centro del espacio entre llantas actuara una fuerza única 2 P X. Los sentidos de estas letras se aclaran en la fig. X-18.

Con estas bases, si se supone por un momento que entre las profundidades d/2 y 2S la variación de la carga que produce un es­fuerzo dado a una cierta profundidad es lineal, puede adoptarse un criterio sencillo para obtener la carga simple equivalente a un sistema dual dado. En efecto, un punto colocado entre la superficie y la profundidad d/ 2 es actuado por un esfuerzo debido a la carga única P\, un punto colocado más abajo de 2S sufre un esfuerzo debido a una carga única 2Pi¡ un punto intermedio entre d/ 2 y 2S, se razona en este método, tendrá un esfuerzo debido a una carga proporcional­mente intermedia a los valores Pi y 2 P lt según su situación geomé­trica entre los niveles d/2 y 25.

La ec. 10-18 puede escribirse

l°g 2 = — + log K (10-19)

Se ve así que la relación lineal entre carga y profundidad que se supuso arriba es incorrecta, pero que tal relación sí existe entre los logaritmos de esos conceptos. Ue todo lo anterior se deduce el si-29— M ecánica de Suelos II

Page 458: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

434 CAPITULO X

guíente método gráfico para calcular la carga simple equivalente a cualquier sistema dual, según el que deberá construirse una gráfica con profundidades (en escala logarítmica), contra carga de rueda única que produce a tal profundidad el mismo esfuerzo que el siste­ma dual dado (en escala también logarítmica). El punto de carga P y espesor dJ2 representa la situación en que cada carga del sistema dual actúa por separado, siendo por lo tanto P t la carga que actúa únicamente; el punto de coordenadas (2P, 25) representa el nivel en que el esfuerzo resultante de la superposición se hace total (car­ga 2 P i). Uniendo esos dos puntos con una recta se tiene el lugar geométrico de los puntos en que una sola carga iguala al esfuerzo de las dos reales. Entonces la carga equivalente a cualquier profun­didad z se obtiene llevando por este valor una vertical hasta la recta trazada y vien­do la carga correspondiente a ese punto. La fig. X-19 re­produce esa construcción. En un pavimento dado, la carga equivalente se calculará con una z igual a su espesor; así se tendrá la carga única que da a la subrasante el mismo esfuerzo que el sistema doble.

Otra forma de resolver el problema usando el criterio de igual deformación, seria la que sigue. La deformación bajo el sistema dual es, según la Teoría de Boussinesq (expresión 10-8);

A» = Z g {C t + C,) ( 10-20)

donde;A2 = deformación producida por el sistema dual. d = radio del área de contacto de cada rueda del sistema

dual.= presión de inflado de cada rueda del mismo sistema.= módulo de deformación de la subrasante.

Ci, C2 — /actor de asentamiento de cada una de las ruedas de sistema dual.

La deformación bajo una sola rueda es:

FIG. X-19 Mitodo gráfico para encontrar la carga de la rueda de diceño equi­

valente a un cisterna dual

* = - £ c ( 10-8)

Page 459: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 435

donde todas las letras se refieren a una sola rueda y E conserva el sentido anterior. Si esta sola rueda equivale al sistema doble en cuanto a deformaciones se tendrá:

JLLC = ^ ( C 1 + C: )

donde:P, = carga equivalente al sistema doble.P2 = carga de cada rueda del sistema doble.

por lo tanto= \/P2 (C> + C 2) (10-21)

ecuación que permite calcular la carga equivalente a cualquier espe­sor del pavimento. Los valores de las constantes C deben calcularse según se desprende de los comentarios al pie de la ec. 10-8, en el caso de que se trate de asentamientos bajo una llanta. Al calcu­lar asentamientos debidos a la influencia de una llanta no directa­mente sobre el punto, deberán usarse gráficas especiales, tal como aparece en la ref. 16. Para aplicar este criterio hace falta determi­nar la máxima deflexión del pavimento, que puede ocurrir en el centro entre las ruedas, bajo una de ellas o en cualquier punto intermedio, dependiendo de la intensidad de la carga y del espesor del pavimento. Esta deflexión máxima es la que deberá exigirse que produzca la carga equivalente.

Existen algunas fórmulas para calcular la carga de la rueda de diseño equivalente a un sistema dual tomando en cuenta la Teoría de Burmister y las mediciones experimentales. Por ejemplo, en la aplicación del método de diseño de la Armada de los E.U.A. (Navy) ese valor ha de calcularse con la expresión:

P1 = p ( l + ^ ) (10-22)

donde:P, = carga equivalente de la rueda de diseño.P = carga de cada llanta del sistema dual.z — profundidad a que se cumple la equivalencia, igual en los

cálculos al espesor del pavimento.R - x'z2 + S2S = separación de las llantas del sistema dual, centro a centro.

Page 460: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La fórmula 10-22 se obtiene a partir del criterio de igualación de esfuerzos al nivel de la subrasante.

Al tratar el método de diseño de Hveem se vio otra forma de llegar a la unificación de las cargas del tránsito, en la que se procede sobre bases diferentes a las aquí tratadas; otros criterios dis­tintos existen también y, en general, puede decirse que el problema está aún abierto a la investigación y al ingenio de los proyectistas.

436 CAPITULO X

ANEXO X-a

Prueba del C.B.R.

X -a.l. Generalidades

La experiencia ha demostrado que las más pequeñas diferencias en el procedimiento de la prueba C.B.R. son motivo de grandes dife­rencias en los resultados de las mismas. Por esta razón hay necesi­dad de que los procedimientos de prueba se detallen paso a paso, a pesar de lo cual surgen dificultades todavía. Para materiales tales como agregados gruesos, el procedimiento no ha demostrado ser com­pletamente satisfactorio, siendo necesario realizar varias pruebas con el fin de determinar un valor promedio razonable. En algunos casos en que los agregados gruesos se encuentran en tan pequeña cantidad que no afectan la estabilidad del suelo, las partículas pueden remo­verse, con lo cual se evitan las incongruencias en los resultados de la prueba. Sin embargo, para la mayoría de los suelos, los métodos aquí presentados han demostrado ser satisfactorios. En los párrafos siguientes se presentan los procedimientos y el equipo sugeridos para pruebas en muestras remoldeadas y compactadas, en especímenes inalterados y determinaciones en el campo.

X-a.2. Equipo

El equipo usado en la preparación y ensaye de especímenes re- moldeados es el que sigue:

1) Molde cilindrico de 15.2 cm (6 pulg) de diámetro y altura de 17.8 cm (7 pulg), equipado con un collarín de extensión de 5.1 cm (2 pulg) de altura y una placa de base perforada. La placa de base y el collarín se pueden fijar en ambos extremos del cilindro. Cuando se tiene un grupo de moldes es aconsejable tener una placa de base adicional, pues se requie-

Page 461: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ren dos placas en el momento de invertir el molde durante la preparación del espécimen.

2) Un disco separador de 15 cm (51%e Pulfl) de diámetro y 6.3 cm (2.5 pulg) de altura, para insertarlo como fondo falso en el molde cilindrico, durante la compactación.

3) Un compactador semejante al utilizado en la prueba de com­pactación AASHO Modificada. [4.54 kg (10 libras) de peso y 5.1 cm (2 pulg) de diámetro en la superficie de golpeo.]

4) Vástago ajustable y placa perforada, trípode y micrómetro con aproximación al 0.0025 de centímetro (0.001 pulg) para medir la expansión del suelo.

5) Un anillo con peso de 2.27 kg (5 Ib) y varias pesas de un diseño especial, de 2.27 kg (5 Ib) de peso cada una, ade­cuadas para ser aplicadas como sobrecarga en la superficie dePsuelo, durante el proceso de saturación y de penetración.

6 ) Pistón de penetración de 4.9 cm (1.92 pulg) de diámetro y aproximadamente 10 cm (4 pulg) de longitud.

7) Máquina de prueba o gato de tomillo-con su marco especial, que pueden usarse cualquiera de los dos, para introducir el pistón en el espécimen con una velocidad de 0.127 cm/min (0.05 pulg por minuto).

8) Equipo general de laboratorio, como charolas para mezclado, espátulas, enrasadores, balanzas, tanque de saturación, cáp­sulas para determinación de contenido de agua, horno, etc.

MECANICA DE SUELOS (II) 437

X-a.3. Preparación de probetas remoldeadas

El procedimiento es tal que los valores de C.B.R. se obtienen a partir de especímenes de prueba que posean el mismo peso espcífico y contenido de agua que se espera encontrar en el campo. Por lo general, para la mayoría de los materiales, la condición crítica del prototipo es cuando ha absorbido la cantidad máxima de agua. Por ese motivo y con el fin de obtener un resultado conservador, el di­seño de C.B.R. adoptado por el Cuerpo de Ingenieros de los E.U.A., es el C.B.R. obtenido después de que los especímenes han sido sumergidos en agua un período de cuatro días. Durante este tiempo se confinan en el molde por medio de una sobrecarga igual al peso del pavimento que actuará sobre el material. El procedimiento que se da a continuación se ha formulado como resultado de los estudios hechos y deberá seguirse por lo general.

1 ) Se seca la muestra hasta que se pueda desmoronar. El secado deberá hacerse al aire libre o bien empleando el homo siem-

Page 462: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

pre y cuando la temperatura de la muestra no exceda de 60°C. En seguida se rompen los grumos, teniendo cuidado de no triturar las partículas. Se quita el material cuyo tamaño es mayor de 1.9 cm (% pulg), reemplazándolo por una canti­dad igual de material cuyos tamaños están comprendidos entre las mallas No.. 4 y de % de pulg, mezclando completamente la muestra.

2) El método de compactación usado es, en general, una prueba dinámica tipo Proctor.Las modificaciones hechas por el Cuerpo de Ingenieros inclu­yen cambios en el peso del pisón compactador de 2.5 kg (5.5 Ib) a 4.54 kg (10 Ib), altura de caída del compactador de 45.8 cm (18 pulg) en lugar de 30.5 cm (12 pulg), com­pactación de las probetas en el molde en cinco capas iguales ligeramente menores de 2.54 cm (1 pulg) cada una, en lugar de tres capas iguales; se dan 55 golpes por capa, usándose agregados hasta 1.9 cm (% pulg) de tamaño. Todo mate­rial mayor de ese tamaño, es separado y reemplazado por una cantidad igual de material comprendido entre las mallas No. 4 y % de pulg. Ningún material se vuelve a utilizar. El molde se coloca sobre un piso o pedestal de concreto durante la compactación.Se compacta un número suficiente de especímenes con varia­ción en su contenido de humedad, con el fin de establecer definitivamente el contenido de agua óptimo y el peso volu­métrico máximo. Si las características de compactación del material son perfectamente conocidas, será suficiente compac­tar cuatro o cinco especímenes con contenidos de agua dentro de un intervalo de más o menos dos por ciento del contenido de agua óptimo. Dichos especímenes se preparan con diferen­tes energías de compactación, de manera que normalmente se usan la energía Proctor estándar, la Proctor modificada y una energía aún inferior a la Proctor estándar (ver Capí­tulo X III del Volumen I de esta obra). Se tienen así especí­menes que con contenidos de agua diferentes alcanzan dis­tintos pesos volumétricos secos, con lo que se puede estudiar suficientemente la variación del C.B.R. con estos dos factores, que son los que lo afectan principalmente. La altura de caída del compactador deberá controlarse cuidadosamente, así como distribuir los golpes uniformemente sobre el espécimen.Los resultados se dibujan en un diagrama de contenidos de humedad contra peso volumétrico, trazándose una curva que pase por los puntos obtenidos.

3) El molde con la extensión de collarín se fija a la placa de base, insertándose un disco separador sobre dicha placa. En

438 CAPITULO X

Page 463: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

la parte superior del disco se coloca un papel filtro grueso o una malla de alambre fina.

4) Las muestras deberán compactarse para la prueba de C.B.R. utilizando el mismo procedimiento descrito en el inciso 2 de esta sección, usando los esfuerzos de compactación y los con­tenidos de agua recomendados en la sección X-a.6. Después de compactar la muestra, se quita el collarín, cortándose el espécimen, se coloca sobre la superficie superior una malla o un papel filtro grueso y una placa de base perforada se fija a la parte superior del molde. Se invierte el molde, quitándose la placa de base que se encontraba en el fondo, así como el separador, determinándose el peso volumétrico.

5) Se coloca el vástago ajustable a la placa sobre la superficie del molde, aplicando una pesa en forma de anillo, con el fin de producir una intensidad de carga igual al peso del material del pavimento con 2.27 kg (5 Ib) de más o menos, pero en ningún caso el peso será menor de 4.54 kg (10 Ib). Sumér­jase el molde con las pesas en agua, para permitir el libre acceso del agua por arriba y por abajo del espécimen, toman­do medidas iniciales para determinar la expansión y dejando que se humedezca durante cuatro días. Se puede permitir un periodo menor de inmersión para suelos permeables, si es apa­rente que se ha conseguido el contenido de agua máximo. Al final se toman medidas de la expansión, calculándose ésta co­mo un porcentaje de la altura inicial del espécimen.

6 ) Quítese el agua superficial y permítase el drenado del espé­cimen durante quince minutos. Se debe tener cuidado de no alterar la superficie del espécimen durante la remoción del agua libre, para lo cual es necesario inclinar los especímenes. Se retiran tanto la placa perforada como los pesos de sobre­carga y se pesa el espécimen, quedando este último listo para la prueba de penetración.

X-a.4. Prueba de penetración

Debido a que el procedimiento de prueba que se usa actualmente es el mismo para todos los tipos de especímenes, no será necesario repetirlo al referirse a cada tipo de suelo en particular. El procedi­miento descrito en los siguientes párrafos es aplicable también a las pruebas inalteradas y de campo, una vez que la superficie de prueba haya sido preparada.

1 ) Se aplica una sobrecarga sobre todos los suelos, que sea sufi­ciente para producir una intensidad de carga igual al peso del material del pavimento (con ± 2 .2 7 kg de aproximación),

MECANICA DE SUELOS (II) 439

Page 464: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

pero no menor de 4.54 kg (10 Ib). Si la muestra ha sido saturada previamente, la sobrecarga deberá ser igual a la colocada durante el período de saturación. Para evitar el em­puje hacia arriba del suelo dentro del agujero de las pesas de sobrecarga, es conveniente colocar un disco con perfora­ción circular de 2.27 kg (5 Ib) de sobrecarga sobre la su­perficie del suelo antes de la colocación del pistón y de la aplicación de los pesos restantes.

2) Colóquese el pistón de penetración con una carga de 4.54 kg (10 Ib) y pónganse los medidores de deformación y de es­fuerzo en cero. Esta carga inicial es indispensable para asegurar un asentamiento satisfactorio del pistón, debiendo considerarse como carga cero cuando se determina la relación presión-penetración.

3) Se aplica carga sobre el pistón de penetración de manera que la velocidad de aplicación sea aproximadamente de 0.127 cm/min (0.05 pulg/min). Obténganse lecturas de car­ga a 0.063, 0.127, 0.190, 0.25, 0.51, 0.76, 1.02, 1.27 cm (0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4 y 0.5 pulg) de deformación. En los dispositivos de carga operados manualmente, puede ser necesario tomar lecturas de carga con intervalos más peque­ños, para controlar la velocidad de penetración.

4) Se determina el contenido de agua en la capa superior con espesor de 2.5 cm (1 pulg) y, en el caso de pruebas de labo­ratorio, también un contenido de agua promedio, para la pro­fundidad completa de la muestra.

5) Se calcula la presión aplicada por el penetrómetro y se dibu­ja la curva esfuerzos-penetración. Para obtener las presiones reales de penetración a partir de los datos de la prueba, el punto cero de la curva se ajusta para corregir las irregulari­dades de la superficie, que afectan la forma inicial de la curva. La corrección deberá hacerse según se indicó en la sección X-5.

6) Se determinan los valores de presión corregidos para 0.25 y 0.51 cm (0.1 y 0.2 pulg) de penetración, a partir de los cuales se obtienen los valores de C.B.R. dividiendo estas pre­siones entre las estándar de 70 y 105 kg/cm2 (1,000 y 1,500 lb/pulg2 respectivamente). Se multiplica cada relación por 100 para obtener la relación en porcentaje. Por lo ge­neral el C.B.R. se selecciona para 0.25 cm (0.1 pulg) de penetración. Si el C.B.R. para 0.51 cm (0.2 pulg) de pe­netración es mayor que el correspondiente al anterior deberá repetirse la prueba. Si la prueba de comprobación da resul­tados similares, deberá usarse el C.B.R. para 0.51 cm (0.2 pulg).

CAPITULO X

Page 465: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

X-a.5. Datos y resultados de la prueba

Los datos y resultados de la prueba que deberán suministrarse son los siguientes:

1) Procedimiento de compactación.2) Esfuerzo de compactación.3) Contenido de humedad al fabricar el espécimen.4) Peso específico.5) Sobrecarga de saturación y de penetración.6 ) Expansión de la muestra.7) Contenido de humedad después de la saturación.8 ) Contenido de humedad óptima y peso específico máximo

determinados mediante la prueba de compactación AASHO Modificada, descrita en la sección X-a.3.

9) Curva Presión-Penetración.

X-a.6. Procedimiento de preparación de muestras remoldeadas

En el ensaye de especímenes remoldeados por el método de Cali­fornia, todas las capas subrasantes y bases han sido agrupadas en tres clases con respecto al comportamiento durante la saturación: a) Arenas sin cohesión y gravas, b) suelos cohesivos, y c) suelos de gran expansión. El primer grupo incluye por lo general los suelos clasificados como GW, GP, SW y SP. En el segundo grupo están por lo general los suelos clasificados como GM, GC, SM, SC, ML, CL y ÓL. Los suelos de alta expansión comprenden por lo general a los clasificados como MH, CH y OH. Se dan procedimientos por separado para cada uno de estos grupos.

a) Arenas sin cohesión y gravas

Por lo general los suelos sin cohesión se compactan fácil­mente mediante rodillos especiales o por medio del tránsito hasta su peso especifico máximo especificado por el método AASHO Modificado; prueba que se efectúa dando 55 golpes por capa y con un contenido de agua correspondiente a la saturación de la muestra para obtener el peso volumétrico máximo. Si la saturación no baja al C.B.R. de una arena sin cohesión o grava, podrá ser omitida en las pruebas poste­riores del mismo material.

b) Suelos cohesivos

Los suelos de este grupo se ensayan de manera de obtener datos que mostrarán su comportamiento sobre un intervalo

MECANICA DE SUELOS (II) 441

Page 466: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

completo de contenidos de humedad anticipados para mues­tras representativas. Las curvas de compactación se desarro­llan para 55, 25 y 10 golpes por capa, sumergiendo y pe­netrando cada espécimen, con el fin de obtener una familia completa de curvas que muestran la relación entre el peso específico, contenido de agua y C.B.R. Como ayuda para determinar la validez de los datos de compactación se dibu­jan sobre un papel semilogarítmico el peso específico máximo contra la energía de compactación (trabajo por unidad de volumen); los puntos así obtenidos dan, por lo general, una línea recta.

c ) Suelos expansivos

Los procedimientos de prueba para suelos de gran expan­sión son los mismos que los descritos antes para suelos co­hesivos. Sin embargo, los objetivos del programa de prueba no son exactamente los mismos. Las pruebas que se realizan en suelos expansivos tienen como finalidad la determinación del contenido de humedad y el peso volumétrico que producen la expansión mínima. El contenido de humedad y el peso vo­lumétrico apropiados para este caso no son necesariamente los valores óptimos obtenidos a través de la prueba AASHO Modificada. Por lo general la expansión mínima y el máximo C.B.R. saturado ocurren para un contenido de humedad lige­ramente mayor que el óptimo. Cuando se ensayan suelos que se expanden con facilidad, puede ser necesario que se re­quiera la preparación de muestras para un intervalo más am­plio de humedades y pesos volumétricos que los utilizados normalmente, con el objeto de establecer la relación entre el contenido de humedad, el peso volumétrico, la expansión y el C.B.R. en un suelo determinado.Un cuidadoso estudio de los resultados de la prueba, hecho por un ingeniero experimentado, permitirá seleccionar el con­tenido de humedad y el peso volumétrico adecuados para lle­nar los requisitos del campo. Debe hacerse notar que existe la posibilidad de que el espesor de diseño esté gobernado en algunos casos por los requisitos de compactación en luqar del C.B.R.

X-a.7. Procedimiento para preparación de muestras inalteradasLas pruebas en muestras inalteradas se usarán en el diseño, cuan­

do no se requiere compactación y para correlacionar las pruebas en el campo, con el contenido de agua del momento, con el resultado que

442 CAPITULO X

Page 467: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 443

darían esas muestras con el contenido de agua de diseño. Para esta última condición se deberán ensayar especímenes por duplicado, uno con la humedad de diseño y otro con la del lugar, para determinar la correlación necesaria para interpretar las pruebas en el lugar. En este caso, la reducción en el C.B.R. que acontece durante el hume- decimiento, deberá aplicarse como una corrección de las pruebas de campo.

Si se quieren reducir al mínimo las alteraciones del espécimen deberá operarse con sumo cuidado y una paciencia considerable. Utilizando cilindros de acero, cubiertas metálicas galvanizadas flexi­bles y desplegables o cajas diseñadas exprofeso se pueden tener muestras inalteradas satisfactoriamente. Si no se coloca un soporte lateral adecuado en los lados de la muestra, se obtendrán valores variables de C.B.R. En materiales finamente graduados, el uso de moldes y cubiertas metálicas es satisfactorio. El espacio anular que se encuentra alrededor de la muestra (cortada o labrada de un pedes­tal) puede llenarse con parafina o con una mezcla de parafina y 10% de resina, con el objeto de ofrecerle un soporte. Para suelos gruesos (gravosos) el método de la caja es recomendable. La muestra se cubre con papel encerado o parafina con el fin de evitar la pérdida de humedad durante el transporte al laboratorio.

Las pruebas de saturación o de penetración se llevan a cabo, como se explicó anteriormente, después de que se quita el papel o la pa­rafina del extremo del espécimen, en el caso de moldes o cubiertas metálicas, o bien después de que la superficie de la caja de muestras es nivelada con una delgada capa de arena si es necesario. Los cálculos y los resultados de las pruebas se reportarán como se indicó antes.

X-a.8. Prueba de campo

La prueba de campo es, bajo ciertas condiciones, una prueba satisfactoria para determinar la capacidad de soporte de un material en el lugar. Básicamente el aspecto que corresponde a la penetra­ción en esta prueba es el mismo que se describió en la sección X-a.4.

La prueba de campo puede usarse en cualquiera de las condicio­nes que a continuación se citan:

a) Cuando el peso volumétrico en el lugar y el contenido de humedad son tales que el grado de saturación es de 80% o mayor.

b) Cuando el material es de partículas gruesas y sin cohesión, de manera que no se vea afectado por los cambios del contenido de humedad.

Page 468: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

c ) Cuando el material ha estado colocado en el lugar por varios años; en estos casos el contenido de agua puede fluctuar den­tro de un intervalo reducido, considerándose que la prueba de campo arroja un indice satisfactorio de la capacidad de soporte.

444 CAPITULO X

ANEXO X-b

Gráficas para la utilización del método del C.B.R. para diseño de pavimentos flexibles

A continuación se presentan curvas para diseño de espesores de pavimento en aeropistas en las que la subrasante tenga un valor de C.B.R. > 12%; las ordenadas de dichas gráficas para C.B.R. < 12% dan valores semejantes a los de la fórmula 10-7. En la fig. X-b-6 aparece una gráfica propuesta por el Instituto de Asfaltos de los E.U.A. para calcular el espesor de los pavimentos en caminos.

C . B . R.

FIG. X-b.l Curvas da cálculo da aspasoras da pavimanto flatibla an callas da rodaja, pitias y plataformas

Page 469: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

102030403060

7080

90100110120130140150160

n o ta :EN LA ZONA CENTRAL DE PISTA SE REDUCIRA EL ESPESOR EN 10%

FIG . X-b.3 Curren de cálculo do esposares do pavimento flexible en callos do rodaje, pistas y plataformas

C B R60 70 80

MECANICA DE SUELOS (II) 445

NOTA 'EN LA ZONA CENTRAL DE PISTA SE REOUCIRA EL ESPESOR EN 10%

FIG . X-b.2 Curras do cálculo de espesores de pavimento flexible en calles de rodaje, pistas y plataformas

C. B. R.

Page 470: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ESPE

SOR

, EN

CM.

446 CAPITULO X

FIG. X-b.4 Curras de cálenlo

C. B . R.IS 20 23 30 40 SO GOTOSO

100 lio 120 130

140 ISO

NOTA.EN LA ZONA CENTRAL OE PISTA SE REDUCIRA EL ESPESOR EN 10%

de espesores de pavimento flexible en calles de rodaje, pistas y plataformas

C. í . R.3 4 5 6 T 8 9 10 12 15 17 20 25 30 35 40 50 60 70 80 90100

FIG. X-b.5 Gráfica para el cálculo de espesor de un pavimento flexible bajo carga de rueda en arreglo múltiple (Boeing-707)

Page 471: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 447

FIG. X-b.6 Espesores de pavimento flexible para carreteras según el Instituto del As­falto de los E.U.A.

REFERENCIAS

1. The AASHO Road Test — Highway Research Board — Report 61 F — 1962.2. McLeod, N. W.—Some Basic Problems in Flexible Pavements Design — Proc.

Highway Research Board — 1953.3. McLeod, N. W.—An Ultímate Strength Approach to Flexible Pavement De­

sign— Proc., The Association of Asphalt Paving Technologists— 1954.4. Westergaard, H. M. — Theory ol Concrete Pavement Design — Proc. High­

way Research Board— 1927.5. Yoder, E. J. — Principies of Pavement Design — Capítulo III — John Willey

and Sons, Inc. — 1959.

Page 472: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

6. Concrete Roads — Department of Scientific and Industrial Research — Road Research Laboratory— Her Majesty’s Stationery Office — Londres— 1955. Capitulo 9.

7. California División of Highways— Materials Manual of Testing and Control Procedures — Vol. I — 1956.

8. Yoder, E. J. — Principies of Pavement Design — Capítulo VIII — John Wiley and Sons, Inc. — 1959.

10. Kansas State Higway Commission — Design of Flexible Pavement using ths Triaxial Compression Test — Highway Research Board Bulletin N ' 8 — 1947.

11. McDowell, Ch. — Triaxial Tests in Analysis of Flexible pavements — High­way Research Board Report 16-B — 1954.

12. McDowell, Ch. — Progresa Report on the development and use of strength tests for subgrade soils and flexible base materials — Proc. Highway Research Board-1 9 4 6 .

13. Yoder, E. J. — Principies of Pavement Desing — Capitulo XV — John Wiley and Sons, Inc. — 1959.

14. Hveem, F. N. y Cannany, R. M. — The factors underlying a rational design of Pavements — Proc. Highway Research Board — 1948.

15. Yoder, E. J. — Principies of Pavement Design — Capitulo XVI — John Wiley and Sons, Inc. — 1959.

16. Yoder, E. J. — Principies of Pavement Design — Capitulo II — John Wiley and Sons, Inc. 1959.

16. Yoder E. J. — Principies of Pavement Design — Capitulo II — John Wiley and Sons, Inc. 1959.

448 CAPITULO X

BIBLIOGRAFIA

/Principies of Pavement Design — F„ J. Yoder — John Wiley and Sons— 1959.— Department of Scientific and Industrial

Research — Koad Research Laboratory — Her Majesty's Stationery Office — Londres — 1961.

Qoncr^^Rgads — Department of Scientific and Industrial Research — Road Re­search Laboratory — Her Majesty's stationery office — Londres 1955.

Concrete Roads — F. N. Sparkes y A. F. Smith — Edward Amold and Co. , Londres — 1952.

v Ili¿¿g¡¿¿^ ^ ¡¡gineerin^ J ¿¡¡¿¡¡¡¡f¡][ — K. B. Woods — McGraw Hill Book — Co.

Plannina^jmd Pesian of Airnnrts — R. Horonjeff — McGraw Hill Book — Co.

^/caaaaofcgaj. r F °raiÍQ-Y_Z-EllflIÍD ~ Publicaciones de la E. T. S. — de Inge- , nieros de C. C. y P. M TcPfí-1960.

J Ajuoau fijta*-F . L. Pedraza — Ed. Dossat— 1957. E2g¿^ee^^gal2¿J2sií£¡jB^WeJd6/ePwemeJ^ — EM — 1110 — 45 — 302 — Corps.nneertna and Uesion. flexible yavements - - 11 lü

ot üngineers — W . Ü. S. Technical Report 3 — 1958.An- inrt Pnveme¡pt — Portland Cement Association — Chicago,

Engineering and Design Rigid Airfield Pavements-Department of the Army, Corps. of Engineers — Waterways Experiment Station Technical — Report No. 4- 1958.

Concrete Pavement Design for Roads and Street Carrying Alt Classes of Traffic— Portland Cement Association — Chicago, Illinois T95T

V Carreteras, Calles y Aeropistas — Tercera edición. — Raúl Valle Rodas — Librería "El Ateneo” Editorial — Buenos Aires.

Page 473: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO XI

PRINCIPIOS BASICOS PARA EL DISEÑO DE PRESAS DE TIERRA

X -l. Introducción

La presa de tierra es, sin lugar a dudas una de las estructuras ingenieriles más importantes, tanto por su complejidad técnica, como por las inversiones que generalmente requiere y los servicios que presta; es, desde luego, una de las estructuras de la ingeniería en que más deja sentir su influencia la Mecánica de Suelos actual. De hecho, en la presa de tierra es preciso aplicar prácticamente todos los cono­cimientos que la Mecánica de Suelos ha ido incorporando a la Inge­niería y los avances en el campo de la teoría en esta rama se han reflejado siempre de un modo inmediato en la tecnología de presas. Quizá esta tecnología sirva mejor que ninguna otra para apreciar las contribuciones de la Mecánica de Suelos a la ingeniería moderna; basta, para ello, repetir lo que ya se señaló en otra parte de esta obra1 y comparar las limitaciones que hace unos años se imponían a las presas con los logros actuales, debidos más que nada, sin duda, a los avances en el conocimiento de los suelos.

En la Mecánica de Suelos actual, como se ha visto, mucho del conocimiento tiene base experimental directa y aún el estrictamente teórico tiene su fundamento en la observación del comportamiento de los suelos en el laboratorio o en la obra; esto, por otra parte, es característica de todo conocimiento en cualquier ciencia, por elocu- brante e independiente de la experiencia sensorial que parezca a pri­mera vista. Desde este punto de vista, la técnica de construcción de presas de tierra plantea problemas de particular interés, dado el esta­do actual de su desarrollo constante. En efecto, se construyen de continuo presas de mayor tamaño, que imponen una extrapolación de las experiencias adquiridas en las anteriores, extrapolación muy peligrosa, si no se acompaña de un criterio bien fundado; además, cada presa mayor representa un reto a los conocimientos del momento en Mecánica de Suelos, conocimientos cuya base está en la observa­ción de fenómenos a menor escala. Para muchos, éste es quizá el mayor problema ligado a la construcción de grandes presas de tierra; el que hace que esa técnica haya de ser especialmente cuidadosa y el que induce a grandes inversiones durante la construcción en

44929— M ecánica de Suelos II

Page 474: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

instrumental de control y medición, que indique como se desarrollan las inevitables hipótesis de construcción, nacidas de las incertidum- bres sobre la aplicabilidad del conocimiento previo a la nueva escala y que permitan adquirir rápidamente experiencia de comportamiento para futuras extrapolaciones.

XI-2. Tipos de presas de tierra

Se denomina sección de una presa de tierra a la forma y compo­sición que se observa en un corte vertical y normal al eje de su cortina.

En rigor el tipo de sección en cada caso no puede establecerse de antemano en forma rígida, pues depende de los materiales dispo­nibles en la zona de la obra, a distancias de acarreo conveniente y de las características del terreno de cimentación, incluyendo las lade­ras de la boquilla. Las combinaciones posibles de estas circunstancias dan lugar a una variedad prácticamente ilimitada de secciones que, sin embargo, pueden agruparse en ciertos tipos característicos, que son los que brevemente se describen más adelante.

En general, a los materiales disponibles en el lugar en que se construirá una presa de tierra o a distancias económicas de él, se les exigen una o ambas de dos características fundamentales: resistencia, que garantice la estabilidad de la presa e impermeabilidad, que ga­rantice una estructura estanca. El primer requerimiento depende esen­cialmente de la resistencia al esfuerzo cortante. Es frecuente que los materiales que cumplen el requisito de resistencia, materiales friccio­nantes de grano más o menos grueso, no sean lo suficientemente impermeables; recíprocamente, los materiales que por su grano fino y particular estructura garantizan la impermeabilidad, generalmente materiales arcillosos, suelen adolecer, en cambio, de serias limita­ciones de resistencia. Puede decirse que esté contraste está siempre presente en toda sección de una presa de tierra.

Los tipos principales de secciones a que se recurre actual­mente son:

a) Secciones homogéneas

Como lo indica su nombre, se trata de secciones compuestas total o casi totalmente por un solo material.

Este tipo de presas es el más antiguo históricamente hablando y aún se utiliza hoy en obras chicas o en casos en que en el sitio de la construcción no existe más que un material económicamente disponible. En ocasiones, aún disponiendo de un solo material, es posible llegar a una sección zonificada, de las que se mencionarán más adelante, seleccionando el material (separando finos y gruesos)

450 CAPITULO XI

Page 475: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

que se coloca en cada parte o utilizando un procedimiento de cons­trucción distinto (variando compactación, por ejemplo) en cada lugar de la presa; así, pueden tenerse algunas de las ventajas de las secciones zonificadas aún ateniéndose al único material dispo­nible. También es de notar que las secciones homogéneas no lo son nunca rigurosamente, pues tienen filtros y otros elementos de mate­riales especiales, en volúmenes pequeñcs.

Las presas de sección homogénea utilizan generalmente suelos finos relativamente impermeables o suelos gruesos con apreciable contenido de finos, pero se han construido presas de buen funcio­namiento que utilizaron arenas o mezclas de arena y grava, bas­tante permeables.2

En la fig. XI-1.a, puede verse una sección homogénea típica.

PROTECCION LIGERA CON ZAMPEADO 0 PASTA

ZONA DE FILTR O

MECANICA DE SUELOS (II) 451

l a ) SECCION H OM O G E N E A

( b ) S EC C I ON G R A D U A D A

(C ) SECCION DE ENROCAMIENTO Y CORAZON IMPERMEABLE

Fig. Xl-I Secciones t íp ic a s d a co rtin a s d a H a rta

Page 476: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

452 CAPITULO XI

b) Sección graduada

Cuando en el sitio de construcción se dispone de materiales de diferentes permeabilidades en volumen suficiente, suele ser conve­niente y económico zonificarlos dentro de la sección, produciendo así las llamadas cortinas de sección graduada. En éstas, hay zonas que proporcionan la impermeabilidad necesaria al conjunto, si bien, a veces, contribuyen algo a su estabilidad; se emplean en estas zonas suelos finos arcillosos o suelos más gruesos, pero con alto contenido de finos. Hay también zonas, formadas por materiales granulares gruesos o por enrocamiento, cuya finalidad es proporcionar la esta­bilidad a la cortina; estos materiales, en cambio, son muy permeables. Entre las dos zonas anteriores se construyen una o más zonas de transición, con permeabilidad intermedia, que sirven de filtro pro­tector a la zona impermeable y contribuyen a la estabilidad general. Además de todo lo anterior, una sección graduada suele tener otras capas de enrocamiento protector contra erosiones de oleaje, llu­via, etc., que pueden omitirse en el caso de que las zonas exteriores de la cortina contengan ya de suyo material suficientemente pesado.

En la fig. X l-l.b se muestra un esquema de una sección graduada típica.

c) Sección de enrocamiento con corazón impermeable (sección mixta)

Este tipo de sección está integrado por una pantalla impermeable, denominada corazón, que proporciona impermeabilidad pero que con­tribuye muy poco o nada a la estabilidad y por respaldos importan­tes de enrocamiento, boleos o materiales similares, a ambos lados del corazón, que proporcionan estabilidad y permanencia al mismo. Este último puede construirse vertical y al centro de la sección o con la inclinación que se juzgue conveniente. Entre el corazón y los respal­dos de enrocamiento han de disponerse secciones filtro, que prote­jan al material del corazón e impidan su difusión entre el enroca­miento; si los respaldos son de gravas o arenas convenientemente seleccionadas, los filtros pueden llegar a suprimirse.

En la fig. X I-l.c aparece una sección tipica de una presa de enrocamiento y corazón impermeable.

En todo lo anterior se ha tratado únicamente la cortina de la presa, supuesto que se encuentra sobre terreno de cimentación resis­tente y totalmente impermeable. Sin embargo, las condiciones reales de estos suelos, a veces distantes de las condiciones ideales arriba supuestas, imponen una serie de variantes a las secciones descritas. Algunas de las más importantes se mencionan a continuación, con referencia a la fig. XI-2.

Page 477: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 453

ü ( a ) TRINCHERA IMPERMEABLE

SUELO IM PERM EABLE

( c ) DENTELLON (d ) DOS DISPOSICIONES DE DRENES Y FILTROSPARA CAPTACION

Fig. XI-2 Algunas yariantns constructivas comunas an prosas da tiarra

Cuando la cimentación tiene un estrato de suelo permeable de pequeño espesor puede excavarse una trinchera hasta la que se pro­longue el corazón impermeable (fig. X I-2.a). Cuando este espesor se hace más importante, la excavación señalada se hace antieconó­mica y conviene o construir un dentellón de concreto (fig. XI-2.c) o disponer en la sección delantales impermeables que, como se verá en el Volumen III de esta obra, reducen el gasto de filtración y el gradiente hidráulico del flujo bajo la presa (fig. XI-2.b).

Por último, es claro que la disposición de filtros o captaciones para eliminar las aguas que se infiltran a través de la cortina ofrece

Page 478: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

multitud de variantes imposibles de detallar en este lugar. En la fig. X l-l.a y en la XI-2.d aparecen tres disposiciones comunes.

XI-3. Breve descripción de algunas de las partes constituyentes de una presa de tierra

En lo que sigue se analizan brevemente, discutiendo su consti­tución y funciones, algunas de las partes constituyentes principales de una presa de tierra; desde luego se mencionarán y detallarán úni­camente aquellas en que interviene la Mecánica de Suelos y sola­mente haciendo hincapié en los aspectos influenciados por esa dis­ciplina. En la bibliografía de este capítulo podrán consultarse aspectos más generales y detallados respecto a los puntos objeto de esta sección.

a) Vertedor de excedenciasEn las presas de tierra es siempre catastrófico que el agua reba­

se la cortina y escurra por el talud aguas abajo, debido precisa­mente a la naturaleza erosionable de los materiales que intervienen en su composición. Por esta razón, la presa debe estar provista de una estructura auxiliar, denominada vertedor, que permita el alivio del vaso cuando éste se llena a su máxima capacidad. Dada la natu­raleza de sus funciones, el vertedor de excedencias debe estar cons­truido con materiales no erosionables, como concreto o, en obras más chicas, mampostería. El vertedor debe continuarse en un canal de desahogo y generalmente incluye obras auxiliares para amortiguar la energía del agua que lo rebasa.

El vertedor es, en cuanto a características de diseño, una obra que pertenece al campo general de las obras hidráulicas y el detallar estos puntos queda fuera del alcance de esta obra. Los problemas de su cimentación son similares a los de cualquier otra estructura sujeta a la erosión del agua superficial y al flujo de la de infiltración. La erosión suele evitarse pavimentando con concreto las zonas sujetas al ataque, cuando éste pueda producir erosiones de importan­cia. Del efecto de las aguas que se infiltran bajo la estructura habrá de tratarse en el Volumen III de esta obra.

No se dispone de muchos datos sobre la erosionabilidad de los suelos ante las aguas corrientes; las arenas no cementadas y las gravas son, desde luego, los suelos más peligrosos desde este punto de vista. Los suelos más finos cementados o consolidados y las arcillas son más resistentes al paso del agua; las rocas no suelen ofrecer pe­ligro, a no ser que estén horizontalmente estratificadas y tengan hue­cos o fisuras verticales por las que pueda meterse el agua a gran velocidad, pues entonces el empuje dinámico de las corrientes puede producir la remoción de grandes bloques.

454 CAPITULO XI

Page 479: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

El grado de protección contra la erosión suele estar gobernado por el costo de mantenimiento y la frecuencia con que se espere que funcione el vertedor es un dato fundamental.

Todos los vertedores colocados sobre terrenos permeables en me­nor o mayor grado deben estar provistos de dentellones de concreto en su principio y en su término, a fin de reducir el peligro de erosión y socavación. Los criterios para su diseño, desde los anteriores puntos de vista, se analizarán en el Volumen III de esta obra.

b) DrenesToda presa de sección homogénea de altura mayor que 6 u 8 m

debe tener algún dren en el talud aguas abajo, construido con mate­rial más permeable que el que forma la sección, a fin de reducir las presiones neutrales del agua en el cuerpo de la cortina, aumentando así la estabilidad y de canalizar el flujo de agua a través de la cor­tina, impidiendo además el arrastre del material que la constituye. En el Anexo X l-a se dan algunas ideas sobre el diseño y colocación de estos drenes.

c) FiltrosComo ya se ha indicado, en el cuerpo de las presas de tierra

han de colocarse frecuentemente filtros. De hecho, éstos deberán instalarse siempre que se produzca un contacto entre dos materiales de diferente permeabilidad y granulometría. El objeto de los filtros es doble, pues, por un lado, evitan la contaminación de los dos mate­riales en contacto al pasar el fino a ocupar los huecos del que tiene partículas de mayor tamaño; por otro lado, cuando el agua atraviesa la frontera entre ambos materiales, lo que es tan frecuente en presas, el filtro impide el arrastre del material más impermeable a través de los huecos, mucho mayores, del material más permeable.

Así, deben colocarse filtros en los drenes de una presa de sección homogénea, entre las diferentes capas de una sección graduada y entre el corazón y los respaldos de una presa de tierra y enroca- miento. En el Anexo Xl-b se dan algunas recomendaciones en uso para el diseño de filtros, así como algunos otros detalles de su instalación y funcionamiento.

d) Corazón impermeableEl corazón impermeable es, como ya se dijo, la parte de la cor­

tina de una presa de sección graduada o de enrocamiento, que ga­rantiza que la estructura sea estanca. Esto define el tipo de mate­riales que han de usarse en su construcción.

El corazón puede disponerse en la sección verticalmente en su centro o inclinado hacia aguas abajo cerca del talud aguas arriba.

MECANICA DE SUELOS (II) 455

Page 480: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En el Anexo XI-c se detalla algo más acerca de esta componente tan importante de muchas cortinas de tierra.

e) Pozos de alivioEn aquellos casos en que la cimentación de una presa está cons­

tituida por estratos en donde capas impermeables alternan con otras permeables, es frecuente que se desarrollen en estas últimas fuertes presiones en el agua que producen subpresiones, las que a su vez han sido capaces de causar la ruptura de capas más superficiales, for­mando grietas por las que el agua escapa a gran velocidad concen­trándose el flujo, por lo que dichas grietas tienden a agrandarse, produciéndose cada vez una situación menos deseable. En estos casos se recurre a la instalación de drenes verticales que lleguen a las zonas de alta presión, a fin de aliviar ésta. Son estos los llamados pozos de alivio (fig. X l-3).

456 CAPITULO XI

IMPERMEABLE

Fig. Xl-3 Etqutma d» un pozo de alm o

Los pozos de alivio se instalan a pequeña distancia del talud aguas abajo de la presa y son perforaciones verticales de 50 cm a 1.0 m de diámetro, en las que se instala un tubo ranurado, de 20 a 40 cm de diámetro y rodeado de un filtro, para impedir que el ma­terial exterior lo tape y haga inoperante. Deben colocarse en el número y separación convenientes como para que drenen un gasto tal que las presiones en el estrato permeable se reduzcan a valores inofensivos.

f) Obras de tomaLos conductos para las obras de toma son un elemento delicado

en las presas de tierra, cuya construcción debe realizarse con gran cuidado, pues el descuido ha sido causa de fallas de importancia en el pasado.

Estas importantes obras auxiliares se construyen generalmente de concreto y pueden desarrollarse o bien en túnel, a través de las laderas que forman la boquilla de la presa, o bien en tubos a través

Page 481: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de la propia cortina. El primer método se ha considerado siempre más seguro, pues evita los problemas de sellado que se tienen entre el material de la cortina y el tubo de concreto, sellado cuya deficien­cia conduce a fallas por tubificación al infiltrarse el agua por el contacto. Si el conducto va a través de la cortina debe cuidarse fun­damentalmente la compactación del material en torno a él, a fin de reducir los empujes de tierras a valores tolerables y de disminuir el riesgo de infiltración de aguas, pues el suelo bien compactado es menos permeable; en este respecto, no debe regatearse esfuerzo y el ingeniero que controla la obra debe mantener una alta exigencia en los niveles de compactación obtenidos.

En la fig. XI-4 aparece el esquema de una obra de toma cons­truida a través del cuerpo de la cortina.

MECANICA DE SUELOS (II) 457

TTFig. X I-4 Esquema de una obra de toma

g) Muros de retenciónCon frecuencia se requiere en las presas la colocación de muros

de retención, para separar distintos elementos estructurales de tierra o la cortina del vertedor, etc. En estos casos, los muros se proyec­tarán como se vio en el capítulo respectivo en este mismo volumen. Cabe hacer notar que los muros que se colocan en las presas suelen ser de gran altura y, a la vez, su falla es casi siempre de grandes consecuencias, por lo que deben aplicarse los criterios de diseño y construcción ya citados en la forma más cuidadosa.

XI-4. Análisis de estabilidad

Por los riesgos inherentes a su falla y por la inversión que re­presentan, las presas de tierra, especialmente las grandes, han de proyectarse con máxima seguridad y cuidado; por otro lado, lo cuan­tioso de las inversiones requeridas en cualquiera de sus partes cons­tituyentes veda la adopción de un simplista criterio conservador. El balance de seguridad y economía hacen de la presa de tierra una de las estructuras de proyecto más delicado.

Page 482: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

458 CAPITULO X I

Los taludes de una presa deben estar proyectados para las com­binaciones de esfuerzos más desfavorables que puedan presentarse en la vida de la estructura. Estas combinaciones son ahora particu­larmente variadas, al intervenir el agua empujando a la estructura e infiltrándose a su través o al considerar que la presa puede estar llena o sufrir un rápido vaciado, que produce condiciones especiales en los esfuerzos transmitidos. A estos respectos, como siempre, el punto esencial para el proyectista estriba en la correcta determina­ción de las propiedades de resistencia al esfuerzo cortante de los suelos (ver el Volumen I de esta obra), para poder aplicar un método de análisis de estabilidad de taludes, en la forma tratada en un capítulo anterior de este mismo volumen. La influencia del agua en la estabilidad podrá cuantificarse añadiendo a la información anterior los conceptos y métodos de análisis que se tratarán en las partes alusivas del Volumen III de esta obra.

En las grandes presas de enrocamiento existe el problema adi­cional de que no hay hoy un monto suficiente de investigación res­pecto a las características de resistencia y compresibilidad de estos materiales de grano tan grueso. El cambio de escala que significa un enrocamiento respecto a los suelos normalmente utilizados en la investigación, impone diferencias de base no suficientemente cono­cidas. A este respecto, el arma más prometedora es, sin duda, la in­formación que están ya proporcionando un número grande de ins­trumentos de medición de desplazamientos y comportamiento general que se han dejado en el interior de varias grandes presas de reciente construcción. Desgraciadamente esta información está aún en perío­do de interpretación. Dentro de este tipo de trabajos destacan los de Marsal y sus colaboradores en tomo a la presa de Infiernillo, en México; en estas investigaciones se complementa la información de un buen número de instrumentos de medición dejados en el cuerpo de la presa, con pruebas de laboratorio realizadas directamente sobre el enrocamiento mediante el uso de una cámara triaxial de grandes dimensiones. En las refs. 9 y 10 podrán consultarse la técnica y los resultados de estas importantes investigaciones.

Otro punto que ha de ser cuidadosamente considerado en el diseño de una presa de tierra es el relativo a los asentamientos que puede sufrir como resultado de la compresibilidad de los materiales que la constituyen. El cálculo de los asentamientos en las presas de tierra tiene dos etapas posibles de importancia: los asentamientos que se producen en el terreno de cimentación, si éste es compresible y los que se producen en el cuerpo del terraplén, sea en los suelos finos que compongan los elementos impermeables o en los gruesos, que componen los elementos de resistencia.

El arma más popular de que dispone la Mecánica de Suelos para el cálculo de asentamientos, la Teoría de la Consolidación de

Page 483: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 459

Terzaghi (ver Volumen I de esta obra), sólo es aplicable a suelos saturados, por lo que, en general, podrá usarse en los suelos de cimentación y en los suelos arcillosos de la cortina que queden satu­rados en un plazo más o menos largo cuando la presa se llene. Los suelos arcillosos en el terraplén de la presa se colocan compactán­dolos (ver Volumen I de esta obra. Capítulo X III) , por lo que no están saturados inicialmente; la acción del agua que llena la presa satura al cabo una zona del terraplén, como se dijo, pero en la parte superior de él queda una zona no saturada a la que, en prin­cipio, no es aplicable la Teoría de Terzaghi; afortunadamente esta zona suele ser pequeña y de escasa significación en el monto total del asentamiento final.

La evolución de los asentamientos en los suelos finos que com­ponen un gran número de presas ha sido medido directamente sobre la obra11’12. De esas medidas puede verse que la compresibilidad de los suelos finos en el terraplén de la presa depende mucho del contenido de agua con que el material haya sido compactado, espe­cialmente si éste es superior al óptimo. En los estudios puede verse que la concordancia entre los asentamientos predichos con base en la Teoría y los reales medidos en los terraplenes de las presas fue muy tosca, excepto en algunos casos especiales en que los suelos fueron muy uniformes, al grado que el Bureau of Reclamation de los EE. UU. recopiló los datos disponibles en una tabla 13 y recomienda interpolar datos en ella como el método más seguro para la predic­ción de asentamientos en una presa por construir.

Los asentamientos correspondientes a suelos finos en el terreno de cimentación pueden, como ya se dijo, estimarse con la Teoría de Terzaghi y en este aspecto las concordancias entre predicción y realidad han sido satisfactorias.

Los asentamientos en los suelos gruesos que se colocan en el terraplén son imposibles de estimar con las armas teóricas actuales; es de esperar que el panorama se aclare en el futuro, cuando vayan estando disponibles los datos de mediciones a que se ha hecho refe­rencia. Lo que hasta la fecha se ha ido sabiendo revela un compor­tamiento bastante sorprendente en suelos granulares gruesos y muy gruesos sujetos a grandes presiones, según el cual, los asentamientos son mucho mayores que lo que se podría estimar con base en cual­quier experiencia previa y ocurren a lo largo de lapsos prolongados, que exceden en mucho a los períodos de construcción.

Los suelos granulares en el terreno de cimentación sufren asen­tamientos que a veces son de importancia, pero parece cierto que en su mayor parte ocurren en la etapa constructiva, por lo que su efecto perjudicial es reducido. No existe, por otra parte, un modo satisfac­torio de calcularlos.

Page 484: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

460 CAPITULO XI

En las presas de sección homogénea, principalmente, ocurre otro tipo de asentamientos que ha sido causa de un buen número de graves problemas. Este asentamiento, llamado por saturación suce­de bruscamente, a modo de un colapso, cuando la saturación de un suelo de estructura abierta rompe el equilibrio interno que prevalecía en la estructura, al hacer desaparecer a las fuerzas capilares que contribuían a él. Este tipo de falla ocurre durante el primer llenado de la presa y casi siempre ha sucedido en materiales deficientemente compactados, con humedades bajo la óptima.

XI-5. Condiciones de trabajo en las presas de tierra

Desde el momento en que se inicia la construcción de una presa de tierra hasta el momento en que se encuentra llena, sus materiales están sujetos a condiciones de esfuerzos que van cambiando con el tiempo y las circunstancias constructivas, sin contar con la influencia debida a la propia naturaleza de los materiales. Una capa compac­tada a un cierto nivel sufre, durante la construcción, el peso de todo el material que se le va colocando encima; este efecto produce cam­bios en la relación de vacíos y en el grado de saturación durante todo el tiempo de construcción de la cortina.

Estos cambios de volumen en el suelo producen en el agua de sus vacíos presiones neutrales, que tienden a disiparse en mayor o menor grado, dependiendo de la permeabilidad del suelo, de las con­diciones internas de drenaje y del ritmo con que progresa la cons­trucción. Así, al terminarse la presa, existirán en general presiones neutrales en sus suelos componentes de baja permeabilidad y se ha­brán disipado en sus partes permeables. Una vez llena la presa, el agua satura rápidamente las partes permeables y alcanza a saturar con el tiempo las impermeables, cambiando el valor de las presiones neutrales remanentes del período de construcción; se habrá produ­cido así un nuevo estado de esfuerzos en los materiales que compo­nen la cortina y, por ende, se habrá desarrollado una nueva resis­tencia al esfuerzo cortante. Supóngase ahora que por alguna cir­cunstancia la presa se vacía rápidamente; este vaciado impondrá un nuevo estado de esfuerzos, al producirse un nuevo cambio en las presiones neutrales dentro de la cortina. Así, los esfuerzos efectivos dentro de la masa están variando constantemente con circunstancias constructivas o propias del funcionamiento de la presa. Cada estado representa un factor de seguridad diferente para la presa; conviene así analizar la estabilidad de la cortina por lo menos para algunas condiciones de cálculo diferentes que simbolicen casos extremos o casos críticos de la vida de' la presa; sólo así podrá garantizarse una estructura estable en sus diferentes circunstancias. Así, se analizan

Page 485: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA D E SUELOS (II) 461

usualmente las condiciones de estabilidad durante la construcción, a presa llena y en vaciado rápido.

En el Anexo Xl-d se hacen algunas reflexiones adicionales y se discuten con algo más de detenimiento algunas de las condiciones de esfuerzos que es preciso tomar en cuenta en el diseño.

XI-6. Cansas de falla en presas de tierra

El desarrollo de la Mecánica de Suelos ha dado al ingeniero de presas de tierra armas racionales para el estudio del campo, pero aún así es innegable que la mayoría de los procedimientos construc­tivos actuales se han desarrollado, por lo menos parcialmente, a par­tir de esfuerzos para eliminar deficiencias de comportamiento obser­vadas en forma más o menos sistemática. Así, un conocimiento de las principales lecciones que se puede extraer de las fallas del pa­sado, es una parte esencial de la preparación de un especialista en presas de tierra.

En lo que sigue, se mencionan brevemente las que se reconocen como causas de falla más frecuentes en presas de tierra, así como algunas de las principales conclusiones que es posible extraer de tales fallas.

La magnitud de las fallas en presas de tierra varía desde lo que pudiera llamarse una catástrofe, que produce grandes pérdidas en vidas y bienes, hasta deterioros más o menos ligeros, que inclusive pudieran no requerir ningún trabajo de reconstrucción. Las fallas catastróficas han ocurrido por ruptura de la cortina bajo el empuje de agua o por rebase del agua sobre la cortina en avenidas extra­ordinarias; en el primer caso se produce naturalmente una ola cuyos efectos aguas abajo son fáciles de adivinar; en el segundo caso, suele producirse la destrucción total o casi total de la estructura, pues aunque a veces se han reportado rebases de consecuencias no catastróficas, ha de considerarse como una regla general que una cortina de tierra no puede diseñarse en forma segura como sección vertedora.

Otras causas de fallas graves o catastróficas son las que se deta­llan a continuación:

a) Falla por insuficiencia del vertedorEsta falla ocurre generalmente por una mala estimación del gasto

correspondiente a la avenida máxima que deba desalojar el vertedor de excedencias. La consecuencia es que al presentarse una avenida mayor que la prevista, el vertedor no la desahoga y el agua se vierte sobre la cortina, erosionándola y dañando el talud aguas abajo, con las consecuencias ya indicadas anteriormente.

Page 486: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

462 CAPITULO XI

Las fallas ocurridas en este renglón han estado siempre asocia­das a falta de volumen suficiente de datos hidrológicos respecto a la corriente qua alimenta a la presa, deficiencia especialmente probable en países en que existen estudios sistemáticos de cuencas y escurri- mientos que abarcan lapsos relativamente breves. Naturalmente que este no es un problema de Mecánica de Suelos, por lo que no será tratado aquí; sin embargo, no estará de más insistir en los peligros de la extrapolación en estos estudios, en que a veces se trata de obtener datos en una corriente de la que no existe información, con base en medidas más o menos completas realizadas en otra supuesta similar, con consecuencias frecuentemente deplorables, pues este es sin duda un caso en que la extrapolación es prohibida.

b) Falla por tubificación

Cuando el agua fluye a través del suelo, su carga hidráulica se disipa venciendo las fuerzas viscosas inducidas y que se oponen al flujo en los canalículos formados entre las partículas; reciprocamente, el agua que fluye genera fuerzas erosivas que tienden a empujar a las partículas, arrastrándolas en la dirección del flujo. En el momento en que este arrastre se produce, ha comenzado la tubificación del suelo.

Inevitablemente existen en la masa del suelo lugares en que se concentra el flujo del agua y en los que la velocidad de filtración es mayor; los lugares en que estas concentraciones emergen al talud aguas abajo, en que el suelo no está afianzado por fuerzas confinan­tes, son particularmente críticos en lo referente a posibilidades de arrastre de partículas sólidas; una vez que las partículas empiezan a ser removidas van quedando en el suelo pequeños canales por los que el agua circula a mayor velocidad, con lo que el arrastre se acentúa, de manera que el fenómeno de la tubificación tiende a crecer continuamente una vez que comienza, aumentando siempre el diáme­tro de los canales formados. Otra característica curiosa del fenó­meno es que, comenzando en el talud aguas abajo, progresa hacia atrás, es decir hacia el interior de la presa; ésto es evidente con base en lo que queda explicado. El límite final del fenómeno es el colapso del bordo, al quedar éste surcado por conductos huecos de gran diámetro que afectan la estabilidad de la sección resistente hasta la falla.

Un factor que contribuye mucho a la tubificación es la insufi­ciencia en la compactación del bordo, que deja alguna capa del mismo suelta y floja; esto es particularmente probable cerca de muros o superficies de concreto, tales como ductos o tubos. Otro factor importante es el agrietamiento de tubos o galerías en el interior del bordo.

Page 487: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La tubificación del terreno natural bajo el bordo es aún más frecuente, pues los suelos naturales son de estratificación más errá­tica y pueden contener estratos permeables.

Los estudios sobre presas tubificadas han demostrado que en los suelos existe un amplísimo margen de susceptibilidad al fenómeno; las propiedades de los suelos, especialmente la plasticidad de sus finos ejercen gran influencia, incluso mayor que la compactación. La Tabla 11-1 es un resumen de la experiencia actual sobre la sus­ceptibilidad de los suelos a la tubificación, en orden descendente de resistencia al fenómeno.

MECANICA DE SUELOS (II) 463

TABLA 11-1

1. Arcillas muy plásticas (Ip > 15% ), bien compactadas.

2 . Arcillas muy plásticas (Ip > 15% ), con compactación deficiente.

3. Arenas bien graduadas o mezclas de are­na y grava, con contenido de arcilla de plasticidad media (Ip > 6% ), bien com­pactadas.

4. Arenas bien graduadas o mezclas de are­na y grava,, con contenido de arcilla de plasticidad media (Ip > 6% ), deficiente­mente compactadas.

5. Mezclas no plásticas bien graduadas y bien compactadas, de grava, arena y limo (Ip < 6% ).

6. Mezclas no plásticas bien graduadas y deficientemente compactadas, de grava, arena y limo (Ip < 6% ).

7. Arenas limpias, finas, uniformes (Ip < 6% ), bien compactadas.

8 • Arenas limpias, finas, uniformes(Ip < 6% ), deficientemente compacta­das.

Los filtros graduados, descritos en otros lugares de este capítulo, son la mejor defensa contra la tubificación sea en la etapa de pro­yecto o en la de poner remedio a un mal ya presente.

Gran resistencia a la tubificación

Resistencia media a la tubificación

Baja resistencia a la tubificación

Page 488: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

c) Falla por agrietamientoPosiblemente las fallas por agrietamiento causado por asenta­

mientos diferenciales en el bordo de tierra sean mucho más nume­rosas de lo que la literatura sobre el tema pudiera hacer pensar; en efecto, se reportan como tales los grandes agrietamientos que no pueden pasar inadvertidos, pero posiblemente muchas fallas de pre­sas que se achacan a otras causas, principalmente tubificadón, tie­nen su origen en la aparición de grietas y fisuras no muy grandesen la masa de tierra.

El agrietamiento a que se refiere esta sección se produce cuando la deformación de la cortina produce zonas de tensión que aparecen por asentamiento diferencial de la masa del suelo, sea por deforma­ción del propio cuerpo del terraplén o del terreno de cimentación. Como quiera que por estas causas la presa puede deformarse de muchos modos, los sistemas de agrietamiento que el ingeniero puede encontrar en sus inspecciones a presas de tierra son de una inmensa variedad. Las grietas pueden aparecer parajela o transversalmente al eje de la cortina y la orientación del plano de agrietamiento puede ser prácticamente cualquiera. El agrietamiento puede ocurrir con an­chos abiertos hasta de 15 ó 20 cm, si bien son más comunes anchos de grieta de 1 ó 2 cm. Las presas de pequeña altura son las que más comúnmente sufren el fenómeno que, sin embargo, se presenta con frecuencia en las partes superiores de las presas altas. El que las presas menores sean las más susceptibles al fenómeno quizá se deba a que las presiones grandes que hay en el interior de las presas ma­yores protegen al suelo.

Las grietas más peligrosas son las que corren transversalmente al eje de la cortina, pues crean una zona de concentración de flujo; son producidas generalmente por asentamiento diferencial de la zona de la cortina próxima a las laderas de la boquilla respecto a la zona central, de valle. La condición más peligrosa para este agrie­tamiento es que sea compresible el terreno en el que se hace descansar la cortina.

Las grietas longitudinales suelen ocurrir cuando los taludes de la presa se asientan más que su corazón, lo que es típico en secciones con corazón impermeable de material bien compactado y respaldos pesados de enrocamiento.

El remedio para corregir las grietas consiste en la excavación de trincheras que sigan su contorno en toda su profundidad, las que deberán rellenarse con material seleccionado bien compactado. Debe impedirse que las grietas superficiales se rellenen de agua antes de su sellado, pues de otro modo se producirán presiones hidrostáticas que podrían incluso amenazar la estabilidad de la cortina.

No existe ningún criterio razonable, ni en el campo, ni en el labo­ratorio para estimar el monto de deformación que puede soportar

464 CAPITULO XI

Page 489: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II)

una cortina sin agrietarse. Se ha hecho algo de investigación para tratar de correlacionar las características de los materiales constitu­yentes de la presa con su susceptibilidad al agrietamiento. Aunque la evidencia de que se dispone dista de ser completa, parece que las arcillas inorgánicas con índice de plasticidad menor que_ 15 y con graduación dentro de la zona marcada en la fig. X I-5 son mas susceptibles al agrietamiento cuando se compactan del lado seco, que otros suelos más finos o más gruesos. Las arcillas más plásticas, con índice de plasticidad mayor que 20, más finas que las anteriores, aguanta mucha más deformación sin agrietamiento.

residual con partículas gruesas de roca blanda, que se pulverizan en la compactación; estos suelos quedan frecuentemente compactados del lado seco, pues es difícil incorporarles agua; además, estos materia­les pueden quedar cementados por el producto de la alteración de la roca: Muchas de las presas agrietadas se compactaron con conte­nidos de agua bastante más bajos (tanto como 5% ) que la hume­dad óptima.

Narain ” , llegó a algunas conclusiones de interés en un estudio reciente, según las cuales un aumento del contenido de agua cuando éste está 2 % ó 3% bajo el óptimo, hasta este valor, aumenta sus­tancialmente la flexibilidad de las arcillas; aumentos subsecuentes parecen ser de poca influencia, en cambio. También afirma este in­vestigador que no existe relación entre las deformaciones que pro­ducen agrietamientos en la cortina y las que se obtienen en una prueba típica de compresión en el laboratorio, de modo que es­ta prueba no es un buen índice para juzgar de posibilidades de agrie­tamiento, Por último, se afirma que si se aumenta sustancialmente30—Mecánica de Suelos II

T I P O DE MALLA . ZOO 100 50 30 16 8 4 f f-To

- 10 - 20- 30 o- 4 0 “- 50 3- 6 0 t i- 70 ec-- 8 0 ^

90J— I—I— I—•—*100

Fig. XI-5 G ra n u lo m e fr ia de los suelos más susceptibles de agrie­tamiento

Existe susceptibilidad al agrietamiento en terraplenes de suelo

Page 490: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

la energía de compactación en un suelo, a un cierto contenido de agua, se disminuye la flexibilidad del material compactado.

d) Falla por deslizamiento de taludesLa falla por deslizamiento de taludes es quizá la más estudiada

de todas las que frecuentemente acaecen en las presas de tierra. La razón es que, además de su importancia intrínseca, es el tipo de falla más susceptible de análisis y cuantificación con los métodos existentes para el estudio de estabilidad de taludes (capítulo V ) . Además, en el Anexo X l-e se dan algunos métodos de cálculo típicos en el análisis de presas de tierra.

Existe un buen monto de información estadística respecto a estetipo de fallas 18, de la que se desprende que las fallas por desliza­miento ocurren preponderantemente en los primeros tiempos de la vida de la presa y también, y ésta es sin duda una conclusión alen­tadora, ocurren cada vez más raramente en presas de reciente y cuidadosa construcción; de hecho parece haber evidencia suficiente para poder decir que si el diseño y la construcción de una presa, por alta que sea, se cuidan lo necesario, las técnicas de que se dispone permiten adoptar una actitud de tranquilidad ante las fallas ahora en estudio.

Ls fallas por deslizamiento suelen considerarse divididas en tres tipos principales:

1 . Fallas durante la construcción.2. Fallas durante la operación.3. Fallas después de un vaciado rápido.

1. Fallas durante la construcciónEstas fallas han sido menos frecuentes que las ocurridas durante

la operación; nunca han sido catastróficas. Las fallas se han presen­tado sobre todo en presas cimentadas en arcillas blandas, con gran porción de la superficie de falla a través de ese material y pueden ser rápidas o lentas, según que el material de cimentación sea homo­géneo o presente estratificaciones que favorezcan el movimiento.

El remedio para este tipo de fallas, en presas construidas sobre los materiales mencionados, es el lograr el abatimiento de las pre­siones neutrales, que pueden medirse colocando piezómetros en el terreno de cimentación; en arcillas homogéneas el remedio es lento pues se requiere que el terreno se vaya consolidando bajo el peso propio de la presa; en el caso de que existan estratificaciones en que alguna capa desarrolle presiones neutrales elevadas con riesgo de es­tabilidad, el remedio puede ser más rápido con obras de alivio que abatan esas presiones locales.

466 CAPITULO XI

Page 491: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

2. Fallas durante la operaciónLas fallas por deslizamiento de taludes que han ocurrido durante

el período de operación de las presas de tierra, han sido sobre todo de dos tipos; profundas, con superficie de falla invadiendo general­mente terrenos de cimentación arcillosos, y superficiales, afectando sólo pequeños volúmenes del talud. Las fallas profundas suelen ocu­rrir a presa llena y están relacionadas con las presiones neutrales que se producen por flujo de agua a través de la cortina y en el terreno de cimentación (ver Volumen III de esta obra); el deslizamiento no alivia estas presiones y por ello es frecuente que se presenten otros ulteriores, lo que se comprende más fácilmente si se toma en cuenta que el suelo, después de una falla, suele presentar frentes más es­carpados que los originales. Esta observación plantea entonces un problema de extrema necesidad de actuar con toda rapidez para co­rregir una zona de falla, después de que ésta se ha producido.

El talud afectado es prácticamente siempre el de aguas abajo.Es bastante común que las fallas profundas ocurran con relativa

lentitud, especialmente en arcillas, con velocidades sobre el terreno del orden de un metro por día, al principio; estos movimientos pue­den prolongarse durante semanas a velocidades mucho menores. Las fallas profundas pueden abarcar todo el ancho de la corona, redu­ciendo así la altura del bordo.

Los deslizamientos superficiales suelen sobrevenir después de fuertes lluvias y frecuentemente afectan espesores del bordo no ma­yores que uno o dos metros; a veces ocurren inmediatamente después de la construcción, pero en algunos casos han ocurrido muchos años después de estar funcionando normalmente la estructura. Han ocu­rrido frecuentemente en presas en donde capas gruesas de piedra acomodada o grava en el talud aguas abajo almacenan agua des­pués de la lluvia, que puede contribuir a saturar dicho talud; también cuando en el talud aguas abajo existen bermas cuya superficie no está bien drenada para impedir la penetración del agua al cuerpo de la cortina o cuando haya caminos en el mismo lugar y con el mismo defecto.

3. Fallas después de un vaciado rápidoTodas las fallas de importancia reportadas por deslizamiento del

talud aguas arriba han ocurrido como consecuencia de un vaciado rápido. Las fallas del talud aguas arriba no han causado el colapso de la presa o pérdida de agua en el almacenamiento, pero frecuen­temente han causado situaciones de peligro al tapar conductos, gale­rías,etc. Ahora hay poco peligro de fallas repetidas, puesto que la primera falla en un vaciado rápido disipa en gran parte las presiones neutrales que existían en el agua como consecuencia del flujo (Vo­lumen III de esta obra).

MECANICA DE SUELOS (II) 467

Page 492: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

468 CAPITULO XI

Para que el vaciado rápido sea una condición peligrosa para la estabilidad de la cortina, no hace falta que sea realmente rápido. Un estudio al respecto16 en 12 presas mostró que las fallas se presen­taron en casos en que el nivel del agua estuvo descendiendo a partir del máximo hasta la mitad de la altura a razón de 10 a 15 cm/día. Una buena parte de las fallas durante el vaciado han ocurrido la pri­mera vez que esta operación se efectúa en forma importante.

Los deslizamientos también suelen ser relativamente lentos y su superficie de falla es frecuentemente profunda, de modo que interesa al terreno de cimentación y abarca en ocasiones hasta la mitad del ancho de la corona.

Prácticamente todas las fallas profundas por deslizamiento en presas de tierra han ocurrido en presas construidas sobre terrenos arcillosos plásticos y con importantes contenidos de agua. También se ha observado una relación definitiva entre el riesgo de falla y lo arcilloso que sea el material que constituye la cortina propiamente dicha o la preponderancia de materiales de este tipo en el cuerpo de la misma. En la ref. 16 puede verse un estudio en que se asocian las fallas por deslizamiento con la presencia de material arcilloso en el cuerpo de la cortina o en su terreno de cimentación. Este es un factor suficientemente comprobado que debe tomarse en cuenta al valuar los riesgos de un proyecto dado.

En la referencia mencionada se analizan 65 presas de sección homogénea, de las que 14 sufrieron deslizamientos. Todas ellas es­taban construidas con arcilla cuya plasticidad podría describirse cuan­do menos como media. El D50 de los suelos analizados osciló entre0.005 mm y 2.0 mm, lo que puede decirse que cubre a todos los suelos utilizados en secciones impermeables en cortinas de tierra.

De las cortinas analizadas, todas aquellas en que D5o < 0.006 mm fallaron; de las construidas con un material en que 0.006 mm < D-0 < 0.02 mm fallaron la mitad y, finalmente, de las construidas con suelos en que 0.02 mm Dso 0.06 mm, sólo unas pocas tuvieron problemas de deslizamientos. Ninguna presa en que se hubiera usado un material con D30 > 0.06 mm falló, y ello aun tomando en cuenta que algunas tenían taludes bastante escarpados y padecían defectos de compactación.

e) Fallas por temblores

Juzgando a partir de la experiencia disponible 19, puede decirse que las fallas producidas por los temblores en las presas de tierra han presentado las siguientes características:

1) Las fallas más frecuentes son grietas longitudinales en la corona del bordo y asentamiento en el mismo.

Page 493: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 469

2 ) Sólo existe un caso en que se ha reportado la destrucción total de una presa de tierra por sismo, probablemente debido a licuación (ver adelante en esta sección).

3) Los daños en las presas parecen haber sido causados prin­cipalmente por la componente horizontal del movimiento sís­mico en dirección transversal al eje de la cortina; se piensa que la amplitud y la aceleración de este movimiento son mu­cho mayores en la cresta que en terreno de cimentación.

4 ) Existen muy pocas fallas por deslizamiento atribuibles a tem­blores, aún en cortinas deficientemente compactadas.

5) Hay ciertos indicios que permiten pensar que los sismos que causan más daños a presas tienen mayores periodos (menores frecuencias) que los que causan la máxima destrucción en edificios. Por esto, presas muy próximas al epicentro de un temblor pueden salir mucho mejor libradas que otras coloca­das a distancias mucho mayores.

6) Hay grandes indicios para juzgar que las presas con corazón de concreto son particularmente susceptibles de sufrir daños durante un temblor; esto es debido a que el concreto y los suelos que lo rodean no vibran conjuntamente.

7) Los respaldos granulares mal compactados o formados por fragmentos de roca muy contaminada por finos, pueden su­frir fuertes asentamientos por sismo, que pueden poner en problemas al elemento impermeable. Así, la compacidad ade­cuada y el lavado de las rocas que lo ameriten constituyen una precaución indispensable.

8 ) Del sismo puede emanar el riesgo de la falla por licuación que se describe adelante.

En lo que se refiere al diseño propiamente dicho, en el Anexo X l-f se dan algunas ideas actualmente en uso.

f) Falla por licuaciónEl fenómeno de la licuación de arenas y limos no plásticos

ya ha sido descrito en otro lugar de esta obra (Capítulo X II del Vo­lumen I ), indicando su mecanismo y sus consecuencias. En el caso de una presa de tierra, la licuación de materiales en el bordo conduce a un derrame de los mismos en grandes áreas, hasta adoptar taludes irregulares y muy tendidos, que en algunos casos pueden sobrepasar el valor 10:1.

Como ya se dijo, los suelos más susceptibles a la licuación son los finos, no cohesivos, de estructura suelta y saturados. Estas ca­racterísticas describen a las arenas finas y uniformes y a los finos no plásticos, o sus mezclas. Las arenas sueltas con D 10 < 0 .1 mm y coeficiente de uniformidad, Ca, menor que 5 y los limos con lv < 6

Page 494: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

470 CAPITULO XI

son los materiales más peligrosos, tanto en la cortina como en el terreno de cimentación de una presa de tierra.

Durante mucho tiempo se juzgó que la falla por licuación no era de temer siempre y cuando la relación de vacios del suelo fuese menor que el valor "crítico” (Capítulo XII del Volumen I de esta obra). Hoy, sin embargo, se sabe que esta condición no garantiza

Gran deslizamiento de tierras ocurrido durante un sismo, atribuí- ble a licuación

Gran deslizamiento de tierra atribuible a licuación

Page 495: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 471

Falla por licuación. Nótese la garganta por la que ocurrió el flujo del material

siempre un buen comportamiento, exento del peligro de una falla por licuación.

En el Anexo XI-g se hacen consideraciones adicionales sobre este tipo de fallas.

XI-7. Normas fundamentales de construcción

La erección de una presa de tierra ha de seguir las siguientes etapas constructivas:

a) Limpia del terreno de cimentación y desviación del i;ío.b) Excavación de trincheras a través de los depósitos permea­

bles, si son necesarias.c) Tratamiento de la cimentación a fin de mejorar sus condicio­

nes de permeabilidad, cuando ello se requiera.d) Colocación de los materiales que constituyen el cuerpo de la

cortina.

En lo que sigue se mencionan algunos criterios de importancia para el cumplimiento de cada una de esas etapas.

a) Limpia de la cimentación y desvio del ríoSe trata de garantizar un buen contacto entre las zonas im­

permeables del cuerpo de la presa y la parte impermeable (general­

Page 496: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

mente roca) en el terreno de cimentación; para ello será preciso eli­minar por excavación la tierra vegetal, quizá alguna capa de suelos inapropiados y la parte alterada o fracturada de la roca que aparez­ca en los niveles superiores. No es posible establecer ninguna espe­cificación rígida en lo referente a las profundidades de las excava­ciones a efectuar y éstas dependen de las condiciones locales, no sólo de cada boquilla, sino de cada zona específica de la misma. Una vez alcanzada la roca sana, apropiada para lograr un buen contacto con la parte impermeable de la cortina, suele especificarse una profundidad de excavación en ella comprendida entre 1.50 m4 y 3.0 m, a fin de garantizar buenas condiciones de cimentación e impedir filtraciones excesivas o peligrosas. Los estudios geológicos previos y la exploración de los suelos permitirán hacer previsiones razonables en aquellos conceptos, que se reflejan en los costos en for­ma notable; sin embargo, el ingeniero constructor ha de estar en todo momento más atento a lo que la propia excavación le vaya mos­trando que al dimensionamiento incluido en sus planos de proyecto, producto de los estudios previos y ello por detallados que estos hayan sido.

Las obras para desviar el río, dejando en seco la zona de cons­trucción, consisten generalmente en la excavación de uno o más túneles a través de los cerros que definen la boquilla o bien en trin­cheras a cielo abierto para constituir entonces un canal de desvío; cuando sea posible, es conveniente por razones obvias proyectar estos trabajos de modo que sirvan posteriormente como obra de toma de la presa definitiva.

Una vez completadas las obras de desvío, deberán construirse ataguías aguas arriba y aguas abajo, para canalizar el agua a la desviación e impedir su regreso a la zona de construcción, respec­tivamente; frecuentemente estas ataguías son pequeñas presas de enrocamiento con corazón impermeable y muchas veces pasan a formar parte de los respaldos de la presa definitiva.

b) Excavación de trincheras a través de depósitos permeables

Frecuentemente se requiere excavar a través de los depósitos permeables de acarreo del río, para alojar en esas excavaciones trin­cheras impermeables o para eliminar materiales indeseables de la zona de cimentación. En excavaciones profundas (y en ocasiones han alcanzado más de 30 m) suele surgir el problema del control de las filtraciones hacia la propia excavación; se hace con frecuencia indis­pensable el interceptar las aguas antes de que lleguen a los taludes de las excavaciones, a fin de trabajar en seco y de impedir que las fuerzas provocadas por el flujo perjudiquen la estabilidad de los mismos. Para lograr estos fines existen dos tipos de métodos: insta­laciones de bombeo atrás de los taludes y construcción de pantallas

472 CAPITULO XI

Page 497: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

impermeables a través de los acarreos permeables. Las primeras pue­den seguir lincamientos similares a los que se exponen en el Volumen III de esta obra. Las pantallas pueden lograrse inyectando mezclas de cemento, bentonita y arcilla; construyéndolas de concreto, a base de tableros o formando dentellones de arcilla. En general la inyección proporciona los mejores resultados en terrenos gruesos, en los que abunden gravas y boleos; las otras dos soluciones presentan ventajas en terrenos más finos. Cualquiera que sea la pantalla que se utilice, su longitud deberá de ser tal que intercepte totalmente al agua en el depósito permeable.

Si los materiales a través de los que ha de excavarse son franca­mente finos (limos y arcillas) son de buen resultado y cada vez más frecuente aplicación los métodos electrosmóticos, que se describen en el Volumen III de esta obra.

c) Tratamiento de la cimentación

En los últimos años, los progresos de la tecnología de presas de tierra han hecho que sea económico construirlas en lugares con roca en la zona de cimentación en que anteriormente se hubiera recomen­dado sin vacilación una presa de concreto. Aunque la roca es mejor que un suelo como terreno de cimentación si se atiende a compresibi­lidad y resistencia, no por eso deja de presentar algunos problemas de envergadura; en primer lugar el que plantea el sellado del contacto de la roca con las secciones impermeables de la cortina y en segundo lugar el que emana del posible flujo bajo y alrededor de la cortina por las grietas o juntas y demás discontinuidades de la roca, que plantea peligro de tubificación, de subpresiones y produce pérdidas en el almacenamiento.

El mejor modo de producir un buen sellado entre la roca y el corazón de la cortina es dejar la superficie de la primera lo suficien­temente regular como para poder compactar sobre ella las primeras capas del corazón usando rodillos pesados. Cuanto más ancha sea la base del corazón que entra en contacto con la roca, la probabilidad de problemas de filtración en dicho contacto es menor, razón por la que las presas de corazón delgado son especialmente peligrosas por ese concepto.

Hace algunos años era práctica común la construcción de dente­llones de concreto en el contacto entre el corazón y la cimentación; estos dentellones se alojaban en trincheras excavadas a cielo abierto y penetraban un tanto en el propio corazón. Sin embargo, en la actua­lidad estos muros se utilizan cada vez menos, por impedir una buena compactación del corazón sobre la roca de cimentación en su vecindad, por su costo y, finalmente, porque el uso de los explosivos necesarios para excavar la trinchera a menudo agrieta la roca de la cimentación en forma sumamente indeseable. Sin embargo, la objeción más impor­

MECANICA DE SUELOS (II) 473

Page 498: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tante que puede hacerse al uso de los dentellones estriba en las con­secuencias que se derivan de no ponerlos en algún lugar en que se requiriesen, pues en ese caso por ese lugar ocurriría un flujo peligroso no evitado por ningún otro medio, ya que el ingeniero proyectista se tranquilizaría pensando haber colocado los dentellones necesarios en todos los lugares, según él, requeridos. Por otra parte, los inconve­nientes que se mencionaron más arriba podrían superarse si en la ejecución de la obra se pone el cuidado necesario; así, la compacta­ción con equipos manuales permite dejar un excelente trabajo en las vecindades del muro y también la trinchera para colocar el muro puede hacerse,con cargas de dinamita lo suficientemente pequeñas como para no producir daños a la roca; por estas razones, algunos constructores modernos de presas están volviendo a pensar que el dentellón es un elemento útil que debe ser usado en muchos casos prácticos, especialmente en los lugares en que las fronteras de la roca de cimentación sean muy escarpadas o muy suaves y lisas.

A veces, las trayectorias de flujo entre el terreno de cimentación y el corazón se cortan con trincheras excavadas en la roca de apoyo y rellenadas posteriormente con material compactado e impermeable; estas obras son especialmente convenientes en roca más o menos suave cuya permeabilidad disminuya con la profundidad; también en terrenos de cimentación formados por roca estratificada en que alternen estratos blandos erosionables y estratos duros. En ocasio­nes, este tipo de trincheras se han usado en roca dura, pero este tipo de formación puede seguramente tratarse mejor por métodos de inyectado.

Las inyecciones en el terreno de cimentación constituyen, quizá, el método más común para mejorar las características de éste.

Se hacen con los siguientes fines:

1. Reducir el flujo desde el almacenamiento.2. Controlar la presión del agua en las fracturas de la roca en

la zona aguas abajo de la presa, donde esas presiones pueden tener gran influencia en la estabilidad. Este enunciado, sin embargo, parece discutible a muchos constructores.

Además de estos fines principales, la inyección cubre uno secun­dario, pero frecuentemente muy importante; ésta es una finalidad de tipo exploratorio en la roca de la zona de cimentación, pues al terminar la realización de un gran número de perforaciones profundas y próximas, el constructor posee un conocimiento de las característi­cas de la roca de cimentación que difícilmente se adquiere con la exploración convencional.

El tratamiento de la cimentación por el método de inyecciones consiste, como ha quedado insinuado, en la realización de pozos o barrenos a través de la roca, con la profundidad y el espaciamien-

474 CAPITULO XI

Page 499: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 475

to convenientes, en los que se inyecta a presión lechada de ce­mento u otro producto adecuado para sellar las juntas y grietas del terreno de cimentación.

En el Anexo Xl-h se detallan algo más los métodos de inyección y los procedimientos constructivos para garantizar en lo posible un buen funcionamiento de una pantalla de inyecciones.

d) Colocación de los materiales en el cuerpo de la cortinaYa que la cimentación se encuentra en las condiciones deseadas

y adecuadas, el paso siguiente en la construcción de la presa deberá de ser la colocación de los materiales que constituirán el cuerpo de la cortina. Para ello, la primera precaución consistirá en convencerse de que todos ellos están precisamente en las condiciones supuestas por el proyectista al realizar su trabajo; si esto no puede lograrse en alguna etapa de la construcción, deberá modificarse el proyecto correspondiente, para hacerlo congruente con las condiciones reales.

Generalmente suele especificarse un mínimo grado de compacta­ción para los materiales en la cortina, así como su contenido de agua, que generalmente es el óptimo con una cierta tolerancia. Sin embargo, existen casos en que es difícil o inconveniente sujetarse a un estricto control de la humedad. Esto ocurre, por ejemplo, en climas tropicales con gran precipitación pluvial, en que la colocación de los materiales ha de hacerse inclusive bajo lluvia, en aras de la eficiencia y rapidez de los trabajos.

Otro caso común en que ha de salirse de las normas acostumbra­das en lo referente a la humedad de colocación de los materiales es el que se tiene cuando se trabaja con suelos susceptibles al agrieta­miento, en los que es conveniente, como se dijo, trabajar algo del lado húmedo respecto a la humedad óptima (2 a 4 % ), para disminuir el riesgo a aquel tipo de falla.

Estas situaciones han de tomarse en cuenta al elaborar el proyec­to, tanto en lo referente a estabilidad como a asentamientos.

Los enrocamientos han de colocarse a volteo, procurando que la roca tenga la mínima proporción de finos, para lo que puede hacerse necesario lavarla antes de su colocación. Por lo demás, ya se dijo que en estos materiales se encuentran en estudio muchas caracterís­ticas de comportamiento en las que hace pocos años se había fijado muy poco la atención de los constructores.

En el anexo X l-i se presentan algunas ideas útiles relativas a la compactación en general, aplicables a los trabajos en presas de tierra en particular.

Page 500: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

476 CAPITULO XI

ANEXO XI-a

Drenes en presas de tierra

Como se indicó en el cuerpo de este capítulo, los drenes son zonas de material notablemente más permeables que el que forma el cuerpo de la cortina, cuyas funciones principales son:

1 . Abatir la presión neutral en el agua que se infiltra en la cor­tina, con lo que se logra un aumento en la presión efectiva correspondiente y, por ello, un mejoramiento de la resistencia al esfuerzo cortante del material y de la estabilidad de la cortina.

2. Un control del agua que se infiltra a través de la cortina, a la que se impide arrastrar el material constitutivo de la misma.

Los drenes son indispensables en cortinas de sección homogénea, pero existen en otros tipos frecuentemente.

La efectividad de un dren para reducir la presión neutral en el agua depende de su localización y de su extensión. La efectividad para impedir los arrastres depende principalmente de que el dren esté dotado de buenos filtros, con materiales que proporcionen la debida transición entre el material impermeable de la cortina y el dren permeable.

El diseño de los drenes está gobernado sobre todo por la altura de la cortina, por el costo y disponibilidad en el lugar de materiales permeables y por la permeabilidad del terreno de cimentación. En la fig. XI-a.l aparecen algunos tipos comunes de drenes.

En la fig. XI-a.l.a aparece un tipo sencillo que ha funcionado bien en presas de pequeña altura. El tipo que aparece en la parteb ) de la misma figura se considera recomendable en presas de altura intermedia: allí donde el material apropiado escasee notablemente, puede usarse un dren incompleto, longitudinal, con salidas espaciadas dentro de la cortina, como el que se ve en la parte c) de la misma figura. El defecto principal de los drenes con disposición en pantalla horizontal es que, por efecto de los métodos constructivos, los cuerpos de las presas suelen tender a quedar estratificados, con permeabi­lidad horizontal mucho mayor que la vertical, por lo que el agua tiene dificultad para llegar al dren, situado en nivel inferior. Este problema se ha corregido en ocasiones instalando drenes captadores verticales también, como se muestra en la parte d) de la multicitada fig. X I-a.l. Estos arreglos son necesarios, sobre todo, en presas de gran altura.

Page 501: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 477

( c )

(d

Fig. Xl-a.l

SALIDAS ESPACIADAS PARA EL AGUA

(M A T E R IA L DEL DREN)

Algunos hipos comunes de drenes en presas de sección ho­mogénea

Las dimensiones y la permeabilidad de los drenes deben de esco­gerse de modo que puedan eliminar los gastos de filtración esperados, que se calculan como se indica en el Volumen III de esta obra, con un amplio margen. Un dren debe tener, como mínimo, una permea­bilidad 1 0 0 veces mayor que el material más impermeable que protege.

ANEXO Xl-b

Filtros en presas de tierra

Es bien sabido, aunque este punto se estudiará con más detalle en el Volumen III de esta obra, que cuando el agua circula por un suelo ejerce sobre las partículas sólidas un efecto de empuje dinámico

Page 502: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

al que suele representarse por una fuerza, llamada de filtración. Por efecto de las fuerzas de filtración, las partículas de suelo tienden a movilizarse dentro de la masa del suelo, aunque las vecinas impiden, por lo general, que el movimiento llegue a tener lugar. Sin embargo, como se comentó en el cuerpo de este capítulo, cuando ocurre un contacto de material fino con otro mucho más grueso y más permea­ble, este confinamiento desaparece y bajo la acción de las fuerzas de filtración las partículas de la zona de la frontera del suelo fino pueden penetrar en los huecos del grueso, produciéndose el arrastre que puede llegar a ser culpable del fenómeno de tubificación, así llamado por llegar a formar tubos dentro del material por los que el agua llega a circular cada vez con más libertad. El fenómeno de tubificación progresa naturalmente, en sentido contrario al flujo y puede destruir por completo el terraplén en el que se presenta, si no es atajado a tiempo. Así, es generalmente aceptado como una buena práctica, interponer entre el material fino y el grueso una transición con un material de granulometría intermedia, que impida la fuga de los finos; frecuentemente, la diferencia entre los materiales en con­tacto es tan grande en tamaño que un solo material de transición no llena los fines perseguidos, pues o es tan grueso que el fino aun se fuga a su través o tan fino que es él el que se fuga a través del grueso. Se llega así al concepto de filtro de varias capas (gene­ralmente dos o tres), gradualmente más gruesas, según queden ubica­das más cerca del material de mayor tamaño.

Los dos principales requisitos de un filtro satisfactorio son que debe ser más permeable que el material por proteger, a fin de servirle de dren y que debe ser lo suficientemente fino como para evitar que el material por proteger pase a través de sus vacíos. El primer intento de diseño racional de un filtro es debido a Terzaghi3, 4 7 ®. En épocas más recientes, Bertram, en Harvard6 realizó experiencias muy completas en el laboratorio, utilizando arenas muy uniformes, a fin de determinar la eficacia de diferentes tipos de filtros; sus estudios fueron posteriormente confirmados y extendidos por trabajos del Cuerpo de Ingenieros de EE. UU. y por el Bureau of Reclamation del mismo país.7 y 8 Los resultados de todos estos trabajos han demos­trado que los filtros, convenientemente diseñados, dan excelente pro­tección contra tubificación y contaminación de los materiales.

No hay hoy un criterio definido para adopción de normas únicas que conduzcan al diseño de un filtro; diferentes investigadores y constructores proponen reglas de diseño que, si bien básicamente son similares, difieren en los detalles. A continuación se da un juego de recomendaciones de diseño, dentro del espíritu de los estudios mencionados arriba y que goza de amplia popularidad entre los constructores

478 CAPITULO XI

Page 503: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 479

7 <5 <- D l 5 Filtro < 40Dis Material Protegido

Dis Filtro____________ < 5

" Dss Material ProtegidoCuando el material por proteger tiene un alto contenido de grava, las reglas anteriores deben aplicarse a la porción del material menor que la malla de 2.54 cm ( l /r).

3. El material que constituye el filtro debe tener menos de un 5 % en peso de partículas menores que la malla N® 200 y su curva granulométrica debe ser toscamente parecida a la del material por proteger, siempre y cuando éste no sea muy uniforme.

En las expresiones anteriores, los símbolos Du y DSs tienen los significados ya utilizados en el Volumen I de esta obra.

La especificación N9 1 garantiza que la permeabilidad del filtro sea de un orden 1 0 0 veces mayor que la del suelo por proteger; la especificación N9 2 garantiza la imposibilidad de los arrastres de finos.

Las reglas anteriores son, quizá, conservadoras y son válidas para todo tipo de suelo; sin embargo, apartarse de ellas en los casos en que sean de aplicación difícil, por ejemplo por escasez de materiales, es problema delicado que sólo puede resolverse con criterio y expe­riencia, respaldados por investigación de laboratorio.

Cuando un filtro es de varias capas, las reglas anteriores deberán aplicarse entre cada dos de ellas.

El espesor de las capas que componen un filtro podría ser teóri­camente muy pequeño, sin embargo, por problemas de construcción, existen espesores mínimos que deben ser conservados. Así, si las capas están horizontales, su espesor mínimo será de 15 cm para arena y de 30 cm para grava. En capas verticales o inclinadas, estos espe­sores deben ser mucho mayores y 1 . 0 m es un número que se mencio­na con frecuencia; frecuentemente se hace deseable construir capas de anchos del orden de 2.0 ó 3.0 m.

ANEXO XI-c

El corazón Impermeable

Existen varias condiciones que hacen de una cortina con corazón impermeable delgado el mejor proyecto para un sitio dado. La razón

Page 504: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

480 CAPITULO XI

más simple suele ser que existan escasas reservas de material imper­meable en la boquilla; pero además de por esta razón, una sección con corazón puede ser económica y conveniente si se dan todas o alguna de las siguientes circunstancias.

1. El costo de colocación de material permeable grueso sea me­nor que el de colocación de material fino, impermeable.

2 . El volumen total de una sección con corazón impermeable resulte menor que el de cualquier otra alternativa.

3. Condiciones de clima o disponibilidad de tiempo de construc­ción hagan imposible el uso de grandes volúmenes de suelo fino impermeable.

Un factor de gran importancia en el proyecto del corazón imper­meable de una presa de tierra (fig. X I-c .l) es su ancho, pues él define el volumen de tierra a emplear y el tiempo de construcción. Dicho ancho debe escogerse de acuerdo con los siguientes factores, que lo influencian:

a) La pérdida de agua por infiltraciones a través del corazón que se estime tolerable. Es obvio que el corazón tiene siempre un cierto grado de permeabilidad, a pesar de que, por mala costumbre, se le llame impermeable; naturalmente que, si los demás factores se mantienen, a mayor ancho las fugas de agua son menores.

b) El mínimo ancho compatible con los procedimientos y equipos de construcción en que se piense.

c) El tipo de material disponible para construir el corazón.d) El diseño y disposición de los necesarios filtros.e) La experiencia del constructor en obras anteriores.

Si los respaldos de la presa están constituidos por suelos finos relativamente impermeables, puede bastar un corazón muy delgado para impedir una pérdida de agua por infiltración importante; además desde el punto de vista de la estabilidad de la presa, es preferible tener un corazón delgado, pues éste está formado por materiales de muy baja resistencia que contribuyen poco a la estabilidad del conjunto; por otra parte, un corazón delgado resiste poco a la tubifi­cación y al agrietamiento por asentamiento diferencial en la cortina, fenómenos que dependen mucho de las propiedades del material que forma el corazón, en especial de la plasticidad y de la graduación, siendo ésta la razón por la que el tipo de material influye tanto en el ancho del corazón más conveniente.

A pesar de que todos los requerimientos anteriores han de ser tomados en cuenta de modo fundamental, conviene tener presentes las siguientes reglas, procedentes de la experiencia de los construc­tores :

Page 505: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

1• Corazones con ancho de 30% a 50% de altura del agua se han comportado siempre bien, en cualquier suelo y con cual­quier altura de presa.

2. Corazones con ancho comprendido entre 15% y 20% de altu­ra del agua se consideran por lo general demasiado delgados, pero bien construidos y adecuadamente protegidos por sus fil­tros han demostrado buen comportamiento en la mayoría de las circunstancias.

3. Corazones de ancho de 10% de altura del agua o menor se han construido raramente y deben ya verse como probable­mente inadecuados.

MECANICA DE SUELOS (II) 481

Fig. X l-c .l Algunas disposiciones esquemáticas típicas del corazón impermeable deuna cortina de tierra

El que un corazón sea vertical o inclinado tiene sus ventajas y sus inconvenientes. Una ventaja del vertical es que ofrece mayor protección contra el agrietamiento en la zona de contacto con la ci­mentación, debido a que existen ahí mayores presiones; otra ventaja estriba en que, para el mismo volumen de material, el ancho de un corazón vertical es mayor que el de uno inclinado. La ventaja prin­cipal del corazón inclinado es que permite construir primero la parte del respaldo de aguas abajo; ésta puede ser una ventaja muy grande en climas en que la época seca necesaria para compactar un cora­zón arcilloso es de muy pequeña duración. Otra ventaja del corazón inclinado reside en que con él pueden hacerse filtros más delgados, con el consiguiente ahorro de materiales especialmente costosos.

A veces en una presa no se puede determinar con absoluta precisión, en la etapa de proyecto, la profundidad de las excavacio­nes necesarias para garantizar un buen contacto entre la cortina y la cimentación. En ese caso, un corazón inclinado tiene la desventaja de que su arranque resulta variable con la profundidad de la excava­ción que a fin de cuentas haya de realizarse y de que dicha exca­vación se desplaza lateralmente.31— M ecánica de Suelos II

Page 506: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

482 CAPITULO XI

ANEXO Xl-d

Condiciones de trabajo en presas de tierra

Como se vio en el cuerpo de este capítulo, para proyectar satis­factoriamente una presa de tierra es preciso analizar varias condi­ciones de esfuerzos extremas en su vida o representativas de etapas criticas de la misma. En lo que sigue se analizan las tres más importantes de esas condiciones cuyo estudio se considera indispen­sable para todo proyecto.

XI-d.l. Condiciones de estabilidad durante la construcciónLa experiencia ha demostrado que durante el período de cons­

trucción la probabilidad de falla es menor que con la presa terminada y, desde luego, las primeras son de carácter mucho menos catastró­fico; sin embargo, es común que las presiones neutrales alcancen en la construcción valores mayores que en ningún momento subse­cuente. Por la primera razón, en esta etapa del análisis cabe ser relativamente audaz; por la segunda, el análisis debe realizarse siempre.

Este tipo de análisis ha demostrado ser especialmente necesario en presas sobre terrenos de cimentación blandos.

Si se usa un criterio de análisis basado en esfuerzos totales, po­drán usarse para conocer la resistencia del suelo los resultados de pruebas rápidas realizadas sobre muestras no saturadas compactadas, representativas del material que se colocará en el terraplén de la presa. Los resultados de las pruebas se ven muy influenciados por el contenido de agua con el que se compactaron las muestras y es muy difícil estimar previamente el valor exacto de ese concepto que llegúe a tener el suelo colocado en el terraplén durante la construc­ción; de aquí nace una seria fuente de incertidumbres que sólo pueden solventarse analizando varias series de muestras compactadas con diferentes contenidos de agua y adoptando un criterio suficiente­mente conservador.

Si se desea trabajar con un criterio de esfuerzos efectivos, debe tenerse en cuenta que a pesar de todas las teorías de que se dispone (ver Capítulo XII del Volumen I de esta obra) y a pesar de todos los datos de mediciones en presas reales con que se cuenta en la actualidad, puede afirmarse que no es aún posible predecir las pre­siones neutrales que se desarrollarán en una presa en la etapa de construcción. La primera razón para ello estriba en que los valores que alcance la presión neutral dependen de muchos factores que un proyectista no puede predecir, tales como la fracción de los trabajos que se realicen con tiempo húmedo o seco, la efectividad del control

Page 507: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 483

de los trabajos de compactación, la rapidez de los avances, etc. Por esto, las presiones neutrales en una obra dada se estiman, en general conservadoramente, con base en la experiencia del proyectista en obras pasadas. En las pruebas de laboratorio puede, sin embargo, obtenerse algo de orientación para la estimación de las presiones neutrales, midiendo la presión neutral que se desarrolla en especí­menes com pactados como lo estarán los suelos en la presa y sujetos a procesos de carga creciente que simulen la secuencia de la construcción.

Las presiones de poro estimadas por métodos teóricos o de labo­ratorio no toman en cuenta el efecto del drenaje en la presa, que produce disipación de presiones neutrales. El efecto del drenaje puede solamente ser muy toscamente tomado en cuenta en forma anticipada.

En lo que sigue se describe brevemente un método desarrollado por el Bureau of Reclamation de los EE. UU., para la estimación de las presiones neutrales, basado en la aplicación de las leyes de Boyle-Mariotte y Henry a los problemas de compresión de suelos no saturados. 14

El método propuesto descansa sobre las siguientes hipótesis:

a) En el terraplén habrá sólo desplazamientos verticales.b) Se conoce la relación entre la compresión volumétrica del

terraplén y los esfuerzos efectivos en la masa del mismo.c) Las presiones en el aire y en el agua que ocupan los vacíos

del suelo son las mismas e iguales a la atmosférica en el instante de la colocación del material en el terraplén.

d) Lo que el terraplén disminuye de volumen a un cierto nivel, bajo el peso del material suprayacente, es igual al que se com­prime eí aire en el suelo, más el volumen liberado por el aire que se disuelve en el agua.

e) Las leyes de Boyle y Henry son válidas para los procesos de compresión y solución.

/) No ocurre ninguna disipación de la presión neutral por dre­naje de agua durante la construcción.

A partir de las hipótesis anteriores, alguna de las cuales reviste una desalentadora gravedad, en la mencionada ref. 14 se obtiene una ecuación que relaciona la presión neutral en el agua dentro de la cortina con el asentamiento de la misma. Dicha ecuación dice que

“ = Va + CM32 V i0 — A (H -d .l)donde

u = presión neutral que se desarrolla en el agua, po = presión atmosférica.

Page 508: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

484 CAPITULO X I

A = compresión del terraplén, expresada como un porcentaje del volumen inicial del mismo.

Va = volumen del aire que ocupa los vacíos del suelo en estado libre inmediatamente después de la colocación en el terra­plén, expresado como un porcentaje del volumen inicial total del mismo.

Vw — volumen del agua de los vacíos, descrito como un porcen­taje del volumen inicial total del terraplén.

Los valores de Va y V» en la ec, 11-d.l deberán estimarse con base en pruebas de compactación o en experiencias previas. El valor de A puede establecerse con base en pruebas de consolidación o también con base en experiencias anteriores.

Cuando por efecto de los pesos suprayacentes que se van acumu­lando, el material en un cierto punto de la presa se satura, el valor de la compresión A deviene al valor de V a y, por lo tanto, con base en la ec. 11-d.l puede establecerse la presión neutral en ese momen­to, que es la presión que hace que todo el aire entre en solución en el agua. Dicho valor es

paVa (ll-d .2)“ ~ 0.02 V .

Los resultados de la ec. 11-d.l pueden dibujarse contra las pre­siones verticales totales que se vayan teniendo en distintas etapas de la construcción y para varios contenidos de agua de compactación, obteniéndose así un módulo de comparación de la teoría con la reali­dad una vez que la presa se construye, pues entonces el valor de a puede medirse con piezómetros y el contenido de agua de compacta­ción se conoce. Al hacer esta confrontación en muchos casos reales, se han reportado frecuentemente concordancias bastante mejores que lo que hacía pensar un análisis frío de las hipótesis de la teoría y las incertidumbres de su aplicación.

Al aplicar el criterio de esfuerzos efectivos se usan los valores de las presiones neutrales que se espera tengan lugar en los suelos finos colocados en la cortina, pero en condiciones tales que ésta sea estable; por el contrario, al usar el criterio de esfuerzos totales, con resistencias obtenidas al llevar series de especímenes a la falla, las presiones neutrales que se consideran son las correspondientes al esta­do de falla incipiente del terraplén. Así, en ambos métodos se consi­deran condiciones distintas de esfuerzos, por lo que con ellos deben obtenerse distintos factores de seguridad. Las diferencias en el factor de seguridad a que se llegue en un caso dado dependen principal­mente del tipo de suelo; son mayores en mezclas compactas y bien

Graduadas efe grava, arena y arcilla, que se expanden cuando se eforman bajo esfuerzo cortante con la consiguiente reducción en la

Page 509: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

presión neutral. La diferencia entre ambos factores de seguridad es mínima en arcillas puras, especialmente si son sensibles, en las que la deformación bajo cortante puede producir importantes aumentos en la presión neutral.

Al analizar la estabilidad de una cortina en la etapa de construc­ción está justificado adoptar un criterio relativamente audaz, pues excepto en cortinas cimentadas en arcilla blanda, las fallas durante la construcción no son costosas en exceso, ni de graves consecuencias. Por ello, es común adoptar en esta alternativa de análisis factores de seguridad ligeramente abajo de los valores usualmente recomen­dados en estabilidad de taludes.

XI-d.2 Condiciones de estabilidad a presa llenaUna falla por deslizamiento de talud en presa llena suele acarrear

consecuencias catastróficas por lo que, en este caso, ya no es posible adoptar ninguna posición audaz, sino que, por el contrario, la estabi­lidad a presa llena debe tratarse con un criterio conservador que proporcione plenas garantías.

No hay antecedentes de que se haya presentado una falla de importancia en el talud aguas arriba de una presa llena, por lo que los análisis de estabilidad ahora en estudio deberán circunscribirse únicamente al talud aguas abajo.

Cuando una presa está llena, la presión neutral del agua en su interior se debe a dos causas principalmente:

1 . El flujo del agua que se infiltra por gravedad.2 . Cambios en el volumen de los vacíos debidos a cambios en los

esfuerzos totales.

La estabilidad de una presa llena se analiza prácticamente siempre recurriendo al criterio de esfuerzos efectivos y las presiones neutrales se estiman de la red de flujo del agua que se infiltra por gravedad, para lo que habrán de seguirse procedimientos que se detallarán en el Volumen III de esta obra. En terraplenes bien compactados, de presas de tamaño corriente (el comportamiento de presas muy gran­des está aún en etapa de investigación y pudiera ser diferente), esta estimación de las presiones neutrales suele ser conservadora, pues cualquier deformación bajo esfuerzo trae consigo una tendencia al aumento de volumen del suelo, con la correspondiente disminu­ción de la presión neutral respecto a los valores que resultan de un estudio de la red de flujo. Sin embargo, en terraplenes construidos con arcillas muy blandas plásticas, especialmente si son sensibles, con estructura susceptible de sufrir degradación con la deformación, la situación pudiera invertirse y la presión neutral pudiera crecer al ser aplicados esfuerzos cortantes a la masa del suelo; en este caso, la

MECANICA DE SUELOS (II) 485

Page 510: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

486 CAPITULO XI

estimación de la presión neutral a partir de la red de flujo pudiera quedar fuera de la seguridad. Así, cuando un círculo de falla bajo análisis atraviesa principalmente suelos altamente plásticos, es recomendable utilizar también un criterio de esfuerzos totales, deter­minando la resistencia del suelo de series de pruebas rápidas-conso- lidadas, aplicando a los especímenes presiones neutrales que simulen las que puedan existir por el flujo del agua en la cortina y en la cimentación.

El grado de anisotropía en lo referente a las permeabilidades horizontal y vertical que deba considerarse en el trazo de las redes de flujo, es difícil de prever con eficiencia; los valores de la Tabla 11-d.l se consideran conservadores, por lo que podrán usarse en cualquier caso.

TABLA 11-d.l

Descripción de los suelos en el área de préstamo

Relación kh«r/k„ri a considerar

Depósitos muy uniformes de suelos finos (CL y ML) 9

Depósitos muy uniformes de materiales gruesos con fi­nos (GC y GM) 25

Depósitos muy erráticos 100 ó mayor

El factor de seguridad a que se llegue en un análisis de estabilidad de presa llena depende en gran medida de si se ha seguido en ese análisis el método de esfuerzos efectivos o el de los totales, de los procedimientos de cálculo empleados y de muchos otros factores imprevisibles. En general, suele decirse que un valor mínimo de 1.5 es aceptable para el factor de seguridad en cualquier análisis en que se hagan intervenir las fuerzas laterales y en el que las presiones neutrales se estimen de una red de flujo correspondiente a un régimen establecido. El hecho de que con este criterio no hayan ocurrido fallas de importancia en las grandes presas que hoy se construyen, exceptuando un pequeño número de estructuras construidas sobre arcillas blandas, parece ser alentador respecto a la técnica de proyecto y construcción de presas, pues no cabe duda de que 1.5 es un factor de seguridad inusitadamente bajo en un trabajo ingenieril cualquiera, cuanto más en uno de la importancia de una presa de tierra.

Page 511: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 487

XI-d.3. Condiciones de estabilidad en vaciado rápido

Cuando una presa se vacía rápidamente, se imponen al talud de aguas arriba condiciones de esfuerzos desfavorables que han de ser analizados independientemente.

En primer lugar, es preciso entender lo que se denomina el vacia­do "rápido" de una presa de tierra; para que esta condición tenga lugar no es preciso que ocurra un descenso total del nivel de embalse en un lapso de minutos, ni aún de horas o días; el estado de esfuerzos correspondiente a la condición de "vaciado rápido" puede presentarse si el nivel del embalse baja una cantidad considerable en el término de unas semanas o unos pocos meses; en realidad basta, para tener vaciado rápido, que el agua descienda más aprisa que lo que se disipan los excesos de presión neutral en el cuerpo de la presa, originados precisamente por dicho abatimiento. Esta consideración hace que esta condición de estabilidad que ahora se estudia sea fre­cuente y se presente en la realidad en un gran número de ocasiones.

Deben ser tomados en cuenta los siguientes hechos en torno al vaciado rápido de una presa de tierra.

1 . Exceptuando los deslizamientos ocurridos en el periodo de construcción, todos los deslizamientos que se han reportado en el talud aguas arriba de presas de tierra han tenido lugar tras un vaciado rápido.

2. La mayoría de los deslizamientos ocurrieron en los primeros años de operación de la presa y todos parecen corresponder a vaciados sin precedente, bien en velocidad o en magnitud del abatimiento del nivel del agua.

3. La mayoría de los deslizamientos ocurrieron en presas mal compactadas y construidas con suelos muy finos, altamente plásticos.

4. Los deslizamientos más importantes ocurrieron con vaciados que abarcaron desde el máximo nivel de agua, hasta una altu­ra del orden de la mitad de la presa y que tuvieron veloci­dades del orden de 20 ó 30 cm por día.

5. Los deslizamientos del talud aguas arriba durante el vaciado rápido nunca han causado el colapso total de una presa.

Después del vaciado rápido, las fuerzas de peso son del mismo orden que las que actúan al final del período de construcción; la diferencia única se tiene en el pequeño aumento del peso específico del suelo debido a un grado de saturación mayor. Lo que hace que el vaciado rápido sea una condición especial son las altas presiones neutrales que existen dentro del talud aguas arriba.

Actualmente el vaciado rápido se analiza tanto con el criterio de esfuerzos totales como con el de esfuerzos efectivos, aunque quizá

Page 512: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

este último sea más ampliamente usado a pesar de los problemas que se tienen para estimar las presiones neutrales.

En el criterio de esfuerzos totales, la resistencia del suelo se obtie­ne de pruebas rápidas-consolidadas, con muestras a las que se carga simulando lo que sucederá en el terraplén. En la ref. 15 se detallan algo las secuelas de prueba que hoy se estiman más confiables.

Actualmente no hay mediciones suficientes de comportamiento de presas reales como para poder establecer una relación entre las pre­siones neutrales que ocurren en el suelo durante el vaciado rápido y el tipo del suelo, la deformación del terraplén y la velocidad de descenso de las aguas. Por eso hoy, para conocer las presiones neu­trales con vista a aplicar el criterio de esfuerzos efectivos, no queda más arma que la teoría, la cual está aún deficientemente confrontada con la realidad. Las presiones neutrales se obtienen así del estudio de la red de flujo que se establece durante el vaciado rápido, red que podrá trazarse con base en los métodos que se darán en el Volumen III de esta obra.

En conclusión el vaciado rápido impone condiciones desfavorables en la estabilidad del talud aguas arriba de una presa, pues al descen­der el agua, una masa del suelo que por lo menos en gran parte estaba en condición sumergida, pasa a estar en condición saturada o cercana, con lo que su peso específico toscamente se duplica, lo que se refleja correspondientemente en el momento motor asociado a cualquier círculo de falla que se estudie; por otra parte, como quiera que las presiones en el agua se disipan más lentamente que lo que el agua baja, el aumento de resistencia por aumento de presiones efectivas ocurre más lentamente, por lo que el momento resistente ligado al círculo de falla considerado o casi no aumenta o lo hace mucho más despacio de lo que crece el momento motor. Así, el factor de segu­ridad disminuye y del razonamiento anterior es posible deducir que puede llegar a alcanzar valores tan bajos como la mitad del original.

488 CAPITULO XI

ANEXO Xl-e

Algunos métodos de análisis de estabilidad típicos de las presas de tierra

XI-e.l. Método de análisis con dovelas, considerando interacción entre ellas

Existen diferentes procedimientos propuestos para tomar en cuen­ta la interacción entre las dovelas en que se divide la masa deslizante, en un análisis de la estabilidad de un talud en una presa de tierra. Taylor,33 por ejemplo, ha producido un método de este estilo, inci­

Page 513: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 489

dentalmente también aplicable a superficies de falla de cualquier forma, no necesariamente circulares, Sherard y sus coautores (2a. parte de la ref. 33), han presentado una simplificación de tal proce­dimiento que produce los mismos resultados esencialm ente, sin necesidad de recurrir a tanteos, como ocurre en el método original. Este procedimiento se describe a continuación.

El método comienza suponiendo una superficie de falla curva, pero de forma arbitraria, no necesariamente circular. La masa desli­zante se divide ahora en dovelas de cualquier ancho, en las que el arco y la cuerda subtendida en la base de la dovela no difieran gran­demente en longitud; la base de cada dovela debe desarrollarse, además, en material de un solo tipo. Se supone también que ya está trazada la red de flujo en el corazón de la presa, de acuerdo con los métodos que se detallarán en el Volumen III de esta obra; así, podrán conocerse las presiones en el agua en cualquier punto del mencionado corazón.

El paso siguiente es el cálculo de todas las fuerzas actuantes conocidas en cada dovela, las cuales son; el peso de la dovela, calcu­lado tomando en cuenta el material sólido y el agua; las fuerzas ejercidas por la presión del agua en la parte izquierda, derecha y la base de la dovela, U i, U a y £/¡> (estas fuerzas se calculan multi­plicando la presión media del agua sobre la cara de dovela de que se trate, obtenida de la red de flujo, por el área de la cara) y la fuerza de cohesión, C, que actúa en la base de la dovela, en el ins­tante de falla incipiente (fig. X I-e .l).

En la fig. XI-e.l.a aparece la superficie de falla supuesta (no circular), con las dovelas consideradas. En la parte b) de dicha figura se ilustra el análisis para dos dovelas típicas; una, en el co­razón, con fuerzas de agua actuando; otra, en el respaldo permeable, no sujeto a ese tipo de fuerzas, (tampoco actúa cohesión en esta última dovela, por suponerse al respaldo formado por material no cohesivo). Además de las fuerzas anteriores se tienen las fuerzas late­rales efectivas que obran en las caras de la dovela por acción de las dovelas vecinas, la fuerza normal efectiva, N e, en la base de la dovela y, finalmente, la fuerza tangencial en la misma base, debida al efecto de fricción a lo largo de ese fragmento de la superficie de falla. La fuerza resultante de estas dos últimas debe formar un ángulo <f> con la normal a la base de la dovela. En cuanto a las fuerzas laterales efectivas, se supone en este método de análisis que su dirección es la misma en todas las dovelas e igual a la inclina­ción del lado aguas abajo de la presa en estudio. De estas fuerzas laterales no interesa su valor en cada cara, sino su diferencia, la que se indica con el símbolo AE.

Trazando el polígono dinámico con las fuerzas conocidas en mag­nitud y posición y con las conocidas solo en dirección, puede, al

Page 514: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

490 CAPITULO XI

Fig. Xl-e. I M é to d o p a ra to m a r en cu e n ta la in te ra c c ió n en tre dove las

Page 515: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 491

cerrarse el polígono, llegar a conocerse las magnitudes de AE, Ne y S (parte c de la fig. X I-e .l).

Para el caso de la dovela en el corazón de la presa, el dinámico se ha construido llevando en primer lugar el peso; después la dife­rencia t/¡ — Ud de las fuerzas laterales causadas por el agua; en seguida, se colocaron las fuerzas Ui, producida por la presión del agua en la base y C, fuerza de cohesión en la misma superficie. Todas estas son las fuerzas conocidas en magnitud y dirección. Por el origen del vector W, se trazó después una paralela a la pendiente media del paramento de la presa, dirección supuesta para AE y por el extremo de la fuerza C se trazó una línea formando un ángulo <f> con la dirección normal a la base de la dovela; esta línea representa la dirección de la resultante de las fuerzas normal efectiva y tangen­cial producida por la fricción, actuantes en la base de la dovela. El punto de intersección de estas dos líneas determina la magnitud dé las fuerzas. Pueden ahora determinarse las componentes normal y tangencial de la mencionada resultante que sumadas a Ui y C, res­pectivamente, darán la fuerza N, normal total en la base y S, tan­gencial total en la misma.

En el método de cálculo en estudio se imagina ahora que no existiese resistencia en la base de la dovela; entonces, para cerrar el dinámico, la fuerza normal en dicha base tendría que crecer hasta llegar al punto 2, intersección de las direcciones de Ui y AE. O sea que para que la dovela se mantenga en equilibrio, debería de actuar una fuerza 2-1 en la dirección de AE y sentido de 2 a 1. En otras palabras, la fuerza T en el sentido 1 a 2 es la desequilibrante total en la dirección de las fuerzas laterales, que es la que se está toman­do a modo de eje de proyección. Esta fuerza T es la que tendería a hacer deslizar a la dovela. En el caso de la dovela N9 4 de la fi­gura en estudio, una parte de T está contrarrestada por AE; la otra parte deberá de ser equilibrada por la. resistencia en la base de la do­vela, que hasta este momento se supuso nula. Al tomar en cuenta es­ta resistencia tangente a la base S, la fuerza N ya no llega hasta el punto 2, sino que únicamente alcanza el punto 3, en el que se cierra ahora el dinámico. La fuerza R en la dirección de AE, cuya componente en la dirección de la base de la dovela es E, será la fuerza que, a fin de cuentas, tenga que desarrollarse colineal con AE para contrarrestar a T y evitar el deslizamiento.

En el caso de la dovela N9 6, la construcción es completamente análoga y R equilibra a la suma de T y AE, la que ahora resultó desfavorable al equilibrio de la dovela.

Los autores de este método calculan un factor de seguridad como:

Page 516: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Donde se trabaja con nuevos productos del análisis de todas las dovelas. Se considera que dicho factor no debe ser menor que 1.5 en presas ordinarias.

XI-e.2. Método de la cuñaEn este método la parte del talud que se considera como hipoté­

tica masa deslizante se divide en dos o tres grandes secciones o cuñas. Si se divide en dos cuñas, la superior se llama la actuante o activa y la inferior la resistente o pasiva. Cuando se consideran tres cuñas, la intermedia se denomina el bloque deslizante. En este mé­todo de análisis, la superficie de falla potencial se considera forma­da por una serie de piaros. El método se aplica sobre todo en dos casos (fig. XI-e.2).

1 ) Cuando existe un estrato débil y delgado en la parte superior del terreno de cimentación (fig. XI-e.2.a).

2) Cuando el terreno de cimentación es roca muy resistente, que no se puede ver envuelta en la falla y la presa tiene un cora­zón de material fino e impermeable con grandes respaldos de material granular compacto (fig. XI-e.2.b).

492 CAPITULO XI

En el primer caso la falla ocurrirá probablemente sobre el estrato débil y a lo largo del mismo; en el segundo caso se cree que la

Page 517: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

superficie de falla, aún la parte que se desarrolla en el respaldo granular, queda bien representada por un plano.

El problema se ataca en los dos casos y el factor de seguridad se obtiene siguiendo el método descrito en el anterior inciso de este anexo, con la diferencia de que ahora se trabajará con dos o tres grandes cuñas, en lugar de con un gran número de dovelas. Alterna­tivamente, para el caso mostrado en la fig. XI~e.2.a puede utilizarse una secuela de cálculo análoga a la explicada para la falla trasla- cional en el capítulo V, en este caso se procede según los siguientes pasos:

1 ) Se supone que se ha desarrollado la suficiente deformación horizontal como para que las cuñas activa y pasiva estén en estado de falla incipiente.

2) Se supone que en las superficies be y ed (fig. XI-e.2.a) se desarrollan fuerzas horizontales iguales a los empujes activo y pasivo respectivamente, calculados con la Teoría de Ran- kine (capítulo IV ). Estas fuerzas son PÁ y Pp.

3) Se define un factor de seguridad para el bloque central des­lizante como:

MECANICA DE SUELOS (II) 493

donde R es la fuerza de resistencia al deslizamiento que se desarrolla en la base del bloque central y que vale:

R = Cm + ( W z — Un) tg <j> (ll-e .3)en la cual:

Cm = fuerza de cohesión á lo largo de la superficie bd.W 2 = peso del bloque central deslizante.Utd = fuerza boyante producida por las presiones neutrales que

existan en el estrato débil.

El método ha de desarrollarse por tanteos, suponiendo varias combinaciones de planos constituyendo una superficie de falla y bus­cando el mínimo factor de seguridad que, en ningún caso, deberá ser menor de 1.5.

En ocasiones, para un caso dado se obtiene un factor de seguri­dad menor si se considera que la superficie ab es curva (por ejem­plo, un arco de círculo). En tal caso la fuerza PA, actuante sobre el bloque central deslizante, ha de calcularse dividiendo la cuña activa en dovelas y aplicando el método sueco modificado, con fuer­zas laterales en las dovelas, como se vio en el anterior inciso de este anexo.

Page 518: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

494 CAPITULO XI

XI-e.3. Análisis de estabilidad tridimensional

En los análisis normales de estabilidad de taludes se considera al problema bidimensional; es decir, la longitud de la masa deslizante se considera tan grande que los efectos en la zona en que la cortina se une a las laderas de la boquilla se consideran despreciables. En realidad, sin embargo, la masa deslizante tiene siempre una longitud finita y definida y las fuerzas resistentes en lo que se podrían llamar las dos bases del prisma deslizante juegan un papel, aumentando la resistencia contra el deslizamiento. Naturalmente que despreciar este efecto tridimensional es conservador y este criterio se justifica en boquillas largas en comparación con su altura; no obstante, en bo­quillas muy altas y cortas conviene estimar la influencia de las caras extremas. En general, se dice que un análisis en tres dimensiones es conveniente en boquillas en que los apoyos laterales de la cortina sean de un talud 1 : 1 o más alzado y en que el fondo del valle sea estrecho.

Se han propuesto varios métodos para analizar la estabilidad de una cortina tridimensionalmente. El problema puede considerarse en­tre los no resueltos teóricamente, por lo que las soluciones que se han propuesto no pasan de ser aproximaciones más o menos burdas; de entre ellas se han seleccionado las que se exponen en lo que sigue. La primera de estas aproximaciones consta de los pasos siguientes 34:

1) Divídase la longitud de la presa en varias fracciones (entre 3 y 5) de igual longitud, por medio de planos imaginarios nor­males al eje longitudinal de la cortina.

2) Analícese la estabilidad de cada fracción como si se tratase de un problema bidimensional, encontrando la superficie de deslizamiento crítica y las fuerzas actuantes y resistentes en cada caso.

3) Supóngase que la superficie crítica bidimensional de cada seg­mento queda contenida en la superficie crítica tridimensional.

4) Calcúlese un factor de seguridad general de la cortina como la relación entre la suma de las fuerzas resistentes y las fuerzas actuantes en todos los segmentos de la presa.

En realidad, siguiendo el método anterior lo que se obtiene es un promedio ponderado de las condiciones de estabilidad a lo largo de toda la longitud de la cortina, pero este factor de seguridad prome­dio es frecuentemente 25% o 50% mayor que el obtenido por los métodos tradicionales.

El segundo intento para cuantificar la influencia de la resistencia de las bases de una masa deslizante en la resistencia total, es el de­bido a Tschebotarioff3'’ que se expone en lo que sigue. En reali­dad, el autor lo presenta en relación a un problema de capacidad de

Page 519: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 495

carga, analizando el caso de una zapata larga colocada sobre un suelo puramente cohesivo. Se incluye aquí porque proporciona una idea cuantitativa de lo que representan las resistencia en las caras extremas, respecto a la total de la masa deslizante y puede, por lo tanto, servir como norma útil de criterio.

Se supone en este análisis que las dos bases son de forma semi­circular y que se trabaja con materiales puramente cohesivos, si bien el criterio expuesto podría aplicarse siguiendo análogos razonamien­tos a sectores circulares diferentes del semicírculo. El análisis que sigue se hace con referencia a la fig. XI-e.3.

En primer lugar, se adopta como suposición conservadora que en la base semicircular la cohesión varía linealmente con la distan­cia al centro 0 (fig. XI-e.3.b), de modo que en un anillo de radio p y espesor dp vale:

El área del anillo mencionado vale:

c 2

d A = u p dp

y en el anillo se produce un momento resistente igual a

d Mc = c — tc p2 c?pr

Page 520: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

496 CAPITULO XI

En toda el área semicircular este momento resistente será:

M c — • f p3 d p = 0.25 izc r3r Jo

Si el valor anterior se divide entre c r2 L que es el momento re­sistente en la superficie cilindrica entre las dos bases, se obtiene la relación 0.25 t/L que es el aumento relativo en resistencia de cada base semicircular en relación a un cálculo que sólo tomara en cuenta la superficie lateral del cilindro deslizante. Para las dos bases el valor de la anterior relación es 0.50 r/L.

ANEXO Xl-f

Efectos sísmicos en presas de tierra

Para que una presa de tierra tenga resistencia dinámica contra el deslizamiento por sismo, ha de tener un cierto margen de seguridad contra falla estática. En el análisis de estabilidad bajo sismo debe contarse con que las propiedades mecánicas de los suelos serán dife­rentes que en el caso estático: en especial, la resistencia al esfuerzo cortante puede reducirse considerablemente debido al efecto del sismo en las presiones neutrales, que pueden aumentar en gran medida.

Los métodos de análisis que se consideran a continuación, son métodos simplificados que permiten llegar rápidamente a conclusio­nes razonables.

El análisis sismico en terraplenes y presas de tierra se debe rea­lizar considerando tres modos diferentes de deslizamientos.24

a) Según una superficie circular (fig. X I-fl.a )b) Según un plano de deslizamiento (fig. X l-f.l.b)c) Deslizamiento por traslación horizontal del conjunto del te­

rraplén (fig. X l-f.l.c)

Los métodos de análisis para los tres casos que se presentan en lo que sigue suponen al material rígido-plástico, es decir, se consi­dera un material indeformable a cualquier esfuerzo por abajo del nivel de falla. En realidad se usan los mismos métodos estáticos co­munes, pero haciendo intervenir en ellos a los efectos dinámicos re­presentados por fuerzas.

Xf-f.l. Deslizamiento según una superficie circularPuede considerarse que el sismo produce en este caso un efecto

doble (ver X l-f.l.a ).

Page 521: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 497

C). FA LLA DE CONJUNTO.Fig. Xl-f. I M ecan ism os d e d e s liz a m ie n to q u e de b en co n s ide ra rse en e l a n á ­

lis is d e e s ta b il id a d d e te rra p le n e s su¡etos a sismo

1) Aparición de la fuerza N W que contribuye a aumentar el momento motor. Se considera que la aceleración máxima del sismo es Ng: Entonces, la fuerza dinámica causada por el sismo en la masa deslizante será:

F - M N g = Ng — N Wff

donde M es la masa deslizante y W su peso.12—Mecánica de Suelo» II

Page 522: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

498 CAPITULO XI

2) Disminución de la resistencia al esfuerzo cortante a un valor s¿>, resistencia dinámica, lo que repercute en el momento resis­tente. Esta disminución es debida sobre todo al aumento de la presión neutral en el suelo y es particularmente importante en las arenas finas y limos no plásticos sueltos, así como en las arcillas normalmente consolidadas altamente sensibles. En suelos gruesos muy permeables y en arcillas fuertemente pre- consolidadas el sismo no influye prácticamente en la resisten­cia y en el caso del último tipo de suelos mencionado, la deformación dinámica puede conducir a tendencias a la ex­pansión que disminuye la presión de poro, con lo que la re­sistencia al esfuerzo cortante puede a fin de cuentas inclu­sive aumentar; este efecto no suele tomarse en cuenta en los cálculos prácticos, dejándolo como una seguridad remanente.

Sea FS el factor de seguridad calculado para un círculo de falla en condiciones estáticas, es decir, sin actuar la fuerza N W y consi­derando al suelo su resistencia s. Sea F S el factor de seguridad co­rrespondiente a un círculo de falla sin tomar en cuenta N W, pero considerando la resistencia dinámica sD. Finalmente, sea FS' el factor de seguridad respecto a un círculo de falla, pero en condiciones di­námicas, o sea considerando el efecto de N W y de la resistencia disminuida sd. Como el sismo puede obrar en cualquier dirección, la dirección más crítica para N W será aquella para la que su mo­mento motor sea máximo, por lo que es conservador considerar a dicha fuerza actuando normalmente a la línea OG; desde luego N W debe pasar por G, por ser una resultante de fuerzas traslacio- nales de inercia (fig. X l-f .l.a ) .

Puede escribirse;

FS' = ~M r 2 Sai A LiM¡¡ W d+ N W -b ( 1 1 -f.D

Si N mil es el valor más grande de N que puede resistir el talud{FS' — 1 ), se tiene:

R 2 so i A Li — W d + N máx W.b ( ll-f .2 )

llevando ( l l - f . 2 ) a ( 1 1 -f.l)

W d + Nmix W.b

F S ' ~ W d + N W b ( ll- f .3 )

Page 523: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 499

despejando N mix, se tiene:

_ FS'( W d + N W b )— Wdál “

de donde:

Nmál = N F S r + (FS ' - l) ^ . = N F S ' + (F& — 1) sen 0

(ll-f.4)Para el caso especial de N = 0, resulta:

N mix = (FS - 1) sen 0 (ll-f .5 )

Pues si N = 0, la fuerza N W = 0 y el FS' pasará a ser FS.Aparentemente, la fórmula 11 -f .5 resuelve el problema en for­

ma inmediata aplicando métodos estáticos y trabajando con el círcu­lo más crítico del talud obtenido con tales métodos; en efecto, defi­nido dicho círculo, sin tomar en cuenta N W . pero trabajando con la resistencia dinámica so. F S y 0 son conocidos; entonces, con la exp -esión ll-f .5 puede obtenerse una N m¿x, coeficiente de aceleración máxima de temblor que puede resistir el talud. Sin embargo, debe tenerse en cuenta que el círculo crítico con el que se trabajó siguiendo ese método supuso N = 0 y que al considerar que existe una fuerza adicional N mAl W. dicho círculo debe cambiar en general, por lo que el procedimiento anterior queda sin base. En realidad lo que debe hacerse es suponer un valor de N en la ec. 11-f.l; encontrar el círculo crítico para esas condiciones, obteniendo así el FS'; con este valor puede calcularse N m&x en la ec. ll-f.4 . Si el valor de Nm¡x así obtenido coincide con el N supuesto, se habrá llegado a la solución del problema; en caso contrario se requerirán nuevos tanteos, hasta llegar a una solución aceptable.

Es muy frecuente la siguiente alternativa de análisis: en una cierta región se sabe que el máximo coeficiente sísmico es N. Con este valor y un análisis estático, puede encontrarse FS', según la ex­presión 1 1 -f.l. Si este factor de seguridad es aceptable, el diseño es correcto. Para muchos autores, un valor FS' ~ 1 .3 es aceptable en presas de tamaño común.

XI-f.2. Deslizamiento según un plano

En suelos puramente friccionantes muy permeables el plano críti­co de deslizamiento corresponde a (ver fig. X l-f.l.b )

a = 6

Page 524: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

500 CAPITULO XI

En efecto, en condiciones estáticas, la fuerza normal actuante sobre un plano con inclinación a es igual a W eos a y la fuerza tan­gencial que propicia el deslizamiento es W sen a. De ahí, definido un factor de seguridad comó la fuerza resistente entre la fuerza que tiende a hacer deslizar el prisma, se puede escribir:

^ _ W eos a tg tg^— W sen a tg a

De donde el plano crítico que da el FS mínimo se tendrá para el máximo a posible, que es 0, según la fig. XI-f.l.b.Entonces:

D O * 9 $~ ~ tgT ( l l - f .6 )

Al sobrevenir el sismo, además de la fuerza W sen 0, en el plano crítico actuará la fuerza N W (cuya dirección más crítica es la para­lela a la linea del talud)- Si se llama Nm&x al máximo coeficiente sís­mico que puede soportar el talud, puede escribirse.

W sen 0 + Nnix W = W eos 0 tg <j>

de donde:

Nmái = tg <£ eos 0 — sen 0 = sen 0 — sen 0

Nmáx = {FS — 1 ) sen 0 (ll-f .7 )

Donde P 3 es el factor de seguridad en condición estática sin actuar el sismo. Obsérvese que en este caso se ha manejado FS en lugar de FS, pues para los materiales a que se aplica el análisis (friccionantes gruesos muy permeables) la resistencia estática es prácticamente igual a la dinámica. Si ésta no fuera la situación habría de realizarse el análisis anterior con FS. Obsérvese también que aho­ra no es preciso recurrir a tanteos, pues el plano crítico en condicio­nes dinámicas sigue siendo el paramento del talud. En efecto, aña­dir N W equivale, por así decirlo, a inclinar (y variar algo en mag­nitud) la fuerza W. El análisis es equivalente a uno estático sin sismo con tal de girar algo el papel de modo que la nueva resultante de W y N W vuelva a quedar vertical. Esto conduce solamente a un

Page 525: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

talud algo más escarpado, pero en idénticas condiciones a las ana­lizadas al principio de esta sección, por lo que la conclusión respecto a plano crítico debe ser la misma.

XI-f.3. Deslizamiento de conjunto

Se analizará la posibilidad de deslizamiento del terraplén como un conjunto a lo largo de la superficie horizontal AB, suponiendo que se han formado grietas que van de la superficie del suelo al nivel de dicho plano (ver fig. X l-f .l.c ).

En condición de equilibrio estático anterior al temblor puede su­ponerse sin grave error que no actúan esfuerzos cortantes en el pla­no AB, por lo que en el momento en que aquel se desata, las únicas fuerzas que actúan horizontalmente para tender a hacer deslizar al terraplén son las fuerzas de inercia en la masa deslizante, cuya resul­tante, N W , debe pasar por G, centro de gravedad de dicha masa deslizante.

Sea sD la resistencia dinámica del suelo en el plano AB. Enton­ces, si Nmfa es el coeficiente sísmico máximo que puede asociarse al equilibrio del terraplén, puede escribirse:

Muáx W = E SjK A L* (ll-f.8)

de donde:

Nmáx = — S s fliA l t (ll-f .9 )W

En general, trabajando con el criterio de esfuerzos efectivos, se tiene:

sD = fftg<f> = (cr — u) tg<p

o también:

s o - ( “Y h — u ) tg if>

por lo tanto:

Nmix = — £ (yhi — tti) tg </> ■ A Li

N míx = tg 4, ( l - * ( ll-f .1 0 )

MECANICA DE SUELOS (II) 501

de donde

Page 526: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

502 CAPITULO XI

ya queW = 2 y hi - A U

La expresión 1 1 -£.10 proporciona el máximo coeficiente sísmico que soporta el terraplén. En dicha expresión, las presiones neutrales a considerar deben incluir el incremento que se produzca con elsismo. .

Resta ahora comparar los valores dados por ( 1 1 -f. 1 0 ) con los coe­ficientes sísmicos que correspondan a la zona en que se vaya a construir el terraplén en proyecto.

En realidad el análisis realizado en este párrafo se refiere a un terraplén. En el caso de una presa de tierra, además de la fuerza

actuará el empuje del agua bajo condiciones dinámicas.

ANEXO XI-g

Fallas por licuación

Se entiende por licuación de un suelo la pérdida de su resisten­cia al esfuerzo cortante temporal o definitiva. Los materiales en que ha ocurrido el fenómeno son las arcillas saturadas muy sensibles, las arenas secas sueltas y las arenas saturadas, sobre todo las de baja compacidad.

Los suelos susceptibles de licuarse son aquellos en los que los contactos entre los granos son comparativamente escasos, lo que propicia que se pierdan casi totalmente durante el flujo propiamente dicho. Consecuentemente el fenómeno de la licuación afecta a los suelos sedimentarios naturales o a los depósitos artificiales, que son los que presentan aquel tipo de estructura; en efecto, el tamaño de los granos, su uniformidad y la baja velocidad de sedimentación en aguas tranquilas, son todos factores que se conjugan para formar estructuras muy sueltas.

Las causas que pueden producir el fenómeno de licuación son de dos tipos; hay licuación por incremento de los esfuerzos cortan­tes que obran en el suelo o por disminución de la resistencia a los mismos y hay licuación producida por una solicitación brusca sobre el suelo, tal como un sismo, un impacto, etc. El segundo tipo de licuación, cuando ocurre en arenas saturadas suele denominarse licuación espontánea, por la rapidez con que tiene lugar y es el más importante desde el punto de vista ingenieril. En lo que sigue se mencionarán algunas ideas en torno a la licuación por incremento de esfuerzo cortante, pero se hará énfasis especial en la debida a la

Page 527: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 503

acción de una vibración rápida; también se insistirá especialmente en los casos relacionados con arenas saturadas.

Las fallas por licuación en arcillas han ocurrido típicamente en Noruega32, si bien se han reportado también en Suecia y en el este del Canadá y noreste de los Éstados Unidos. Todas las arcillas licua­das poseen una historia geológica común; se formaron por sedimen­tación marina y emergieron por la recuperación isostática de los con­tinentes al desaparecer las grandes cargas de hielo, al fin de la última época glacial23' 25. El resultado de este proceso en las arcillas fue la lenta substitución del agua salada por agua dulce, que produjo el lavado de la sal, provocando con ello la pérdida de iones sódicos y correspondientemente de actividad eléctrica de superficie, con lo que la resistencia al esfuerzo cortante se vio fuertemente disminuida y la sensibilidad aumentada. La menor resistencia conduce a menores fac­tores de seguridad en los taludes naturales hasta que fallan sin causa aparente; en el proceso de falla, la arcilla se remoldea transformán­dose en un líquido, estado que conserva muy perdurablemente, ya que la falta de iones en el agua impide la reestructuración.

En las arenas sueltas y secas pueden ocurrir fenómenos de licua­ción por un mecanismo semejante al que ocurre en arenas saturadas (Capítulo X II del Volumen I de esta obra), con la diferencia de que ahora la presión de poro se genera en el aire de los vacios y no en el agua. Un ejemplo de este tipo de licuación se tiene al vaciar un saco de cemento o de harina, observándose entonces cómo estos materia­les tienden a extenderse como un líquido. En este caso debe tenerse en cuenta que el aire no es incompresible, por lo que su volumen debe disminuir antes de que la presión engendrada sea importante; además, el aire tiene más facilidad que el agua para drenarse, por lo que lo hará con mayor rapidez. Por las anteriores consideraciones, la licuación en un material seco, sólo será posible si una masa grande de suelo de estructura suelta tiende a disminuir de volumen brusca­mente en todos sus puntos. Además, el lapso en estado líquido será necesariamente más corto.

Se conocen dos tipos de materiales que se han licuado en estado seco: el loess y la roca. Un ejemplo de licuación en loess es la pro­ducida en 1920 durante un temblor en Kanzú, China, en el que un tramo de carretera se deslizó 1,600 m.21. En el caso de las rocas, se conocen por lo menos dos casos de deslizamientos catastróficos de gran magnitud26, en Elm, Suiza (1932) y en Alberta, Canadá (1903). Ambos duraron muy breve tiempo.

En el Capítulo X II del Volumen I de esta obra se presentó un mecanismo para explicar la licuación de arenas sueltas saturadas bajo efecto de incremento de esfuerzo cortante o bajo efecto de soli­citaciones muy bruscas. Según tal mecanismo, en una arena suelta la deformación angular bajo esfuerzo cortante produce un colapso de

Page 528: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

la estructura suelta, con lo que la relación de vacíos del material dis­minuye, tendiendo a un valor fijo cuando la deformación angular aumenta, el cual fue denominado por Casagrande originalmente ‘‘re­lación de vacíos crítica’’. Se mencionó en dicho capítulo que expe­riencias efectuadas indicaban que la relación de vacíos crítica dis­minuye cuando aumenta la presión normal sobre el material. Asi, en las arenas sueltas saturadas con relación de vacíos mayor que la “crítica” correspondiente a la presión normal a la que están sujetas, la deformación, al tender a producir disminución de volumen, genera presiones de poro que bajan la resistencia al esfuerzo cortante y propician la licuación. Sin embargo, en épocas recientes se han reali­zado experiencias de laboratorio que ponen en revisión un mecanismo aparentemente tan lógico como el que se ha recordado arriba. En electo, Maslov27 realizó dos tipos de experiencias con arenas sumer­gidas sometidas a deformación tangencial, midiendo la presión neu­tral en la zona de falla. El primer tipo de pruebas correspondió a pruebas directas con inmersión y colocando una serie de piezómetros en el plano de falla (fig. X I-g .l) .

504 CAPITULO XI

Fig. X I-g .l Dispositivo esquemático de las experiencias de Maslov

Los experimentos se efectuaron con arenas gruesas y finas colo­cadas con diferentes compacidades, desde el estado más suelto al más compacto. La sobrecarga p varió entre 0 y 2 kg/cm2. En todos los casos el nivel piezométrico descendió durante el desplazamiento, indicando tendencia a la expansión en la zona de falla; cuando el movimiento se suspendía, sin embargo, la altura piezométrica se ele­vaba bruscamente, indicando ahora una tendencia a la contracción en la misma zona. La otra serie de pruebas se realizó sobre modelos de taludes de arenas inundados en cuyo interior se colocaban piezó­metros; los taludes se hacían fallar tirando de placas colocadas en su seno. Los resultados confirman el hecho importante de la expan­sión durante el movimiento, seguida de brusca contracción al cesar éste.

Page 529: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 505

Maslov explica el fenómeno como sigue: “El comienzo y des­arrollo del corte provocan la salida de los granos de sus nidos. La arena puede adoptar en esas condiciones un estado muy suelto que se apoya en el estado de movimiento de las partículas y que es imposible en condiciones estáticas. Es natural que al suspenderse el movimiento tienda a producirse una nueva compactación y, por lo tanto, se eleve el nivel en los piezómetros”.

Por su parte, Marsal28 realizó experiencias sobre modelos bidi- mensionales de laboratorio que trataban de reproducir la estructura de una arena, obteniendo resultados que pueden interpretarse como una corroboración de los obtenidos por Maslov.

Los datos de Maslov indican que la expansión durante la defor­mación disminuye al disminuir la velocidad de deformación; ésto está de acuerdo con la explicación del propio Maslov, ya que la energía cinética de los granos, que impediría un reacomodo, varía con el cuadrado de la velocidad. También se encontró que la ex­pansión inicial y la contracción posterior dependen de la magnitud de la sobrecarga, de la compacidad inicial y de la técnica de la prue­ba, por lo que se concluye que el fenómeno de deformación tangen­cial en suelos granulares es mucho más complejo de lo que se creyó originalmente, por lo que se tiene actualmente la imposibilidad de disponer de índices absolutos que no tomen en cuenta el conjunto de las condiciones reales de trabajo en un suelo granular.

La contracción brusca que sobreviene al cesar el movimiento pro­duce las presiones neutrales que disminuyen la resistencia del suelo y causan la licuación.

En lo que sigue se glosa la denominada Teoría de la Filtración, debida a Maslov, que ofrece una interesante y más reciente expli­cación alternativa del fenómeno de la licuación espontánea, respecto a la que ha sido dada en el Volumen I de esta obra a partir del con­cepto de relación de vacíos crítica. La fuente bibliográfica de la exposición es la ref. 29.

El estudio de los fenómenos dinámicos en los suelos es, en gran medida, el estudio del problema de las vibraciones. Un régimen ar­mónico estacionario puede definirse con cualesquiera dos de los si­guientes tres parámetros: amplitud, frecuencia y aceleración máxima. También ha de tomarse en cuenta para entender lo que sigue que, según muestran experiencias independientes de Mogami y Kubo30 y Savchenko, la ley de Coulomb sigue siendo válida en un suelo some­tido a vibraciones y que el nuevo valor de <¡> depende únicamente de la aceleración.

Al igual que en condiciones estáticas <f> no cambia si la arena se satura; también se encontró que, para efectos prácticos, cuando la aceleración máxima de la vibración es menor que 0.2 g (g, acelera­

Page 530: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

506 CAPITULO XI

ción normal del campo gravitacíonal terrestre), el <j> dinámico perma­nece prácticamente igual al <f> estático.

Si se da una vibración suficientemente intensa a una arena suelta y saturada, se producirán en ella a fin de cuentas, en virtud de lo ya explicado, presiones de poro por la tendencia a la reducción de volumen. Sin embargo, las investigaciones de Maslov y otros de­muestran que para una arena dada con una cierta relación de vacíos existe un valor de la aceleración máxima, llamada aceleración crí­tica (acr) para el que el efecto anterior de generación de presiones en el agua empieza a producirse. Cuando la aceleración de la vibra­ción es menor que la crítica no se produce en el suelo tendencias a la compresión y no se generan presiones de poro. En este último caso, la resistencia dinámica del suelo es igual a la estática que se tiene antes de la vibración.

El valor de la aceleración crítica depende de:

a) Las características de la arena, principalmente de su compa­cidad. A mayor compacidad la aceleración crítica es mayor.

b ) De la amplitud y frecuencia de la vibración.c) De la presión vertical efectiva en el punto considerado. A ma­

yor presión efectiva la aceleración crítica es mayor según una ley lineal,

Cuando en la arena existen esfuerzos cortantes actuantes durante la vibración, pero independientemente de ella (por ejemplo, por tra­tarse de un estrato inclinado o de un talud, etc.), el efecto de aque­llos es disminuir el valor de la aceleración crítica.

Maslov explica este hecho por el debilitamiento de los contactos entre los granos que produce el esfuerzo cortante, lo que facilita la acción de las vibraciones. El propio Maslov propone para el nuevo valor de la aceleración crítica, el que resulta de la expresión:

3cr — C (s<2in t ) ( 1 1-g* 1 )

donde:

san — resistencia de la arena al esfuerzo cortante en condiciones de solicitación dinámica.

t = esfuerzo cortante actuante.C = una constante.

La resistencia dinámica del suelo puede encontrarse según se dijo, aplicando la ley de Coulomb.

En un punto cualquiera de una masa de suelo, la resistencia al esfuerzo cortante en condiciones estáticas es, según Coulomb:

Page 531: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Sest — o" tg <p

donde:

o- = esfuerzo normal efectivo.<f> = ángulo de fricción interna.

Si ahora la arena se somete a un estado de vibración de tal in­tensidad que la aceleración sea mayor que la crítica, aparecerá un exceso de presión hidrostática u¿ (presión de poro dinámica) y. la resistencia dinámica s¿¡„ será, por lo tanto:

San = (á — Ui) tg <p (ll-g-2)

en el que <j>, como se dijo antes, es el mismo que el de condicionesestáticas, siempre y cuando la intensidad de la aceleración no seamayor que 0.2 g.

En el caso de un estrato horizontal de arena saturada, como se muestra en la fig. XI-g.2, puede afirmarse que la condición necesa­ria y suficiente para que se presente la licuación hasta una profun­didad z es que la presión de poro dinámica, u¿, llegue a ser igual a la presión vertical efectiva, cr, a dicha profundidad.

= ud (ll-g .3 )

MECANICA DE SUELOS (II) 507

Fig. Xl-g.2 Condiciones para que un estrato de arena se licúe hasta la profundidad i

como:cr = Y mz

Ud = hz Y te

Page 532: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

donde hg es la carga de agua adicional a la profundidad z, causada por la solicitación dinámica, se sigue que, para que haya licuación a la profundidad z se requiere:

Y m z — hz Yw

en la práctica, en las arenas:

Y » = Y»por lo que, en definitiva, la condición 1 l-g.3 puede ponerse como:

Zázhz (1 l-g-4)

Para estudiar con más detalle el caso anterior de un estrato hori­zontal de arena saturada es necesario introducir ahora el concepto de coeficiente de compactación dinámica, v, que define Maslov como la velocidad con que varía la porosidad n de la arena, es decir:

V = § (11-S.5)

Experimentalmente se ha encontrado que v depende de los pará­metros de la vibración y que crece linealmente con la aceleración. También se ha encontrado que v depende de la sobrecarga, dismi­nuyendo su valor cuando ésta crece; es decir, que en un cierto estrato y para una vibración dada, el valor de v decrece con la profundidad hasta anularse a una profundidad L.

Debe recordarse que la aceleración máxima de la vibración para la que no hay tendencia a la disminución de volumen en el suelo es precisamente la aceleración crítica y que este valor no es cons­tante y crece con la presión, por lo que en un estrato de arena de compacidad constante crece con la profundidad. Así, puede suceder que una cierta aceleración de una excitación exterior sea mayor que la crítica para la parte superior de un estrato y menor para la parte inferior del mismo. Si el espesor del estrato es H y L < H, entonces a esa profundidad L dentro del estrato v = 0 y, por lo tanto, ahí no hay tendencia a disminución volumétrica, o sea a esa profundidad la aceleración de la excitación es la crítica del estrato de arena a esa misma profundidad. A profundidades menores, la arena tenderá a disminuir de volumen y a profundidades mayores no tendrá ten­dencia a comprimirse. A profundidades menores que L habrá presio­nes de poro dinámicas, no así a profundidades mayores. Si L > H habrá presiones de poro dinámicas en todo el espesor del estrato.

Basado en el anterior razonamiento, Maslov considera para v una de las posibles variaciones que puede llegar a tener, que es la lineal con la profundidad z. Según dicha ley:

508 CAPITULO XI

Page 533: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Vz — v0 (1 l-g.6)

donde Vo es el valor de v para z = 0, es decir, el de la superficie del estrato de arena. Para un régimen de resonancia se tendría que L — oo y la expresión 1 l-g.6 se reduciría a

v* = Vo (1 l-g.7)

es decir, que el coeficiente de compactación dinámica sería constante en todo el espesor H del estrato de arena.

Suponiendo entonces, como una primera aproximación que v sea constante, Maslov presenta el siguiente estudio sencillo del fenóme­no de la licuación espontánea:

Considérese un elemento de área A y espesor dz a la profun­didad z de un estrato de arena de espesor H, que está sujeto a una vibración de aceleración mayor que la crítica, en tal forma que existan presiones de poro dinámicas a lo largo de todo su espesor (fig. XI-g.3).

j J A L

MECANICA DE SUELOS (II) 509

K ; V .* d'* JZfEZÍM 'STUIfAÓA ’ • *I . *. , 1 •• L T. *» * . 1 * • • ’* * »f * * • 1 •'. *1' 1' •’i n n i ) / i i / n i ! ) i i i i / i

Fig. Xl-g.3 Esquema del flu¡o de agua en un estrato horizontal de arena saturada

con presiones de poro dinámicas

La reducción de volumen de este elemento por unidad de tiempo estará dada por:

AcfV = A d z = Vo A d z (ll-g .8 )

Como el efecto resultante de la vibración es producir un flujo de agua hacia arriba, se tendrá que el volumen de agua AV que fluye hacia arriba en la unidad de tiempo por la cara superior del elemento de volumen será la suma de los aportes de todos los elementos que queden bajo ella, es decir:

Page 534: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

510 CAPITULO XI

Por otra parte, aceptando la ley de Darcy, se debe tener:

A V = k i A - k ^ L A (llg .10)

donde k es el coeficiente de permeabilidad de la arena y hz es la carga de agua a L: profundidad z correspondiente a la presión de poro dinámica uD [hz — {uD/y w)]

Como los AV de las expresiones 1 l-g.9 y 1 l-g.10 deben ser iguales se tiene que:

k ^ - A = v0A (H - z )

dh, = ^ ( H - z ) d z (11-g .ll)

que es la ecuación diferencial que deben satisfacer las presiones dinámicas (o sus equivalentes hz) desarrolladas en el estrato de arena bajo las hipótesis consideradas. (Debe notarse que al igualar las expresiones 1 l-g.9 y ll-g.10 debida cuenta se ha tenido de sus signos, pues ambos AV resultan negativos, tal como están expresados por ser Vo y (dhz/dz) ambos son negativos).

Integrando la expresión 11-g.ll se obtiene:

fc = ^ ( m - ^ ) + c

en donde C es la constante de integración. Como hz debe ser nula para z — 0, se tiene que C es igual a cero, y por lo tanto:

= T “ t ) « ‘ -a-12)

Esta expresión con la 11-g.ll agrupada como

dhg V o / r r v .

h = ~dT = T {H~ z) (ll-g-13)da la distribución de h, y del gradiente hidráulico i? con la pro­fundidad z.

Page 535: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 511

Puede observarse que la distribución de hz es parabólica mien­tras que la de iz es lineal.

Sin embargo, debe observarse que las ecs. ll-g.12 y 11 -g.l 3 tienen una limitación. Esta limitación se debe a la posibilidad física de que la presión de poro aD a una cierta profundidad z sobrepase el valor y'mz, pues en dicho momento se tendrá la condición de licuación. Aceptando para fines prácticos que y'm = yw se llega a la ec. ll-g .4; es decir, que el valor máximo que puede tomar hz a la profundidad z es precisamente z. Asimismo, de esta misma igualdad:

Uo — Y » h z — y mz

puede obtenerse que:

iz = ^ L = y j L = l (ll-g .14)dz yw

por lo que el gradiente hidráulico no puede tomar un valor mayor a 1. Cuando i* = 1 se tendrá condición de licuación. Substituyendo esta condición en la expresión 11-g .l3 se obtiene la profundidad z0 hasta la que llegará el efecto de licuación:

z° ~ H — — (11-9.15)V0

La profundidad z0 separará la zona licuada de la no licuada. De z0 para arriba, la arena estará en suspensión, mientras que para abajo de dicha profundidad las presiones de poro serán de una magnitud menor que la necesaria para producir licuación.

Lo anterior es para una aceleración dada de la perturbación diná­mica. Si esta aceleración crece, crecerá Vo y consecuentemente au­mentará Z g.

ANEXO Xl-h

Inyecciones

No hay, desde luego, reglas fijas que le permitan decidir a un ingeniero si un determinado lugar de cimentación requiere o no in­yectado: de hecho, se reconoce que esta decisión es uno de los puntos más delicados y debatidos de la tecnología de presas de tierra.

Page 536: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

512 CAPITULO XI

De acuerdo con el comportamiento de presas construidas puede decirse que presas de menos de 15 m de altura, cimentadas en roca no excesivamente fracturada, no requieren usualmente inyectado. Por otra parte, las presas que retienen cargas de agua mayores de 30 m suelen precisar de inyecciones más o menos importantes.

La necesidad de inyectado depende de varios factores, de los que los principales son:

1 ) Altura de la presa.2) Permeabilidad de la roca.3) La tolerancia de gasto filtrado a través de la cimentación.4) La naturaleza del agrietamiento en la roca.

Las inyecciones no son de mucho valor a no ser que la permea­bilidad de la roca disminuya con la profundidad, la cual es por otra parte, la situación más frecuente.

Las inyecciones son también de dudosa eficacia en rocas en que la permeabilidad es consecuencia de fisuras muy finas; con morteros de cemento la experiencia ha demostrado que no se pueden sellar grietas de menos de 0.2 mm de abertura.

En la mayor parte de las presas en que se realiza inyección se utiliza una sola hilera de perforaciones muy próximas (cortina o pantalla de inyección). Esta hilera se coloca generalmente cerca del centro del corazón de la cortina, o ligeramente aguas arriba. Otras veces la perforación se hace en dos hileras a 15 ó 20 m de distancia. No hay regla para definir si conviene el sellado en una o dos hileras, pero se cree frecuentemente que es preferible obtener una cortina de inyección muy buena con pozos próximos que construir dos corti­nas independientes con espaciamiento excesivo. Por otra parte, algu­nos consultores como A. Casagrande han opinado que una sola cor­tina es siempre de dudosa eficiencia. También ha indicado la expe­riencia al tratar aluvión o roca muy finamente fisurada que en tales casos se hace conveniente la perforación de varias líneas de pozos.

Las pantallas de inyección suelen quedar en un plano vertical, pero no es raro ni particularmente costoso inclinarlas cuando así con­venga; con los equipos usuales se puede llegar a inclinaciones de 60° respecto a un plano vertical. Sin embargo, rara vez se hacen cortinas con inclinaciones de más de 30° respecto a dicha vertical.

La mayor parte de las pantallas de inyección se han hecho con cemento solamente, pero puede usarse mortero con arena para relle­nar grandes cavidades. También se han usado raramente arcillas y mezclas de arcilla y cemento; las investigaciones de laboratorio31 han revelado que estas últimas mezclas con cantidades de cemento

Page 537: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

tan bajas como 25% proporcionan una excelente consistencia y esta- bilidaa.

La profundidad de las perforaciones no debe nunca fijarse con una fórmula predeterminada o con la aplicación ciega de experiencia obtenida en casos previos más o menos similares; debe decidirse a partir de estudios serios realizados por ingenieros de suelos y geólo­gos y todo el programa de perforación debe ser flexible y susceptible de modificarse de acuerdo con la información obtenida de la propia ejecución de los trabajos.

La perforación de barrenos de inyección se hace a veces con pozos a poca profundidad, colocados más o menos al azar sobre una cierta área; esta disposición es conveniente cuando sólo la parte superior de la roca es permeable por estar intemperizada o super­ficialmente agrietada; en este caso la disposición de la inyección se denomina en banqueta, en contraposición de la pantalla tratada más arriba y en lo que sigue.

La construcción de una pantalla de inyecciones es fundamental­mente un problema a resolver por tanteos; las profundidades y espa- ciamiento de las perforaciones, los métodos de inyección, etc., nan de decidirse a medida que los trabajos progresan en la propia obra y deben ceñirse a las particularidades concretas que se vayan mani­festando; por esto, es esencial que una pantalla de inyección se cons­truya bajo la supervisión directa y constante de un ingeniero com­petente, que debe tener la autoridad y los medios para poder modi­ficar sobre la marcha cualquier proyecto tentativo que se hubiera realizado.

El proceso de inyectado tiene usualmente cuatro etapas prin­cipales:

1) La perforación de los barrenos de inyección.2) La limpieza, lo más completa posible, del interior de esos

barrenos.3) Una prueba con agua a presión dentro de los barrenos para

conocer la permeabilidad de sus paredes.4) La inyección de la lechada de cemento a la presión que se haya

considerado adecuada.

Es común abrir primero unos barrenos bastante espaciados, de acuerdo con lo que se sepa de la roca; este espaciamiento suele osci­lar entre 6 y 20 m. Una vez que con estos barrenos se han cubierto las cuatro etapas señaladas arriba, se procede a perforar otros en posiciones intermedias dentro de la pantalla por construir; al seguir las cuatro etapas con estos nuevos barrenos, se va teniendo conoci­miento cada vez más detallado, que permite decidir, con el concurso de la experiencia, si se precisarán aún más agujeros, si la profun­didad de los perforados fue suficiente, etc., etc. En la mayor parte33—Mecánica de Suelos II

MECANICA DE SUELOS (II) 513

Page 538: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de las pantallas, la separación final de los barrenos perforados suele quedar comprendida entre 1.50 y 3 m.

Existen dos modos principales de proceder a la inyección. La diferencia entre uno y otro no es muy grande en la mayoría de los casos y es casi una cuestión de preferencia del constructor; sin em­bargo a veces, las condiciones de la roca por inyectar hacen que un método sea definitivamente preferible al otro. El distintivo entre ambos métodos estriba en la forma de perforar al barreno de inyec­ción, según se haga por etapas o por completo, de una sola vez. En el primer caso, el barreno se perfora en dos o tres etapas de aproxi­madamente la misma longitud y se procede al inyectado una vez concluida cada etapa; terminada la inyección en una etapa, el barre­no es reperforado y se completa la siguiente etapa. En el segundo método, la perforación se completa desde el principio; una vez lim­piada y después de haber completado los pasos arriba indicados, se introduce un dispositivo para inyectar la lechada el cual, a la vez, sirva para sellar totalmente el barreno desde el nivel en que se esté inyectando, hacia arriba; así, se procede a colocar ese dispositivo a diferentes alturas en el pozo a partir del fondo inyectando cada vez, hasta completar toda la altura.

En general, las presiones de inyección pueden disminuirse cuanto menor sea la profundidad a la que se esté operando.

Las principales ventajas de trabajar por etapas son que se utiliza equipo más sencillo y que la inyección se realiza siempre desde la superficie. Las principales ventajas de perforar el pozo en toda su longitud y utilizar el dispositivo de inyección sellador radican en la facilidad de maniobrar en la perforación y en la mejor información que se obtiene con el método respecto a las elevaciones en las que el pozo aceptó más lechada.

La mayoría de los pozos para inyección son de 3.81 cm (1.5 pulg) de diámetro (calibre EX ) y se limpian con agua a presión des­pués de ser perforados.

Las presiones de inyectado deben ser las máximas que la roca aguanta sin que sus fisuras o grietas se abran por efecto de la pe­netración de la lechada. No existen reglas que proporcionen los valores de un modo fijo. Para roca con estratificación horizontal no suele ser seguro inyectar a una presión que supere a la producida por el peso de la roca suprayacente; en rocas masivas, por el contra­rio, puede llegarse sin riesgo a presiones de diez veces aquel valor. La única manera convincente de fijar la presión máxima en el campo es realizar pruebas con valores crecientes, hasta que ocurra la falla de la roca. En general se ha visto que la admisión de lechada en un cierto pozo es toscamente proporcional a la presión; sin embargo, cuando la roca falla al ir aumentando la presión de inyectado, se produce un súbito aumento de la absorción de lechada en el pozo,

514 CAPITULO XI

Page 539: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 515

debido al aumento también brusco que tiene lugar en las grietas y fisuras de la roca; de este modo es posible conocer la presión máxima conveniente en un cierto punto. En general, la máxima presión que puede darse en un punto a una cierta roca depende del tipo y la continuidad de sus grietas, de su resistencia y permeabilidad, de la consistencia de la lechada, de la configuración de las formaciones que constituyen la boquilla, la profundidad del barreno perforado y de la experiencia previa de inyecciones en esa roca, si la hubiere.

Al elegir una cierta presión de inyectado y ponderar los factores anteriores, debe tenerse en cuenta que en la práctica los peligros de usar una presión excesivamente alta son mucho mayores que los que resultan del uso de otra demasiado baja. También debe contarse con que es preferible comenzar la inyección usando la presión alta, ob­teniéndose muy poca eficiencia cuando se empieza con presión baja, aunque se la haga crecer posteriormente.

Las proporciones agua-cemento, medidas en volumen, oscilan usualmente entre 10:1 y 1:1. Para la gran mayoría de las rocas es deseable comenzar la inyección con proporciones comprendidas entre 3:1 y 5:1. Naturalmente, la proporción debe aumentar cuanto mas difícil sea la penetración de la lechada y cuanto más rápidamente se desarrolle la presión al efectuar la inyección.

Cuando un pozo tome gran cantidad de lechada durante largo tiempo resulta conveniente, para mantener el barreno y las fisuras de la roca limpios, interrumpir el bombeo de lechada e inyectar algo de agua periódicamente. Es un error común el inyectar miles de sa­cos de cemento en forma continua en un mismo barreno de perfora­ción; el hecho de que se admita tal cantidad de lechada indica única­mente que ésta está difundiéndose a grandes distancias de la pantalla de inyección, a través de extensos sistemas de grietas o cavernas en ja roca. Esto es, naturalmente, ineficiente y antieconómico. Después de inyectar algunos centenares de sacos de cemento en un mismo punto conviene siempre detener la operación y continuar después del fra­guado; también conviene en este caso usar pozos auxiliares vecinos en los que se inyecte lechada espesa y, en general, han de usarse todas las técnicas que contribuyan a confinar la lechada en una zona adyacente a la pantalla de inyección.

Lo que un pozo tome de lechada no corresponde frecuentemente a los resultados de una prueba en la que se inyecte agua a presión para verificar el sellado de la roca. En lugares en que la roca tome grandes cantidades de agua, pero en los que no tome lechada, la adi­ción de algún gel bajo presión tiene a veces un efecto lubricante en las fisuras, que después admiten la lechada en forma conveniente. También tiene efecto en disminuir la viscosidad de la lechada la adi­ción de pequeñas cantidades de bentonita (menos del 5% del peso de cemento).

Page 540: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Se han propuesto numerosos criterios para decidir cuando una roca ha sido suficientemente inyectada. A veces se ha recomendado la inyección hasta el rechazo de la lechada por el agujero bajo la máxima presión de inyección; sin embargo, un criterio más razonable parece ser el inyectado hasta que la perforación o sección de perfo­ración en la que se esté trabajando no tome más de unos 30 lt de lechada en 5 min, bajo la máxima presión de inyección.

516 CAPITULO XI

ANEXO Xl-i

Algunas ideas sobre eficiencias de compactación

En lo que sigue se dan algunos datos experimentales de labora­torio y de campo en relación al mecanismo de la compactación de suelos y a la eficiencia y campo de aplicabilidad de equipos prácticos de compactación. Para seguir los razonamientos de la exposición de­berán tenerse muy en cuenta las ideas básicas que sobre compacta­ción de suelos se han dado en el Capítulo X III del Volumen I de esta obra.

En la Tabla 11-il se presenta una comparación obtenida por el Road Research Laboratory en tramos de prueba británicos que mues­tra los resultados de la compactación en los suelos que se indican, expresados con el peso específico seco máximo obtenido y las co­rrespondientes humedades óptimas obtenidas para cada prueba. Los resultados de campo se obtuvieron utilizando los equipos de compac­tación que se expresan; también aparecen en la tabla los resultados obtenidos en el laboratorio utilizando dos distintos estándars de com­pactación, el AASHO estándar británico (muy similar al americano) y el AASHO modificado.

La Tabla presenta un interés específico para los constructores, a los que se les exige un determinado grado de compactación, repre­sentado por un cierto peso específico que se les fija como necesario para las capas que se compactan, el cual, a su vez, se les controlará con un cierto estándar de laboratorio, respecto al que se fijó el grado de compactación que ha de obtenerse.

En el suelo arcilloso de alta plasticidad ( C H ), que se discutjrá a modo de ilustración, se observa que el rodillo pata de cabra es el equipo de campo con el que se obtienen mayores pesos específicos secos, siguiéndole el rodillo liso y, finalmente, el neumático; las hu­medades óptimas se ordenan en la forma que era de esperar. La tabla permite algunos razonamientos de interés práctico, de los que puede e x tr a e r s e la conclusión fundamental de que la elección del equipo p a ra un c ie r to trabajo de compactación no es asunto que pueda resol­v e rs e con la máxima eficiencia recurriendo a normas rutinarias pre-

Page 541: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Co

mp

ar

ac

ión

e

nt

re

lo

s p

eso

s e

spe

cíf

ico

s se

co

s m

áx

imo

s y

las

co

rr

esp

on

die

nt

es

hu

me

da

de

PTIM

AS

OBT

ENID

OS

CON

DIF

EREN

TES

EQU

IPO

S DE

CO

MPA

CTA

CIÓ

N

EN

EL

CAM

PO

Y EN

EL

LA

BOR

ATO

RIO

MECANICA DE SUELOS (II)

SIs !

■*á

I

i.1

.3

o .aH

I

ito§

f e

A S

i

Ov p» VO

oenOofN

o *—1 (SOv-4O

O<norví <N oí c í r í

v—4 o\ 00 1ll

men°NOvo

ininOino

ll

r í es PÍ l

- v-4 o\V-4 <N

O°o

o<NOmIT)00

o<NN §OvV-4 <N V -4 V -4

S3 ■*V -4

SO 20

in

. 8

O£Os

otv

IT>SOSOmir>00

^ 4 V-4 v—4 V -4

26 20 25 SO^ 4

OininOooo

insoSOmsoin

Ov -4t * v

^■4 V—4 ^ 4 v>4

«J•ntao"Oa 1 8

OX . cn co < < < <

T3OaoX

GO00

-oo

ss•suM-o«O.

■g "3Oí Oí

Page 542: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

establecidas. Por ejemplo, el estándar de compactación de laboratorio que se fije para el control de la compactación influye en el juicio que el constructor haga sobre el equipo a elegir. Así, en la tabla se ve que, si la compactación ha de controlarse con la prueba AASHO estándar, caben varias elecciones de equipo; por ejemplo, puede es­cogerse el rodillo pata de cabra o el neumático (una discusión similar cabría con el liso); el pata de cabra, más eficiente, logrará llegar al

HUMEDAD - 13.0 POR CIENTO

518 CAPITULO XI

Kg /cm*

Fig. Xl-i.l Efecto de la presión de Inflado, del número de pasadas y de la humedad de compactación — Rodillo neumático

Page 543: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

estándar con una cierta humedad y pasando menos veces, pero requi­riendo un mayor esfuerzo tractivo; el rodillo neumático llegará al mismo resultado con otra humedad, pasando más veces, pero con un esfuerzo tractivo menor. Nace así una situación que amerita un estu­dio económico particular y detallado, fuera de normas rutinarias. Di­cho estudio podrá hacerse en cada caso con investigación de compor­tamiento de terraplenes de prueba construidos “ad hoc".

Otro aspecto que revelan los resultados de la Tabla XI-i.l es que el concepto humedad óptima, de pleno sentido en una prueba de labo­ratorio específica, cambia con la energía de compactación, o sea es diferente para distintos equipos empleados en el campo y no debe esperarse una correspondencia exacta entre la humedad óptima de la prueba de control y la mejor humedad para compactar en la obra con un cierto equipo (humedad óptima para ese equipo). Esto es particu­larmente cierto en los suelos plásticos.

En la fig. XI-i.l36 se presenta otro aspecto importante relativo a los problemas prácticos de compactación. Dicha figura se refiere a los pesos específicos secos obtenidos con rodillo neumático, en fun­ción de la presión de la llanta del rodillo, del número de pasadas y del contenido de agua del suelo, que fue un limo de baja plas­ticidad (ML) .

Puede observarse que para la humedad más alta manejada en la prueba (1 8 % ), el aumento en número de pasadas de 4 a 16 es poco influyente en la compactación obtenida y otro tanto puede decirse del aumento de la presión de la llanta a partir del valor que se indica. Al disminuir la humedad de compactación, el aumento de presión de la llanta es cada vez más eficiente y el número de pasadas va tam­bién ejerciendo mayor efecto. Nótese cómo, para una humedad de compactación dada, el aumento de la presión de las llantas del rodillo permite disminuir grandemente el número de pasadas de equipo ne­cesario para lograr un cierto peso específico. Nótese también la gran influencia de la humedad de compactación en la eficiencia de la operación.

En la fig. X I-i .2 se tipifican otros datos de interés con base en una investigación realizada por el Road Research Laboratory de Lon­dres, Inglaterra.

En la figura se muestran los resultados de la compactación de dos suelos, una arena y una arena arcillosa, efectuada con un rodillo neumático relativamente ligero y de ruedas múltiples. La humedad óptima es la correspondiente a la prueba británica estándar, que es muy similar a la AASHO estándar. Aparecen curvas que relacionan el peso específico seco con el número de pasadas dadas a diferentes contenidos de agua en el suelo; debe notarse la gran influencia de la humedad en la eficiencia del equipo, al grado que con un cierto con­tenido de agua es posible alcanzar un peso especifico que con otra

MECANICA DE SUELOS (II) 519

Page 544: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

520 CAPITULO XI

N U M E R O 0 E P A S A D A S

0 4 8 12 16 20 24 2 » 32

N U M E R O O E P A S A D A S

R g . Xl-i .2 G rá fic a q u» n u t rirá e l »f»c fo d » l contenido de agua y R i­mero d » penadas d e l equipo sob re la compactacián

humedad no podría alcanzarse prácticamente con ningún número de pasadas concebible. Ello hace ver que la elección de la humedad de compactación en el campo no puede fijarse con base en ninguna idea rutinaria, con el criterio simplista, como es frecuente, de que sea igual a la humedad óptima de alguna prueba de control, aun cuando ésta pueda resultar una buena guia.

Una vez más resalta la idea básica de que la humedad idónea para trabajar con un cierto equipo en un suelo dado, no tiene por qué

Page 545: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 521

ser igual que la humedad óptima de la prueba de laboratorio que se vaya a usar para controlar los trabajos. La razón principal es obvia­mente que las energías de compactación son distintas en ambos casos.

En la figura se ve también cómo se reduce la eficiencia del equipo a partir de un número de pasadas característico, que depende del suelo y de su contenido de agua.

En la fig. XI-i.3 se muestran otros resultados de interés*® rela­tivos ahora a la eficiencia de la compactación dentro del espesor de la cápa utilizada en el sentido del material.

Se presentan datos relativos a tres espesores de capa, 15 cm, 30 cm y 60 cm; se ven los pesos específicos secos obtenidos con tres diferentes contenidos de agua; el equipo utilizado en el caso fue un rodillo neumático pesado y se compactó suelo cohesivo. La lección

o

U1co

3 *o « z -tal O-I “* tal -I > — Z o

-> 2 laj QZ

O<Oo

oKO.

12.5

25

37.5

50

6 2 .5

13*5!/ ./

~ n

J3 %

<#> *> l

x t .

/ / * / / t * / /.. - i ¿ ....

/

7 !

/

/•

/ / /

/ /

/t

* > /

v• yi

* /* /9

1 ...........

/ /

/ .

/#

/O CAPA D EIScm

— --------- CAPA DE 30 cm

------------- -- CAPA DE áO cm

1440 1520 1600 1680 1760 1840P E S O E S P E C I F I C O S E C O , K g / m *

Fig. Xl-i.3 Influencia del espesor de la capa y el contenido de agua enla compactación

Page 546: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

práctica de la gráfica es la siguiente: los trabajos de campo se realizan siempre exigiendo al constructor un cierto peso específico mínimo en todo el espesor de una capa; puede verse que para lograr tal fin y no tener problemas de control de obra, al constructor le conviene probablemente emplear un equipo que dé pesos específicos secos mayores que el exigido en los niveles superiores de una capa potente, para así garantizar el exigido en los inferiores. La gráfica permite también ver la influencia del espesor de la capa en el reque­rimiento del equipo de compactación y en la eficiencia y costo de la operación. Se ve que la elección del espesor de capa no es arbi­traria, sino que está íntimamente ligada con el equipo disponible, la humedad de compactación, etc. De nuevo todos estos factores requieren para su eficiente elección del uso de terraplenes de prueba en los que se realicen las investigaciones necesarias.

522 CAPITULO XI

REFERENCIAS

1. Carrillo, N. — Prólogo al Volumen I — Nota al pie de página — Mecánica de Suelos, por E. Juárez Badillo y A. Rico Rodríguez — Ed. por la Revista Ingeniería — Facultad de Ingeniería — México— 1963.

2. Sherard, J. L., Woodward, R. ]., Gizienski, S. F. y Clevenger, W . A .— Earth and Earih-Rock Dams — Cap I — Sec. l-2a. — John Wiley and Sons, Inc. — 1963.

3. Terzaghi, K. — Effect of Minor Geologic Details on the Sa[ety of Dams — Boletín de American Institute of Minning Engineers — N' 215— 1929.

4. Terzaghi, K. — Der Grundbruch an Staumauern und Seine Verhütung — Die Wasser-Kraft— 1922.

5. Terzaghi, K. — Erdbaumechanik — F. Denticke, Ed. — Viena— 1925.6. Bertram. G. E. — An Experimental Investigation of Protective Filters — Har­

vard Soil Mechanics Series N9 7 — 1940.7. U. S. Corps of Engineers — Investigation of Filter Requirements for Underdra-

ins — Waterways Experimental Statiori — Technical Memorándum N9 183-1— 1941.

8. Karpoff, K. P. — The Use of Laboratory Tests to Develop Design Criteria for Protective Filters — Procs. ASTM — Vol. 55 — 1955.

9. Marsal, R. J. — Triaxial Apparatus for testing Rockfill Samples — 2a. Con­ferencia de Mecánica de Suelos y Cimentaciones — Brasil — 1963.

10. Marsal, R. J. — El Infiernillo Rockfill Dam — Congreso Mundial de Gran­des Presas — Vol. III — Edimburgo— 1964.

11. Gould, J. P. — Compression Characteristics of Rolled Fill Materials in Earth Dams — Memoria Técnica N* 648 — U. S. Bureau of Reclamation — 1954.

12. Gould, J. P. — The Compressibility of Rolled Fill Materials Determined from Field Observations — III Congreso Internacional de Mecánica de Suelos y Cimentaciones — Zurich — 1953.

13. Sherard, J. L., Woodward, R. J„ Gizienski, S. F. y Clevenger, W . A .— Earth and Earth-rock Dams — Cap. 3 — pág. 204 — John Wiley and Sons Inc.— 1963.

14. Hilf, J. W — Estimating Construction Pore Pressures in Rolled Earth Dams— II Congreso Internacional de Mecánica de Suelos y Cimentaciones — Rot­terdam — 1948.

Page 547: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

15. Lowe, J. y Karafith, L. — Stability of Earth Dams Upon Drawdown— ler. Congreso Panamericano de Mecánica de Suelos y Cimentaciones — México, D. F. — 1959.

16. Sherard, J. L. — Influence of Soil Properties and Construction Methods on Performance o f Homogeneous Earth Dams — U. S. Bureau of Redamation Tech. Mem. N’ 645 — Denver— 1953.

17. — Narain, J. — Flexibility of Compacted Clays — Tesis Doctoral— Univer­sidad de Purdue — 1962.

18. Middlebrooks, T. A. — Earth Dam Practice in the United States — Trans. Am. Soc. of Civil Engineers — Volumen Centenario— 1953.

19. Sherard, J. L., Woodward, R. J„ Gisienski. S. F. y Clevenger, W . A. — Earth and Earth Rock Dams — Cap. II Sec. 2-5 — John Wiley and Sons, Inc. - 1963.

20. Terzaghi, K. y Peck, R. B. —Mecánica de Suelos en la Ingeniería práctica —-Trad. O. Moretto — Ed. El Ateneo— 1955.

21. Casagrande, A. — Notas sobre e l diseñe Ap n r e x a x de t i e r r a — Citado en la publicación Contribuciones de la Mecánica de Suelos al Diseño y Construc­ción de presas de tierra — Traducción y edición por R. J. Marsal y E. Tamez .— Publicación de la Secretaría de Recursos Hidráulicos — México — 1956.

22. Bjerrum L. — Stability of Natural Slopes in Quick Clay — Geotechnique — Vol. 5 — 1954.

23. Meyerhof, G. G. — The Mechanism of Flow Slides in Cohesive Soits — Geo­technique— Vol. 5 — 1957.

24. Newmark, N. M. — Effects o f Earthqueakes on Dams and Embankments — V. Rankine Lecture — Geotechnique — Vol. X V — N9 2 — Junio, 1965.

25. Holmsen, P. — Landslips in Norwegian Quick Clays —• Geotechnique — Vol. 3 — 1953.

26. Highways Research Board — Landslides in Engineering Practice — Cap. 3 — Washington— 1958.

27. Maslov, N. N. — La estabilidad de las arenas saturadas (en ruso) — Gosz- nergoizdat — Moscú — 1958 — Capítulo I.

28. Marsal, R. J. — Informe sobre pruebas triaxiales efectuadas con suelos gra­nulares y materiales para enrocamiento — Publicación del Instituto de Inge­niería— Universidad Nacional A. de México— 1963.

29. Dobry, R. — Desarrollo y estado actual de las ideas sobre el problema de la licuación espontánea de los suelos granulares — Tesis para obtención del grado de Maestro en Ingeniería — División del Doctorado de la Facultad de Ingeniería — U.N.A.M. — México, D. F. — 1964.

30. Mogami, T. y Kubo, K. — The Behavior of Soil During Vibration — III Con­greso Internacional de Mecánica de Suelos y Cimentaciones — Vol. I. — Zurich. — 1953.

31. Nonveiller, E. y Hobekovic, M ..— Properties o f Clay-Cement Suspensions for Grouting— Séptimo Congreso de Grandes Presas — Roma— 1961.

32. Sherard, J. L., Woodward, R. J., Gizienski, S. F. y Clevenger, W . A. — Earth and Earth-Rock Dams.— Capítulo 10, Sección 10.2.a — John Wiley and Sons, Inc.— 1963.

33. Taylor, D. W . — Artículo presentado a la Convención de la ASCE en Nueva York, enero de 1949 — TambiénSherard, J. L., Woodward, R. J., Gizienski,S. F., y Clevenger, W . A. — Earth and Earth-Rock Dams — Sección 7-4b— Capítulo 7 — John Wiley and Sons, Inc.— 1963.

34. Sherard, J. L., Woodward, R. J„ Gisienski, S. F. y Clevenger, W . A. — Earth and Earth-Rock Dams — Capítulo 7 — John Wiley and Sons, Inc.— 1963.

35. Tschebotarioff, G. P. — Soil Mechanics, Foundations and Earth StructuresCapítulo 9 — McGraw Hill Co. — 1951.

36. Foster, R. C. — Compaction, Capítulo XII del libro Foundation Engineering, Editado por G. A. Leonards — McGraw Hill Book Co. — 1962.

MECANICA DE SUELOS (II) 523

Page 548: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

524 CAPITULO XI

BIBLIOGRAFIA

Earth and Earth Rock D a m a -L L Sherard, R. J Woorward, S. F. Giziens- ki v W . A. Clevenger — John WÜey and Sons, Inc. — 1963.

Engineering for Dams — W . P. Creager; J. D. Justin y J. Hinds-]ohn Wdeyand Sons Inc.— 1961. r .

Principios del diseño y Construcción de presas de tierra — L. lamez o . Secretaría de Recursos Hidráulicos — México, 1963.

Page 549: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

BREVE EXPOSICION SOBRE LAS CONDICIONES DE CIMENTACION EN EL VALLE DE MEXICO

XII-1. ¿Bonificación y estratigrafía del subsuelo del Valle de México

El Valle de México es una unidad geográfica limitada al N. por las Sierras de Tepotzotlán, Tezontlalpan y Pachuca; al E,, por los llanos de Apan, los montes de Río Frío y la Sierra Nevada; al S., por las Sierras de Cuauhtzin y Ajusco y al O., por las Sierras de Las Cruces, Monte Alto y Monte Bajo (fig. X I M ). La super­ficie total del Valle es del orden de 7,160 knr\ de los cuales 3,080 km2 corresponden a zona francamente montañosa y 2,050 km2 a zonas bajas bien definidas. La altura sobre el nivel del mar en la parte más baja es de 2,240 m, aproximadamente.

En la actualidad, además del tajo de Nochistongo, abierto en 1789, el Valle cuenta con dos túneles en Tequisquiac, que lo comu­nican con la cuenca del río Moctezuma.

Dentro del Valle de México está ubicado el Distrito Federal, cabecera política de la República Mexicana, el cual incluye a la Ciudad de México y ocupan un total de 1,480 km2, de los cuales unos 500 km2 son zona urbanizada. Una buena parte de la Ciudad de México se encuentra construida sobre el fondo del ex lago de Texcoco y a este hecho se deben los problemas de cimentación que en la Ciudad se presentan.

Todo el Valle de México se caracteriza en general por la muy intensa actividad volcánica que tuvo lugar en el pasado, de la cual quedan aún vestigios en forma de un gran número de volcanes apa­gados, el Popocatépetl, aún activo y muy abundantes materiales de aquel origen. Los depósitos más finos que aparecen en el subsuelo de la Ciudad de México corresponden, según hoy se admite, al mismo origen volcánico.

Los numerosos estudios que se han realizado hasta hoy en rela­ción con el subsuelo del Valle de México han permitido a Marsal y Mazarí1 zonificar la ciudad de México en tres grandes áreas, aten­diendo a un punto de vista estratigráfico (fig. X II-2 ).

La primera de las áreas mencionadas corresponde a la zona llamada de las Lomas por desarrollarse en parte en las últimas estri-

525

CAPITULO XII

Page 550: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

baciones de la Sierra de las Cruces y está constituida por terrenos compactos, areno-limosos, con alto contenido de grava unas veces y con tobas pumíticas bien cementadas otras: por algunas partes esta zona invade los derrames basálticos del Pedregal. En general, la zona de las Lomas presenta buenas condiciones para la cimentación de estructuras; la capacidad de carga del terreno es alta y no hay for­maciones compresibles capaces de asentarse mucho. Sin embargo, debido a la explotación de minas de arena y grava, muchos predios pueden estar cruzados por galerías de desarrollo muy errático. Mu­chas de estas galerías pueden estar actualmente rellenas de material arenoso suelto, lo cual, sin disminuir en mucho su peligrosidad, hace muy difícil su localización. Cuando las zapatas de cimentación quedan asentadas en estas zonas falsas se producen asentamientos diferen­ciales fuertes entre columnas, lo cual ha sido fuente de problemas en estas áreas. Análogamente, en la zona del Pedregal en la que aparece una fuerte costra de derrames basálticos, en el contacto entre los diferentes derrames pueden aparecer cuevas o aglomeraciones de material suelto y fragmentado que pueden ser causa de fallas bajo columnas pesadas. Esta es la razón citada por Marsal y Ma­zarí para explicar por qué las estructuras pesadas de la Ciudad Universitaria se erigieron evitando las áreas invadidas por las lavas derramadas antaño por el volcán Xitli. De otra manera, los costos de inyección de cemento para estabilización del suelo pueden resultar altos. Otro problema que se presenta en la parte Norte de la Ciudad de México, dentro de la zona general de las Lomas es la presen­cia de depósitos eólicos de arena fina y uniforme; estas formacio­nes son susceptibles de producir asentamientos diferenciales bruscos y erráticos y exigen estudios importantes para elegir el tipo de cimen­tación más conveniente o el método más eficaz de compactación artificial.

Entre las serranías del poniente y el fondo del lago de Texcoco se presenta una Zona de Transición (ver fig. X II-2 ), en donde las condiciones del subsuelo desde el punto de vista estratigráfico varían muchísimo de un punto a otro de la zona urbanizada. En general aparecen depósitos superficiales arcillosos o limosos, orgánicos, cubriendo arcillas volcánicas muy compresibles que se presentan en espesores muy variables, con intercalaciones de arenas limosas o limpias, compactas; todo el conjunto sobreyace sobre mantos potentes, predominantemente de arena y grava. Los problemas de capacidad de carga y de asentamientos diferenciales pueden ser muy críticos, sobre todo en construcciones extensas sujetas a condiciones de carga disparejas; esto es frecuente en construcciones industriales, por otra parte muy frecuentes en esta zona. Como consecuencia, el ingeniero ha de investigar muy cuidadosamente todo el conjunto de propieda­des de los materiales que constituyan el subsuelo de la obra de que se

526 CAPITULO XII

Page 551: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

8 SIERRA PITOS

TAJO DEV NOCHISTONGO/

LAGUNA DE ZUMPANGO

LAODEXALT0CA

CERROCHIQUIHUITÍ

*!?. PoPo/0

Cl ICONAUTLA

R|O.StO

* b LAGO XOCB ■ W ai-CERROfílTU? XOCHIMILCO

CHALCO

SAN RAFAEL

♦'\V . POPOCATEPETL

____

E S C A L AO 5 10 15

K ILO M E T R O S

y 1 .* i r :y / ▼/

*TUNEL ES D E"” ' ' * \TEQUI QUIAC J }

\ , * < \

s'erra 0e.Hüí

{•"■pACHUCA \

t *LLANOS DE APAf¿—— /

IXTACQHUATL

t C H IC H iN A U T Il i t

SIGNOS CONVENCIONALES

< 500 m. s.n . V o lt»500 o 1000 m .s .n .V a lí*1000 o 2 0 0 0 m .» .n .Valle

> 2 0 0 0 m .« .n .V a ll» P orteaguas G»neral de la Cuenca

Porteaguas de los SubcuencasFondo del Valle : 2 2 4 0 m .s .n .m .

Fie. XI I -1 . Mapa orografico eH I D R O G R A F I C O D E L V A L L E D E

M é x i c o i r e f . i )

Page 552: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 553: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 554: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 555: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 527

trate. Como un ejemplo de las consecuencias que pueden derivarse de la ignorancia de este punto fundamental, Marsal y Mazarí citan el caso, por cierto muy reiterado, de un edificio cimentado sobre pilotes de punta calculados con fórmulas dinámicas, de tanto uso desdichadamente en el pasado. Al ser hincados hasta el rechazo, los pilotes quedaron apoyados a profundidades muy diferentes, de acuerdo con la erraticidad con que aparecieron lentes de arena resistente. Al cabo de muy corto tiempo, la estructura sufrió daños muy severos emanados del hecho de que los lentes de arena estaban contenidos en una matriz general arcillosa compresible y, por estar los lentes a muy diferentes niveles, los espesores de arcilla bajo los pilotes resultaron también muy distintos, siéndolo, por lo tanto, sus asentamientos totales.

Además de la anterior zona de transición existe en la Ciudad de México la Zona del Lago, así llamada por corresponder a los terre­nos que constituyeron al antiguo lago de Texcoco. Un corte estrati- gráfico típico en esta zona exhibe los siguientes estratos1:

1) Depósitos areno-arcillosos o limosos o bien rellenos artifi­ciales de hasta 10 m de espesor.

2 ) Arcillas de origen volcánico, altamente compresibles, con intercalaciones ae arena en pequeñas capas o en lentes.

3) La primera capa dura, de unos 3 m de espesor, constituida por materiales arcillo-arenosos o limo-arcillosos muy com­pactos. Esta capa suele localizarse a una profundidad del orden de 33 m.

4) Arcillas volcánicas de características semejantes a las de 2 ), aunque de estructuración más cerrada. Él espesor de este manto oscila entre 4 y 14 m.

5) Estratos alternados de arena con grava y limo o arcilla are­nosa.

En algunos lugares, a partir de los 65 m, se ha encontrado un tercer manto arcilloso compresible.

Es claro que en la zona urbanizada pueden encontrarse variacio­nes importantes respecto a la anterior secuencia estratigráfica. Una causa importante de diferente comportamiento mecánico en los suelos radica en los antiguos monumentos aztecas o coloniales, hoy des­aparecidos, pero que han inducido fuerte preconsolidación en zonas determinadas: hay lugares en que por estos efectos la capa arcillosa superior no pasa de 20 m de espesor (Palacio Nacional): otra causa de diferencias es el bombeo disparejo en intensidad en los distintos puntos de la ciudad. Con base en estos criterios, la Zona del Lago ha sido subdividida por Marsal y Mazarí en dos (fig. X II-2 ). La primera abarca la ciudad antigua y en ella son frecuentes diferen-

Page 556: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO XII

N o t a :La devoción 0 , co­rresponde o lo coto del Banco de A lza COOICO* 2 2 4 4 . 5 »

-120C O R T E W - E O O R W . MONUMENTO A COLON

$ i « * a « C o v v f c i o ■ a l « » :k * . H iuv.hii» i»rk w EH36**'*

HUA íera BBHa. c l»C0««o»

Fig. XII-3. Dos cortes estrotigráflcos del subsuelo de la Ciudad de Mixteo, porel Monumento a Colón1

Page 557: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

cias por preconsolidación, notorias aun dentro de los límites de un predio; la segunda, cubriendo aquella parte de la ciudad que no fue antes cargada con construcciones antiguas hoy inexistentes y que, por lo tanto, presenta mayor homogeneidad en propiedades mecá­nicas. En la fig. X II - 3 se muestra la estratigrafía de la Ciudad según dos ejes ortogonales que se cruzan en el Monumento a Colón.

Por métodos gravimétricos se ha estudiado en una amplia zona del Valle de México la topografía de la masa ígnea basal, llegándose a la conclusión de que ésta está a gran profundidad, en ocasionesdel orden de 1 ,0 0 0 m.

También se dispone hoy de una amplia información del subsuelo proveniente de la perforación de muchísimos pozos de muestreo y exploración en todos los rumbos de la Ciudad de México. De ahí salieron muestras innumerables que han sido probadas en gran nú­mero de laboratorios y que han producido el cúmulo de información y experiencia con que hoy se va contando. En algunas ocasiones, para digerir correctamente tanta información de laboratorio se han realizado estudios estadísticos, de los cuales el más completo en cono­cimiento de los autores de estas páginas es el efectuado por los ya citados Marsal y Mazarí, que sirve de base para los polígonos de regresión que se presentan más adelante.

MECANICA DE SUELOS (II) 529

X II-2. Propiedades índice y composición del subsuelo de la Ciu­dad de México

Marsal y Mazarí recurrieron al análisis estadístico de los resul­tados de las pruebas realizadas en las muestras obtenidas en el sub­suelo de México con el doble objeto, a su propio decir, de presentar en forma concisa los numerosos datos obtenidos y de describir posi­bles relaciones entre las propiedades. Para tal fin trazaron los polígo­nos de frecuencia de los contenidos de agua natural, de la relación de vacíos " in situ” y del peso específico relativo de los sólidos ( fig. X II-4 ). También, tomando como variable independiente el contenido de agua, trazaron las curvas de regresión estadística de las otras dos propiedades citadas.

De un modo análogo se investigaron los límites de plasticidad, con resultados que aparecen en la fig. XII-5.

Los mismos autores que se vienen comentando realizaron un com­pleto estudio sobre la composición de las arcillas que constituyen el subsuelo en el ex-lago de Texcoco; las conclusiones de ese estudio se citan textualmente a continuación:

"Llaman la atención las conclusiones inciertas y hasta contradic­torias de los estudios realizados. Sin duda la constitución petrográ­fica de los materiales ensayados es compleja. Además no existe3 4 — M ecán ica d e Suelos II

Page 558: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

CAPITULO XII

POLIGONOS OE FRECUENCIAS

V o to rm t d lo 5.81

E r r o r « t ó i* 4 o r 1 0 .0 3

D ttorm inoctoneo 9 0 1 5

5 0 0

.2 200

100

2000

V o lo r otodk» 2 . 4 4 2

E r r o r ootóodor 1 0 . 0 0 1

Potoroilw ocioooo 11041

1000

o l1.5

ReiocióndeVocíoe2 .5

De rwidod de Sólidos

15

10

CURVAS DE REGRESION2 .5

s

•S“*'OU ,

2.3

1 .30

O 2 5 0 5 0 0 5 5 0 O 2 5 0 5 0 0 5 5 0

Contenido de Aguo Noturol, w, en %

DESVIACIONES ESTANDAR 0 .15

2 *40

i 0 .5 0

0 . 3 0

-

"m _

_ " eiV

0.13

0.11

O „ 2 5 0 5 0 0 6 Í 00 .0 9

£ £2 3 0 5 0 0 6 5 0

Contamdo de Agua Natural, w, an %

Fig. XI1-4. Curvas estadísticas relativas al contenido de agua, la relación de vados v al peso especifico relativo en las arcillas del Valle

Contanido de Aguo Natural, w an %

Page 559: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Desv

iació

n Es

tánd

ar

Limita

Liq

uido

, an%

Fr

acua

ncío

sMECANICA DE SUELOS (II) 531

POLIGONOS DE FRECUENCIAS

3 0 0

200

100

Valor modto 236.3% Error aatándar i 1.4% Datar minocioM* 6 0 3 6

I1200

1000

5 0 0

Valor atadlo 75 .7 % Error as fondor £ 0 .3 % Datarmtaocioiioa 6 17 6

í

t\

2 5 0 3 0 0 6 50

Limita Líquido, an %

5 0 0

2 5 0

~ 0 100 2 0 0 2 60

Limita Plástico. an%

Valor madto 162.0 Error astándor t 1.2 Datorminodonas 7 7 5 0

P,L->

/*Vt

k,MI

Indico do Plasticidad

CURVAS DE REGRESION

Contanido da Aguo Natural, w, an %

DESVIACIONES ESTANDAR

Fig. XI1-5. Curvos estadísticas relativas a limites de plasticidad1

Page 560: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

todavía una clasificación general bien definida ni métodos de labo­ratorio precisos para lograrla.”

En definitiva parece concluirse del estudio que las partículas minerales conservan su estructura cristalina, aun las más finas. De acuerdo con los estudios realizados sobre muestras de arcilla del Valle de México por Skempton2 el tipo del mineral constitutivo en estos materiales seria la montmorilonita; sin embargo, la revisión del tra­bajo de Marsal y Mazarí no parece confirmar tal conclusión. En efec­to, de diversos tipos de análisis parece poder extraerse la conclusión de que el grupo mineralógico predominante es el de las ilitas.

XII-3. Propiedades mecánicas de resistencia y compresibilidad en las arcillas del Valle de México

Desde luego que el problema principal con el que se enfrenta el proyectista de estructuras en el Valle de México es, en general, el de los asentamientos que inducen las sobrecargas y su efecto en la es­tructura misma y en las estructuras vecinas; sin embargo, el problema de la resistencia del subsuelo es también muy digno de consideración, dado que se refleja de un modo directo en la Capacidad de Carga que es, claro está, otra cuestión de importancia.

Para tener una información estadística relativa a resistencia en las arcillas del Valle de México es preciso recurrir otra vez al com­pleto trabajo realizado por Marsal y Mazarí, que ya se citó más atrás como ref. 1 . En la fig. XII -6 aparecen polígonos de frecuencias y curvas de regresión estadística para los valores de la resistencia a la compresión simple en estado natural ( qu) y remoldeado {q Ur ) 4, en las arcillas del Valle de México se cumple con bastante precisión la regla de que la resistencia a la compresión simple es el doble del valor de la cohesión o resistencia “rápida” del material, por lo que el valor de qu es de suma utilidad en cuestiones de capacidad de carga.

En la fig. XII-7 aparece una curva de regresión estadística del ángulo de fricción interna aparente, <j>', obtenido en pruebas rápidas- consolidadas, contra el contenido de agua natural de las respectivas muestras.

En la misma ref. 1, Marsal y Mazarí comentan que intentaron ejecutar pruebas triaxiales lentas y rápidas, pero con dispersiones de tal magnitud durante el proceso de carga que los datos logrados son dudosos. También se describen mediciones de presión neutral en pruebas rápidas-consolidadas.

También realizaron en el estudio que se viene glosando pruebas de resistencia al corte en el lugar, por medio de una veleta diseñada de un modo bastante preciso. Estos resultados se compararon con la resistencia a la compresión simple, q„. obtenida en puntos en un pozo

532 CAPITULO XII

Page 561: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

P O L I G O N O S D E F R E C U E N C I A S

MECANICA DE SUELOS (II) 533

Valor modio 0 .1 0 7 Error «stóndar t 0 .0 0 2 Ottorminacionos 7 6 0

qUr

R esistencia a la com presión sim p le , q u i en kg /c m >

C U R V A S O E

O.l 0.2 0.3 0.4 0.3R esistencia a la com presión de m ateriales re m o ld ea d o t'O w en kg/cm *

R E G R E S I O N

Fig. XI1-6. Curvas estadísticas relativas a la compresión simple1

hecho en las inmediaciones del lugar en que se había hincado la veleta. Sistemáticamente se observó que la resistencia a la compresión simple era menor que el doble de la resistencia obtenida con la veleta, de manera que aproximadamente:

Page 562: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

534 CAPITULO XII

Contenido de agua natural, w , en %

Fig. XI1-7- Curvas de regresión estadística del ángulo de fricción en prueba Re, contra el contenido natural de agua1

2 X Resistencia en la veleta.

Es probablemente inútil insistir sobre el hecho ampliamente cono­cido de que las arcillas del Valle ¿e México son altamente compre­sibles, al grado de que el problema de los asentamientos es el que principalmente debe preocupar a los ingenieros proyectistas de tímen- taciones. Las arcillas están normalmente consolidadas en general; sin embargo, el intenso bombeo que últimamente se ha efectuado en los acuíferos del terreno ha aumentado las cargas de preconsolidación en los materiales sujetos a dicho fenómeno.

Gracias a mediciones piezométricas en muchos puntos de la zona urbanizada ha sido posible verificar los valores de las cargas de pre- consolidación calculados en el laboratorio; en efecto, la gráfica de presión por peso propio con la profundidad puede trazarse y también

Eu ed e conocerse la influencia de la sobrecarga superficial, aplicando i te o r ía d e Boussinesq, por ejemplo. Salvo en casos de alteración de

p ro b e ta s o de capas que sufrieron la acción de un secado, la informa-

Page 563: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

M E C A N IC A D E S U E L O S ( I I )

P O L I G O N O S D E F R E C U E N C I A S

535

300

200

3uml£

l o o

Valor medio o.ee Error estándar 1 0.02 Determinaciones 1725

rny&

ts -

Coeficiente de compresibilidad, media en recompresiáo,

o ,m, en cm»/kg

Coeficiente de compresibilidad en etintervalo de preconsoüdación,

a ,,,.e n cmVkg

C U R V A S O E R E G R E S I O N

i « - £ oume•

*O0 >• o»

I !5 *dfc >5 oM C5 '.2

I I

1 11 3

í 1I

•2 o 3

I e* o S •S S

i * |

V ,^ a 1 • •c*5

X «•LY i

- J

0 V5o w >0 «9Contenido de agua natural, te, en % Contenido de ogua roturo!, te, en %

Fig. XII-8. Carras da ragrasión y polígonos da fraeuandas dal coaficianfada eomprasibUidod1

Page 564: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ción de este estudio1 indica que las cargas de preconsolidación coin­ciden aproximadamente con las máximas presiones intergranulares calculadas, tomando en cuenta el efecto del bombeo.

En la ref. 1 se presenta un análisis estadístico muy completo de las características de compresibilidad de las arcillas del Valle de México, tal como es posible determinarlas en el laboratorio. De ahí se ha extraído la información que se presenta en lo que sigue.

Dada la forma de las curvas de compresibilidad en los materia­les del Valle, Marsal y Mazarí distinguen tres coeficientes de com­presibilidad; el primero es el valor medio en el tramo de recompre­sión (am ), el segundo es el representativo del intervalo de presiones que comprende a la carga de preconsolidación y corresponde al tramo

536 CAPITULO XII

P O L I t O N O S D E F R E C U E N C I A S

sa S£ 100

Valor modto 0.449 Error «standar 1 0.009 DottmOnodon** 1 7 t t

n

s!

i -A

Valor m«dk> 0.04* Error estándar 10.001 Dtttr mlnocion— 1729

r-

*

-

-*

0 0.25 0*90 0,79 1*00Iftdtet d i ©ompf*$WWod poro lo corvo*

* mc'Ofl cmVkf

O 0.09 OJO^ --------- Ifc-MI M *-------- * — . --- -----

• m *,cm l /kg

C U R V A S D E R E G R E S I O N

S 0-5*

lj!I 1 °'n

4

1 © 1

í1ai

1

O ISO 500 *50CootowMo A» OQUO M U W t ■ , » % ■ C éoleeldo « e o se o w lw e l e , w .%

Fig. XI1-9. Polígonos de frecuencia y curros de regresión respecto a l contenido de agua para el Indice de compresibilidad1

Page 565: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

de fuerte curvatura de la curva de compresibilidad (a**); el tareero representa al tramo “virgen”, en el que, en la arcilla en estudio, e varía respecto a p con la ley.

e r - A fr™

donde A es una constante y m es el índice de compresibilidad, definido por dicha ecuación. El valor de m en el proceso de carga se ha representado por mc. En la fig. X II -8 aparecen polígonos de frecuencias y curvas de regresión estadística para avm y a»? y en i®

P O L I G O N O S D E F R E C U E N C I A S

MECANICA DE SUELOS (II) 537

valor mtdio l.049*IO**tm,/*o9

Volar «tánO arí ,03l6 «K>-*emV«og D«t«rminoclon«f 3 < 97

200

190

5o

100'

o 9 10 19 2 0

Coof¡cianio de consolidación, c v , *n IO-*cm*/seg

MUESTRAS INALTERADAS

Valor «xdk> 0.097« icr,cm,^o o Error estándar* .005«K>"*cioV*ee

Dolor mioocioAOS 4 8 9

m

®C U R V A S D E

0 .2 9 0 .9 0 0 .7 9 I

Coef ¡cíenle de consolidación, cVr en IO-»cm*/seg

MUESTRAS REMOLDEAOAS

R E G R E S I O N

1 - 1 i *8 ɧ 5 2« 75 2I s ,J?il

! o

i 8 <*I 58 - 8 E o o o •* Ó 'S c e o501O

10

I t "t

o l—-- i

= -

0----- w

Relación de vacíos, e Relación de vacíos, e

Fig. XII-IO. Polígonos da frecuencia y de vacíos del

curvas de regresión respecto a la relación coeficiente de consolidación1

Page 566: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

fig. XII-9 se da la misma información para mc, a partir del cual puede calcularse a* en el tercer tramo de la curva de compresibilidad con la expresión:

me eav = — = —P

Una ecuación igual a la anterior puede escribirse para el tramo de descarga con un valor de m que ahora se representa por m<¡. En la fig. XII-9 se dan curvas de regresión también para este último valor.

En la fig. XII-10, tomada de la misma referencia que tanto se ha comentado, aparecen las curvas de regresión estadística del Coe­ficiente de Consolidación (C„) respecto ahora de la relación de vacíos.

XII-4. El hundimiento general de la Ciudad de México

Las primeras advertencias serias sobre el hundimiento general del Valle de México fueron hechas por Roberto Gayol alrededor de 19253, quien se fijó en el hundimiento general y especialmente en el de la Catedral Metropolitana, durante sus trabajos sobre el sistema de drenaje de la ciudad de México, de cuyo proyecto fue autor. Y a el Ing. Gayol atribuyó el fenómeno a "perturbaciones que en el fondo del Valle de México ha producido el drenaje de las aguas del subsuelo".

José A. Cuevas fue el continuador de las ideas de Gayol y el verdadero precursor y primer introductor de la Mecánica de Suelos en México. El y su discípulo N. Carrillo analizaron la influencia del bombeo en los pozos de aprovisionamiento de agua de la Ciudad a la luz de la Teoría de la Consolidación de Terzaghi y compararon los resultados obtenidos con mediciones locales en diferentes sectores de la Ciudad: de esa época data la demostración definitiva, realizada por Carrillo al margen de pequeños errores de detalle por falta de información completa para respaldar todas sus conclusiones, de que el abatimiento de los niveles piezométricos profundos causados por el bombeo de los estratos acuíferos era la causa primordial del abati­miento.4

Posteriormente los nombres de Marsal, Hiriart y Sandoval (ver, por ejemplo, la ref. 5) están asociados a un gran número de las ex­tensas investigaciones que se han venido realizando, tanto por parte de autoridades federales y municipales, como por parte de institu­ciones privadas. En épocas algo más modernas, el nombre de L Zeevaert ha venido a sumarse a los anteriores.

Es un hecho comprobado que los acuíferos existentes en el sub­suelo de la Ciudad de México estuvieron sujetos a presiones arte­

538 CAPITULO XII

Page 567: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 539

sianas, inclusive los relativa­mente poco profundos. Hoy, el bombeo p rod u cid o con fines de abastecimiento de aguas para la zona urbana ha producido abatimientos de los niveles piezométricos, en algunos casos su p erio res a los 20 m. Este abatimiento de presión en los aculferos provoca flujo de agua de los mantos arcillosos hacia ellos, con la correspondiente con­solidación de las a rcilla s , acompañada de pérdida de volumen.

Si se toma como configu­ración inicial la que de la Ciudad de México presentó Gayol, correspondiente a los últimos años del siglo pasa­do, el hundimiento general ha sido del orden 5 m en la Catedral, de 6 m en la calle de Tacuba y en la Alameda Central y de 7 m en la zona en que confluyen las aveni­das Juárez y Reforma, (ver fig. X II-2 ). En la actualidad

el hundimiento ocurre como una función lineal del tiempo, pero es muy variable de unos a otros puntos de la Ciudad, por lo que es difí­cil hablar de una cifra representativa del hundimiento anual, que oscila en tanto como de 5 a 20 cm/año, y aún más. Los estratos arcillosos que se encuentran a profundidades menores que 50 m son los principales responsables del fenómeno, particularmente los comprendidos entre los 20 y los 50 m de profundidad.

A continuación se exponen, con base en la ref. 1, algunos estu­dios teóricos del fenómeno del hundimiento, realizados utilizando la Teoría de la Consolidación de Terzaghi. En primer lugar se estu­diará el caso de un solo manto de arcilla, drenado por sus caras superior e inferior, sometido a un abatimiento rápido de la presión del agua constante con el tiempo y suponiendo que el nivel freático se mantiene a la misma profundidad durante el proceso de consoli­dación subsecuente. Ese estrato de arcilla es homogéneo, de espesor

Evidencia del hundimiento de la Ciudad de México. Lo que aparenta ser un poste es en realidad el ademe de un pozo antiguo, hincado en los estratos firmes. Marca un nivel ante­

rior de la superficie del terreno

Page 568: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

540 CAPITULO XII

Evidencia del hundimiento de la Ciudad de México

H y la pérdida de presión Ap ocurre en el acuífero permeable infe­rior. (fig. X II- 1 1 ).

Antes de que se produzca el abatimiento A p en el acuífero, las presiones estaban como se ve en la parte a) de la figura, lo que corresponde a la configuración hidrostática de equilibrio. Al produ­cirse el abatimiento el proceso de consolidación comienza y en la parte b) de la figura se ve la distribución de presiones en el agua

S u p e rfic ie d e l te r re n oS u p e r f ic ie d t

■ u pe rfic iede l te rre n o

.D is tr ib u c ió n \ d e p res iones .

\ j n t l tiem po,- \D is tr ib u c ió n \ d e presiones

^ \p o r o t * ®A rc illo

Acu i'feroIn fe r io r

(a) ( b ) ( c )

Fig. XII-1 I. Distribuciones de presión neutral en un estrato de arcilla con un abatimiento Ap constante en el acuífero que sirve de frontera

inferior. N A F en la frontera superior del estrato arcilloso1

Page 569: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

en un instante intermedio t. Al fin del proceso (parte c de la figura), la distribución vuelve a ser lineal con pendiente igual a:

1 AP

MECANICA DE SUELOS (II) 541

y» (H — A H /)

donde A H/ es el hundimiento final del estrato. Al fin del proceso, el incremento medio de esfuerzo efectivo en el estrato de arcilla es

A F = ^ = - y w ( 12- 1)2 2

De acuerdo con la Teoría de Terzaghi (Capítulo X del Volumen I de esta obra), la presión promedio en el agua, en exceso de la hi- drostática, vale en el manto de arcilla:

n = “ 0 ir2( 2 n + l ) s T

a = - - (1 2 -2 )n = 0 ít2 ( 2 n + 1 ) 2

Siendo n la serie de los números naturales, e la base de los logarit­mos neperianos y T el factor tiempo.

T = C ' T F

Cv = coeficiente de consolidación.H = espesor del estrato de arcilla.

Debe notarse que el flujo de agua no ocurre hacia la frontera superior de la arcilla, por lo que el espesor efectivo de ésta es igual al total.

Si AH es el hundimiento en el tiempo t, se tiene:

s f r = 1 - - 3 r ( 1 2 -3 )Siendo

AH/ = rr—— ApH (capítulo III)1 + e r

av = coeficiente de compresibilidad.Por lo tanto, la expresión para el hundimiento del estrato de

arcilla en este primer caso analizado seráA„ H AE r . »=® 8

= i—r— av 1 — T -r~— r ~rTT~? e 41 + c 2 L f: 0 (2n + l) *T

(12-4)

Page 570: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

La expresión 12-4 sólo toma en cuenta las deformaciones del suelo causadas por consolidación primaria; en el Valle de México la consolidación secundaria es de escasa significación cuando se opera en el tramo virgen; así pues hay razón para pensar que en las arcillas de México la consolidación secundaria no invalidará el uso de ecuaciones como la 12-4 que la ignoran.

Marsal y Mazarí,1 analizan también el caso de un estrato de arcilla con el nivel freático constante en elevación, en el que ocurre un abati­miento Ap no constante en los estratos permeables subyacentes y tal que la velocidad de asentamiento en la superficie es constante, lo que concuerda con mediciones efectuadas en la ciudad de México.

Si el nivel freático se mantiene fijo con respecto a la superficie del terreno durante el proceso de consolidación, se cumple la condi­ción especificada en la fig. XII-1 l.c y el incremento medio de esfuer­zo efectivo en la arcilla será

542 CAPITULO XII

Si se llama r a la velocidad de asentamiento, constante, se tiene

AH = rt = r - 5 - T (12-5)

por otra parte

En la expresión anterior, que se justifica dentro de la Teoría de Terzaghi, las letras tienen los siguientes significados

AHf = asentamiento final, al cabo del proceso de consolidación. AH — asentamiento en el tiempo t.

u — presión en el agua en exceso de la hidrostática que existe como promedio en el estrato arcilloso.

Combinando las ecs. 12-5 y 12-6 se tiene:

u = A ^ - .HS 1. t p l T (12-7)Ct>

Supóngase ahora que las presiones ywh se abaten en el estratopermeable inferior siguiendo una ley con el tiempo según la cual lapresión disminuye en incrementos constantes iguales a:

Page 571: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Y» d k A-r - A T

MECANICA DE SUELOS (II) 543

2 d-1

aplicados sucesivamente en los instantes x. Puede entonces demos­trarse que las caídas de presión medias en la formación arcillosa, in­ducidas por cada uno de aquellos incrementos son de la forma

- Y * v t \ a V _ _ L _ P ( t _ \ ( 1 2 -8 )H i - — ( T) A- t Z oWt ( 2 „ + 1)2 e Vr

Si yu>h(0) es la depresión existente en el momento inicial, el exceso sobre la presión hidrostática u ( 7 ) promedio en el manto compresible resulta1

u ( 7 ) = - f - M 0) u0( 7 ) + J f e - j V ( T ) dx; 7 > 0

(12-9)En la expresión anterior:

Ua = y 8 e - ^ r ( 1 M 0 )° ¿ * 2 ( 2 n + l ) s

Teniendo presentes las expresiones 12-1 y 12-7, la fórmula 12-9 puede transformarse en la ecuación integral:

flt T ) — 2HÍ Í "*■ e —- 7 = f t ( 0 ) t i o ( 7 ) + ( V ( t ) o 0 ( 7 — t )3 P 0

v v ( 1 2 -1 1 )

Cuya solución puede encontrarse mediante el uso de la transfor­mación de ¿aplace, limitando el número de términos a considerar en la serie de la expresión 12-10; en general, para 7 ^ 0.1 es aceptable operar con los dos primeros términos de la serie. Así, se tiene.

* = ! [ . - * + $ r ? \ |

En la ref 1, Marsal y Mazarí obtienen para el caso en que 7 sea relativamente grande ( 7 > 0.1) el siguiente valor para la solución de la ecuación integral 1 2 - 1 1 :

h (T ) = + ^ r- [— 0.408 e - 10 05r — 0.256 e - 54-88r +' a„ C„ y»

+ 1.99 7 + 0.664] (12-13)

Page 572: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

544 CAPITULO XII

Ley que da la variación de las cargas piezométricas con relación al tiempo para las condiciones particulares del problema propuesto.

Otro de los casos que Marsal y Mazarí1 estudian teóricamentepara acercarse al proble­ma del hundimiento del Valle de México, causado por el abatimiento de pre­siones en los acuíferos a resultas del bombeo que se efectúa, es el que se deta­lla a continuación mos­trando condiciones estrati- gráficas muy parecidas a las que prevalecen en la zona urbana de la Ciudad de México.

Ahora se consideran dos estratos de arcilla de es­pesor Hi y H 2, entre los que existe un acuífero en el que se produce un abatimiento de presión en el agua Api. Además exis­te el abatimiento Ap2 en la

Fig. XII-12. C o n s o lid a c ió n s im u ltá n e a d e dos capas de a r c i l la separadas p o r un a c u ífe ro . N iv e l f re á t ic o a p ro fu n ­

d id a d cons tan te

frontera inferior del sistema, que es otro acuífero profundo. Se con­sidera al nivel freático en posición constante (fig. XII-12).

Se admitirá también que se cumple la relación:

Api _ £i_Ap2 Z2

(12-14)

Los incrementos finales de esfuerzos efectivos en ambos estratos serán:

A f f i = l ^ = £ £ ii/ Z 2 2 2 2 2

. - Jw h iAff2 = -*-=—

(12-15)

(12-16)

En las expresiones anteriores Ai y h 2 son los abatimientos en los niveles piezométricos correspondientes a Api y Ap2 respectivamente, según la relación.

A p = ~fu>h

Page 573: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En la consolidación, los incrementos medios de jos escuerzos efec­tivos están dados por las dijerencias Affi — Ui y Aor2 — a2 en los dosestratos de arcillas, siendo ux y u2 las presiones promedio en excesode la hidrostática. Teniendo esto en cuenta, los asentamientos en cada uno de los estratos son:

AH í = -r— — Hi(Affi — Ui) (12-17)1 + ei

AH2 = - ± ^ — H 2 ( A í , - í , ) (12-18)1 + e2

Donde a», y , son los respectivos coeficientes de compresi­bilidad de los dos estratos y ej y e2 las relaciones de vacíos iniciales de los mismos.

Si R es la relación entre la suma de los enjutamientos parciales en ambos estratos compresibles y el asentamiento total observado, AH, podrá escribirse:

R ■ AH - - H 1 (Affi — uj) +1 + ei

+ Aff2 - Ü 2) (12-19)1 + e2

Siendo el hundimiento una función del tiempo, que ocurre con una rapidez r, debe cumplirse que

R . AH = r t - l ^ (12 -20)

donde E es el módulo de deformación volumétrica de los depó­sitos de material permeable situados en la frontera inferior del siste­ma, pues el dren intermedio se considera incompresible.

Los factores tiempo en ambos estratos resultan:

_ C „

r 4 = ^ ( ( 12 -2 1)

Cv, y Cv, son los respectivos coeficientes de consolidación de los dos estratos de arcilla.36— M ecánica de Suelos II

MECANICA DE SUELOS (II) 545

Page 574: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

546 CAPITULO XII

Igualando las expresiones 12-19 y 1 2 -2 0 , tras substituir en ellas los valores de Aoi y Acr2 dados por las expresiones 12-15 y 12-16, se tiene:

- r t —

+

y,oh¡¡ ( t )

( 12-22 )

+ y ez \ j r hi W ~ “2 M

Lo cual puede aún escribirse como:

H x 1 -f e2 a», f z o - 1 2 -

T J ¡ TTéT *’ 1,1 - S - ( , , J + (,) ('> =

_ 2 (1 + e2) t 2 ( 1 + e2)dV2H 2 y i <? a,?2 M2E

h2 (t) (12-23)

Los excesos medios de presión arriba de la hidrostática están dados por las siguientes ecuaciones integrales:

~ Ttf Zi“ i — —2 z2 M O ) Ui(0)(f) + j h'i ( t ) n1(0)(t — t ) ¿ t J

—“2 = T h2(0 ) a 2(0) (f ) + f /i s ( t ) u2(0) ( í - t ) ¿ t

J n

En las que:

(12-24)

(12-25)

“ 1 (0 ) — ^8

nt * 2( 2 n + l ) s

3-=(2» + l)sCi■ e " 775- iLt

“ 2(0) — ^8

£ * ■ ( 2 n + 1) =

7T! ( 2 » + 1 ) 2C

e~ 775

Al reemplazar las dos expresiones de arriba en la 12-23 se ob­tiene la ecuación integral que sigue, cuya solución puede lograrse haciendo uso de la Transformación de Laplace.

Page 575: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 547

Hi 1 + et aVi Z i 2 ( 1 + c2)

1 + e 2 z 2 a,, H¿E h2 (í)

^ í i _ ± _ f i L r t — — [* h'2 ( t ) U n o)(t ■— t ) < ¿ t +3 2 2 2 0

+ | h\ ( t ) tt2W( t — t ) ¿ t ; í > 0 (12-26)

En la ref. 1. que ha servido como guía fundamental en la pre­sentación de todo este capítulo, Marsal y Mazari presentan la solu­ción de la ec. 12-26, en la cual inclusive se vierten valores típicos de las propiedades mecánicas de las arcillas del Valle de México, para llegar así a una expresión final de valor local. Esta solución es la función h2(t) o sea la ley con que deben variar las depresiones en los estratos permeables inferiores para que el hundimiento de la super­ficie del terreno ocurra a velocidad uniforme, como resultado del cambio de espesor de las dos capas arcillosas y de la compresión de los depósitos granulares gruesos del subsuelo. La solución mencio­nada se escribe a continuación:

, , . x _ 2 <1 + e ’ > 2Í ) ~ a„2H 2j w [ -

2.072 e- 0 0125 * — 0.022 e-° 0994 * —

— 0.002 e- ° - 272 i — 0.324 e-°-366f — 0.009 e- ° - 539 í —

—0 .0 1 1 e- 2 2274 + 0.185 t + 2.440 J (12-27)

En la ref. 1 se presentan aún otras muchas posibilidades y com­binaciones circunstanciales en que puede plantearse teóricamente el problema del hundimiento con base en la Teoría de la Consolidación Unidimensional con flujo vertical de Terzaghi; la razón de tanta variedad de estudios está en el propio Valle de México, que presenta formaciones variadas, con uno, dos y aún tres estratos compresibles.

Uno de los aspectos notables revelados por estos estudios es el destacar la influencia que tiene la compresión de los mantos pro­fundos, permeables, en la etapa inicial del enjutamiento; los desarro­llos analíticos sirven también para destacar la influencia de los drenes en la evolución de los hundimientos con el tiempo.

Page 576: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

En la ref. 1, Marsal y Mazan comparan las diferentes soluciones teóricas con los datos observados en diferentes puntos de la Ciudad de México. En general, se señalan discrepancias de importancia, tan­to en las profecías que pueden establecerse sobre la evaluación de niveles piezométricos, como de los valores del asentamiento con el tiempo. Sin embargo, tras un estudio comparativo completo, con los datos hoy disponibles, los autores citados concluyen que “la verifi­cación de la Teoría (de Terzaghi) es satisfactoria’ , teniendo en cuen­ta la erraticidad de las propiedades mecánicas, las alteraciones del muestreo, los cambios estratigráficos, las condiciones causadas por la explotación del agua y las construcciones.

XH.5 Comportamiento de cimentaciones. Aplicabilidad de las distintas teorías disponibles

En la ref. 6 , Marsal y Mazarí presentan un estudio bastante com­pleto sobre el comportamiento de los diferentes tipos de cimentaciones que se han usado en la Ciudad de México. Al fin de la citada refe­rencia se incluye un resumen, que servirá como material básico de la información que aquí se presenta en los párrafos siguientes.

A. Capacidad de carga en zapatas

Las fórmulas de Terzaghi para determinar la capacidad de carga en zapatas se han aplicado satisfactoriamente en el caso de la Ciudad de México; en los terrenos arenosos de la zona de las Lomas se ha usado un factor de seguridad hasta de 6 , pero sobre todo para limitar los asentamientos diferenciales. En las zonas de Transición y del Lago se ha trabajado con factores de seguridad comprendidos entre 3 y 6 ; en este caso, los asentamientos se han controlado con excava­ciones que produzcan compensación parcial, pues en caso contrario y aún en casas de uno y dos pisos, alcanzan valores tan altos que hacen peligrar la estabilidad de las construcciones más someras.

Por otra parte, la hipótesis de distribución uniforme de las pre­siones bajo las zapatas parece razonable, de acuerdo con las medi­ciones efectuadas.

B. Expansiones por descarga

En un principio se juzgó que el proceso de la expansión del fondo de una excavación era idéntico al de consolidación aunque ocurriese, por así decirlo, en sentido contrario. El agrietamiento del fondo y el de los taludes de la excavación, así como los asentamientos obser­vados en edificios totalmente compensados demostraron, sin embargo, que existían diferencias de importancia entre ambos procesos, razón

548 CAPITULO XII

Page 577: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

por la que resultó necesario realizar medidas y estudios específicos para el proceso de expansión.®

La expansión inicial es extraordinariamente importante, dependien­do de la distancia del punto considerado a los bordes de la excava­ción y de la planta de ésta; en excavaciones de 60 X 18 m, por 6 m de profundidad, se han medido expansiones iniciales rápidas al centro del área de 55 cm y de 20 cm cerca de los taludes, lo que llegó a corresponder a un 60% de la expansión total. Una vez terminada la excavación y ocurrida la expansión inicial, la evolución del fenómeno es similar a una curva de consolidación.

Uno de los factorfes importantes en la magnitud de la expansión lo son las fuerzas de filtración que se establecen cuando comienza el flu­jo hacia el fondo de las excavaciones. En la Ciudad de México se han medido gradientes'de 2 , lo que corresponde a fuerzas de volumen de 2 ton/ms (ver Volumen III de esta obra), de magnitud sufi­ciente para producir el agrietamiento observado en el fondo de las excavaciones; la expansión diferencial en la zona próxima a los taludes produce el agrietamiento de éstos, generalmente en una línea paralela a la corona y ubicada a la mitad de la altura.

Para reducir a un mínimo los efectos de la descarga, se han usado en la Ciudad de México varios procedimientos:

1. Construcción de las cimentaciones con excavación parcial en el área, formando zanjas y celdas de superficie reducida.

2. Bombeo bajo el fondo de la excavación, (ver Volumen III de esta obra).

3. Aplicación de electrósmosis, (ver Volumen III de esta obra).

El primer método ha dado buenos resultados en excavaciones de menos de 7 m de profundidad y con menos de 300 m3 de volumen. Los métodos segundo y tercero han comprobado su éxito una y otra vez, en especial el último, que se ha aplicado numerosas veces con­siguiendo su objetivo y sin ningún percance serio. En cuanto a la estabilidad del mismo fondo de la excavación, los métodos propuestos en este volumen para analizar este tipo de fallas han demostrado ser razonables en la Ciudad de México.

C. AdemesSe han calculado en el subsuelo del Valle de México sobre todo

con base en los criterios empíricos de Terzaghi (ver Capítulo IV) correspondientes a suelos arenosos y cohesivos. Los resultados han sido buenos, siempre y cuando el ademado esté cuidadosamente acuñado y bien construido y conservado. La construcción del Ferro­carril Metropolitano en la Ciudad de México, que comienza en 1967, aportará datos de gran interés a este respecto.

MECANICA DE SUELOS (II) 549

Page 578: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

D . Fallas en taludes

El problema de la estabilidad de los taludes de las excavaciones realizadas en las arcillas de la Ciudad de México es sumamente complejo, pues a las dificultades naturales del tema se unen otras especiales de la zona. En primer lugar suele aparecer en la mitad del talud la grieta longitudinal de que ya se ha hablado. En seguida suele agrietarse también fuertemente la corona del talud, lo que indu~ ce concentraciones de esfuerzos hacia el pie, donde probablemente hay estratos arcillosos blandos, causa de falla progresiva. También es frecuente que los frentes arcillosos estén naturalmente fisurados o que la resistencia se reduzca notablemente con el tiempo por los cambios de contenido de agua propiciados por la descarga de la excavación. Como consecuencia de todo lo anterior las fallas de talu­des han sido comunes y molestas (frecuentemente afectan calles, duc- tos, etc.) y cada día se ve más recomendable el usar un criterio conservador en la adopción de las inclinaciones de proyecto. Parece que la superficie de falla ha sido frecuentemente asimilable a la forma cilindrica, por lo que el método sueco es recomendable, si bien con factor de seguridad de 3 en los casos en que el talud haya de persistir por largo tiempo o de 2 en taludes temporales.

E . Asentamientos

La predicción de asentamientos en las zonas de baja compresibi­lidad de la Ciudad de México (zonas de Lomas, Pedregal, etc.) no es fácil, pues el problema de cálculo de asentamientos en depósitos de arena más o menos suelta no está resuelto, como se indicó en el Vo­lumen I de esta obra (Capítulo X ) . En la zona del Lago, los asen­tamientos pueden predecirse con bastante buena aproximación, siem­pre y cuando se disponga de buena información sobre las propiedades del subsuelo. La aplicación de la Teoría de Boussinesq se considera aceptable y la Teoría de la Compresibilidad de Terzaghi es el arma que se ha usado casi universalmente para los fines de que se habla.

La predicción de la evolución de los asentamientos con el tiempo es mucho más difícil e insegura, pues por un lado se duda que las pruebas de consolidación den un coeficiente de consolidación apro­piado a la realidad y, por otra parte, por la existencia de pequeñísimas capas y lentes de arena cuya intercomunicación no se conoce y cuyo efecto como drenes no se puede, por lo tanto, estimar apropiadamente.

En general ha dado muy malos resultados siempre el permitir que se desarrollen en las estructuras los grandes asentamientos que pue­den llegar a presentarse en la arcilla del Valle de México, si no se toman precauciones específicas contra ellos; un límite de asentamiento que se ha estimado razonable es el de 15 cm en total, diseñando las cimentaciones de modo que este valor no se sobrepase.

550 CAPITULO XII

Page 579: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

MECANICA DE SUELOS (II) 551

F. PilotesEl hundimiento general provoca fenómenos de fricción negativa

en las cimentaciones piloteadas; al respecto se va poseyendo bastante información inferida de las ya numerosas pruebas de extracción de pilotes llevadas a cabo. La carga necesaria para remover el pilote aumenta con el tiempo, pasando por un máximo a las 300 h de hin­cado; a partir de ese momento disminuye ligeramente; en cambio la resistencia a la compresión simple de los materiales alrededor de los pilotes crece monótonamente con el tiempo, tendiendo a un valor límite. En el valor de la resistencia a la extracción influyen funda­mentalmente la velocidad de desplazamiento del pilote durante la prueba, el material de que está constituido el mismo y la forma como se realice el hincado. En la Ciudad de México, si el hundimiento ocurre al ritmo actual y con pilotes de concreto hincados al golpe, la fricción lateral está comprendida entre 1.0 y 1.5 ton/m2 siendo muy poco probables los valores mayores.

Al clavar pilotes en la zona del Lago, la resistencia a la penetración es pequeña en los primeros 10 m y se incrementa lentamente con la profundidad hasta alcanzar la primera capa dura. Este manto es de mucha mayor resistencia y en él pueden apoyarse pilotes que trabajen por punta. Cuando el espaciamiento entre los pilotes es menor que 2 m y el número de éstos no es muy pequeño, el terreno en el que se efectúa el hincado se levanta, abarcando este fenómeno zonas que quedan fuera del área piloteada. Comprobaciones teóricas y expe­rimentales parecen indicar que cuando los pilotes están espaciados a menos de 1.0 m, la arcilla entre ellos debe alcanzar un compor­tamiento plástico, tras pasar por un estado de falla. En general, cabe distinguir tres zonas alrededor de un pilote: a) la parte adya­cente, de material alterado por completo; b) la región en que los esfuerzos de hincado producen un estado de falla y la arcilla trabaja plásticamente y c) la zona exterior en estado elástico. En la zona de alteración se tienen resistencias a la compresión simple superiores a la obtenida para especímenes remoldeados en el laboratorio; en la región plástica, la resistencia es mayor, del orden de la mitad de la del suelo inalterado.

Las pruebas de carga efectuadas en la zona del Lago1 parecen indicar que la Teoría de Meyerhof da resultados de relativa consis­tencia, que permiten fijar un criterio de capacidad de carga adecuado en los pilotes de punta hincados al golpe; esta conclusión parece confirmarse para la zona de transición. El uso de criterios de rechazo y de fórmulas dinámicas ha sido causa de graves problemas en las cimentaciones de la Ciudad de México, produciendo asentamientos diferenciales excesivos con mucha frecuencia y capacidades de carga de proyecto muy desviadas de la realidad.

Page 580: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

552 CAPITULO XII

REFEREN CIAS

1. Marsal, R. J. y Mazarí, M. — E l Subsuelo de la Ciudad de México. ■— PartesA y B : Estratigrafía y Propiedades y Hundimiento General Publicacióndel Instituto de Ingeniería, Facultad de Ingeniería de la Universidad Nacional Autónoma de México. -— 1959.

2. Skempton. A. V7. -— The Colloidal Activiiy of Clays. ■— Proc. del 3er. Con­greso Internacional de Mecánica de Suelos y Cimentaciones. — 1953.

3. Gayol, R. — Breves apuntes relativos a las obras de saneamiento y desagüe de la Capital de la República y de las que, del mismo género, necesita con urgencia. Revista Mexicana de Ingeniería y Arquitectura. — Vol. VIII. — 1929.

4. Carrillo, N. — Influence of Aríesian Wells in the Sinking of México City. — Memorias del 2* Congreso Internacional de Mecánica de Suelos y Cimentacio­nes. - Vol. VII. - 1948.

5. Marsal, R. J., Sandoval, R. e Hiriart, F. — Hundimiento de la Ciudad de México. -— Observaciones y estudios analíticos. •— Ediciones IC A ..— Serie B — N* 3 .— 1952.

6. Marsal, R. J. y Mazarí, M ..— El Subsuelo de la Ciudad de México. — Parte C: Comportamiento de las Cimentaciones. — Publicación del Instituto de In­geniería, Facultad de Ingeniería de la Universidad Nacional Autónoma de México. — 1959.

BIBLIOGRAFIA

El Subsuelo de la Ciudad de México. — Marsal, R. J. y Mazarí, M. ■— Partes A, B. y C. — Publicación del Instituto de Ingeniería de la Universidad Na­cional Autónoma de México. — México, D. r . — 1959.

Cimentaciones Compensadas en la Ciudad de México. — Hiriart, H. — Tesis Pro­fesional. — Escuela Nacional de Ingenieros. — U.N.A.M. — México, D. F. - 1 9 5 3 .

Foundation Conditions in México City. — Cuevas, J. A. — Memorias del Primer Congreso Internacional de Mecánica de Suelos y Cimentaciones. — VoL III. — Cambridge, Mass. — 1936.

Influence o f Aríesian Wells in the Sinking o f México City Carrillo, N. — Me­morias del Segundo Congreso Internacional de Mecánica de Suelos y Cimen­taciones. — Vol. 7. — Rotterdam. — 1948.

Level Control in Buildings by Means o f Adjustable Piling. — González Flores, M. —■ Memorias del Segundo Congreso Internacional de Mecánica de Suelos y Cimentaciones. — Vol. 4. — Rotterdam. — 1948.

Special Foundation Supporí México City’s Buildings on Highly Compressible. Clay — Albin }r., P. — Civil Engineering. — Vol. 19 — N: 8 — 1949.

Pora pressure Measurements to Investígate the Main Source o f Surface Subsi- dience in México City. — Zeevaert. L. •— Memorias del Tercer Congreso In­ternacional de Mecánica de Suelos y Cimentaciones. — Vol. 2. — Zurich. — 1953.

Foundation Design Behavior o f Tower Latino Americana in México City. — Zeevaert, L. — Geotechnique. — Vol, 7 — N* 3. — 1957.

The Floating Foundation of the New Building for the National Lottery o f México: An actual Size Study o f the Deformations o f a Flocculent-structured Deep Soü. — Cuevas, J. A. — Memorias del Primer Congreso Internacional de Me­cánica de Suelos y Cimentaciones. — Vol. 1 — Cambridge, Mass. — 1936.

Page 581: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Compensated Frictton-Pile Foundation to Reduce the Settlement o f a Bultding on the Highly Compreasibíe Volcanic Clay of México City. — Zeevaert, L. — Memorias del Cuarto Congreso Internacional de Mecánica de Suelos y Ci­mentaciones. — Vol. II. — Londres. — 1957.

Pilingand Piled Foundations (General Reporta). — Zeevaert. L. — Memorias del Quinto Congreso Internacional de Mecánica de Suelos y Cimentaciones. — Vol. II. - París. - 1961.

Reduction of Point Bearing Capacity of Piles Because the Negative Friction. — Zeevaert, L. — Primer Congreso Panamericano de Mecánica de Suelos y Ci­mentaciones. — Vol. I. — México, D. F. — 1959.

Compensated Foundations. —• Zeevaert, L. — Primer Congreso Panamericano de Mecánica de Suelos y Cimentaciones. — Vol. III. — México, D. F. — 1959.

Foundation Problema in México City. — Marsal, R. J. — Primer Congreso Pan­americano de Mecánica de Suelos y Cimentaciones. — Vol. III. — México, D. F. - 1959.

Setting Vertical two Buildings, 4 meters in the Most Desfavorable Case. — Gon­zález Flores, M. — Primer Congreso Panamericano de Mecánica de Suelos y Cimentaciones. — Vol. I I I .— México, D. F. — 1959. _

Unconfined Compression and Vane Shear Tests in Volcanic Lacustrine Clays. — Marsal, R. J. — Conference on Soil Engineering Purposes. — ASTM. — Spe- dal Technical Publication N* 232. — 1957.

Consolidation of México Volcanic Clay. — Zeevaert, L. — Conference on Soil Medíanles Purposes. ■— ASTM. — Special Technical Publication N* 232. — 1957.

MECANICA DE SUELOS (II) 553

Page 582: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 583: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

I N D I C E

Page 584: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 585: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

INDICE

P r ó l o g o d e l o s a u t o r e s .................................................................................................. ix

P r ó l o g o . . . x i

Capítulo I . A c c ió n d e l a h e l a d a e n l o s s u e l o s

I-l. Introducción........................................................................... 11-2. Efectos de la helada.............................................................. 31-3. Clasificación de suelos de acuerdo con su susceptibilidad a la

h e la d a ...................................................................................... 51-4. Indice de congelación.................................................................. 6

Capítulo I I . D is t r ib u c ió n d e e s f u e r z o s e n l a m a s a d e l s u e l o

II-l. Introducción.......................................................................... 9II-2. El problema de Boussinesq .......................................... 10II-3. Extensión de la fórmula de Boussinesq a otras condiciones

de carga comunes ............................................ 12II-4. Algunas otras condiciones de carga con interés práctico . . 17II-5. La carta de N ew m ark ..........................................................28II-6. Estudios sobre sisteméis no homogéneos........................... 31

Anexo Il-a. El problema de Boussinesq................................................... 36Anexo II-b. Valores de influencia para el caso de carga concentrada . 43Anexo II-c. Gráfica de Padum para influencia de carga lineal . . . 44Anexo Il-d. Area rectangular uniformemente c a r g a d a ........................... 44Anexo Il-e. Valores de influencia para el área circular uniformemente

ca rg a d a ........................................................................................ 45Anexo Il-f. Carta de N ew m ark ............................................................... 47

Capítulo I I I . A n á l is is d e a s e n t a m ie n t o s

III-l. Introducción......................................................................................49III-2. Asentamiento en suelos plásticos compresibles . . . . 49III-3. Método empírico para el trazado de la curva de com- '

presibilidad....................................... 51III-4. Asentamientos en suelos arenosos finos y limosos, sueltos 521II-5. Cálculo de asentamientos por métodos elásticos . . . 53III-6. Cálculo de expansiones..............................................................54

Anexo Ill-a. Métodos elásticos para el cálculo de asentamientos . 60III-a.l Asentamiento elástico bajo una carga concentrada . . 60III-a.2 Asentamientos elásticos bajo cargas distribuidas . . . 61

Capítulo I V . P r e s ió n d e t ie r r a s s o b r e e l e m e n t o s d eSOPORTE

IV-1. Introducción.................................................................................. 65

Página

557

Page 586: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

558 INDICE

IV-3.

IV-4.

IV-5.IV-6.IV-7.

IV-8.IV-9.

IV-10.

IV-11.IV-12.IV-13.

IV-14. IV-15. IV-16. IV-17.

Anexo IV-a.

Anexo IV-b. Anexo IV-c.

Anexo IV-d.

Anexo IV-e.

IV-2.

IV-e.l IV-e.2 IV-e.3

Anexo IV-f.

IV-f.l IV-f.2 IV-f.3

Anexo IV-g. Anexo IV-h. Anexo IV-i.

Anexo IV-j. IV-j.l IV-j.2 IV-j.3 IV-j.4 IV-j.5 IV-j.6 IV-j.7

Anexo IV-k. IV-k.l

PáginaFuerzas que intervienen en el cálculo de un muro dere te n c ió n ...................................................................................Estados "plásticos" de equilibrio. Teoría de Rankine ens u e lo s .........................................................................................Fórmulas para los empujes en suelos friccionantes. Hipóte­sis para su ap licación ..............................................................Teoría de Rankine en suelos "cohesivos” .........................Teoría de Rankine en suelos con "cohesión” y “fricción” Influencia de la rugosidad del muro en la forma de laslíneas de f lu e n c ia .....................................................................Teoría de Coulomb en suelos "friccionantes" . . .Métodos gráficos para_ la aplicación de la Teoría deCoulomb en rellenos "friccionantes"...............................La Teoría de Coulomb en suelos con "cohesión” y "fric­ción” ..........................................................................................El método del Círculo de F r ic c ió n .............................................95Método de la espiral logarítm ica............................................ 97Método semiempirico de Terzaghi para el cálculo delempuje contra un muro de re ten c ió n .....................................100Arqueo de s u e lo s ..........................................................................105A d e m es ' . . . . . . . 106Ademado en tú n e le s ....................................................................109Tablestacas a n c la d a s ....................................................................113Estados de equilibrio “plástico" en masas de arena desuperficie inclinada. Teoría de R a n k in e .........................Empujes contra muros de respaldo no vertical .Extensión de la Teoría de Rankine en suelos con "cohe-

y "fricción”

68

71

747882

8585

89

93

115118

120Influencia de la rugosidad del muro en la forma de laslíneas de fluencia. Suelos "friccionantes” .........................Deducción de la fórmula de Coulomb para presión de tierra en suelos friccionantes. Construcción de Rebhann-Poncelet ...............................................................................Construcción de Rebhann-Poncelet................................Demostración de la Construcción de Rebhann-Poncelet Deducción de la fórmula de Coulomb . . . . .Teoría de Coulomb en suelos friccionantes aplicada algunos casos especiales de interés prácticoAnálisis de sobrecarg as..................................................Relleno estratificado........................................................Muro de respaldo q u ebrad o............................................Construcción gráfica de E n g e sse r ...............................Arqueo en suelos .....................................Métodos teóricos para eheálculo de empujes sobre ademesMétodo de la espiral logarítm ica...............................Ademado en tú n e le s ........................................................Carga de r o c a ....................................................................Túneles en roca sana e in ta cta ......................................Túneles en roca e s tra t if ic a d a .....................................Túneles en roca f¡surada ............................................Túneles en roca t r i t u r a d a ............................................Túneles en roca frag m e n tad a .....................................Túneles en roca alterada y en a r c i l la .........................Tablestacas a n c la d a s ..............................................................Efecto de los movimientos de la tablestaca en la presión de t i e r r a ...........................................................................................157

123

125125127130

132132133133134135

141143143144145 147 147 150 153 157

Page 587: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

INDICE 559

IV-k.2 Efecto de las presiones de agua no balanceadas . . . 159IV-k.3 Efecto de so b reca rg a s............................................................. 160IV-k.4 Distribución de la presión de t i e r r a s ...................................163IV-k.5 Influencia de la rigidez a la flexión en el momento

flexionante................................................................................ 166IV-k.6 Fuerza de a n c la je .................................................................... 168IV-k.7 Diseño de tablestacas a n c l a d a s ..................................... 168IV-k.8 Requisitos de segu ridad ........................................................173

Capítulo V . E stabilidad de ta lu d es

V-l. Generalidades . . 177V-2. Tipos y causas de falla más com u n es.................................... 179V-3. Taludes en a r e n a s ......................................................................... 184V-4. El método s u e c o ..........................................................................184V-5. Grietas de te n s ió n ......................................................................... 195V-6. Fallas por traslac ió n ................................................................... 196V-7. Otros métodos de a n á lis is ............................................................. 198V-8. Fallas por licu ació n ....................................................................198V-9. Algunos métodos para mejorar la estabilidad de taludes 199

Anexo V-a. Consideraciones respecto al análisis de taludes en material "cohesivo” homogéneo en el cuerpo del talud y en elterreno de cim entación.............................................................209

V-a.l Talud "cohesivo” y terreno de cimentación homogéneo conél y sem iin fin ito ................................................................... 209

V-a.2 Talud “cohesivo" con terreno de cimentación homogéneocon él y limitado por un estrato horizontal resistente . . 214

Anexo V-b. Consideraciones respecto al análisis de taludes homogéneosen materiales con cohesión y f r ic c ió n ....................................217

Anexo V-c. Otros métodos de análisis de ta lu d e s ....................................223V-c.l Método de la espiral logarítm ica.................................................223V-c.2 Estudios basados en las ecuaciones de Kotter . . . . 226

C apítulo V I . I n troducción a l pr o b l e m a de la capacidadDE CARGA EN SUELOS

VI-1. Generalidades.........................................................................229VI-2. Metodología de la Teoría de la E lastic id ad ....................231VI-3. Análisis basados en la Teoría de la Plasticidad . . 223VI-4. Algunos conceptos fundamentales en la Teoría de la Plasti­

cidad de aplicación a s u e lo s ............................................ 236

C apítulo V I I . T eorías d e capacidad d e carga en s u e l o s

V II-l. Introducción........................................................................243VII-2. Una aplicación simple del Análisis Límite al problema de

la Capacidad de Carga en suelos puramente "cohesivos” 243V I1-3. La solución de P ra n d tl.................................................... 246VII-4. La solución de H i l l .......................................................... 248VII-5. La teoría de T e rz a g h i.................................................... 248VII-6. Aplicación de la Teoría de Terzaghi a suelos puramente

co h esiv o s............................................................................ 255VII-7. La Teoría de Sk em p ton.............................................. 256VII-8. La teoría de M e y e rh o f.................................................... 257VII-9. Resumen de recomendaciones........................................267V IL 10. Cimentaciones con carga excéntrica e inclinada . . . 268

Página

Page 588: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

Anexo VII-a. Solución elástica del estado de esfuerzos bajo una bandade longitud in f in ita .................................................................. 268

Anexo VlI-b. La teoría de T e rz a g h i....................................................269Anexo VII-c. La Teoría de Meyerhof para cimientos muy largos 276

VII-c.l Obtención de los valores de N c y N , ............................277VII-c.2 Obtención del valor Ny ....................................................280

Anexo VlI-d. Cimentaciones superficiales sujetas a cargas excéntricaso in clin ad as................................................................................282

Capítulo VIII. C im e n t a c io n e s p o c o p r o f u n d a s

V III-l. Introducción.......................................................................285VIII-2. Clasificación de las cimentaciones poco profundas . .VIII-3. Factores que determinan el tipo de cimentación . . . 287VIII-4. Consideraciones generales sobre el contacto suelo-estruc­

tura ................................................................................................289VIII-5. Cimentaciones en arenas y g r a v a s ........................... 291VIII-6. Cimentaciones en arcillas hom ogéneas.....................295VIII-7. Cimentaciones en arcillas fisu rad as........................... 299VIII-8. Cimentaciones en limos y l o e s s ................................. 300VIII-9. Cimentaciones en suelos estratificados.....................302VIII-10. Capacidad de carga admisible. Factor de seguridad . . 304VIII-11. Cimentaciones com p ensad as........................................306VIII 12. Cimentaciones en r o c a .................................... 307VIII-13. Cimentaciones en ta lu d e s ............................................. 308VIII-14. S o ca v a c ió n .........................................................................310VIII-15. Falla de fondo en excavaciones de arcilla . . . . 3 1 1

Anexo VlII-a. Consideraciones adicionales sobre el contacto suelo-estructura .....................................................................................313

Anexo VlII-b. Pruebas de carga en arcilla fisu ra d a ............................315Anexo VIII-c. Cimentaciones compensadas.............................................319Anexo VlII-d. Cimentaciones en ta lu d e s .............................. 320Anexo VHI-e. Socavación en pilas de p u en tes ..................................323

C apítulo IX . C im e n t a c io n e s p r o f u n d a s

IX -1. Introducción...................................................................................329IX-2. Tipos de cimentaciones profundas.........................................329IX-3. Generalidades sobre p ilo te s ..................................................... 330IX-4. Capacidad de carga en pilotes. Fórmulas dinámicas . . 332IX-5. Pruebas de cargas en p ilo te s .....................................................336IX-6. Pilotes de punta hincados al g o l p e .........................................338IX-7. Pilotes de fricción hincados al g o lp e .........................................342IX-8. Pilotes colados en el lu g a r ..................................................... 346IX-9. Pilotes com puestos....................................................................... 346IX -10. Otros tipos de pilotes de co n c re to .........................................347IX-1I. Pilotes de acero ........................................................................ 347IX-12. Fricción negativa. Pilotes de c o n tr o l...................................348IX-13. Grupos de p i lo te s ....................................................................... 354IX-14. Deterioro y protección de p i lo te s .........................................359IX-15. Pilas, cilindros de cimentación y c a jo n e s ............................ 361

Anexo IX-a. Fórmulas dinámicas para la capacidad de carga de piloteshincados al g o lp e .........................................................................361

Anexo IX-b. Pruebas de carga en p i lo te s .....................................................368Anexo IX-c. Algunos tipos comunes de pilotes precolados apropiados

para hinca al golpe ................................................372

Página

Page 589: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

INDICE 561Página . 374 . 379 . 384

Anexo IX-d. Tipos de pilotes colados en el l u g a r .........................Anexo IX-e. Pilotes hincados a presión o preexcavados . .Añexo IX-f. Pilas, cilindros de cimentación y cajones . . .

Capítulo X . P r in c ip io s p a r a e l d is e ñ o d e p a v i m e n t o s e n c a m in o s y a e r o p is t a s

X -l. Generalidades y definiciones....................................................... 389X-2. Funciones de las distintas capas de un pavimento . . . 392X-3. Factores que afectan el diseño de los pavimentos . . . 393X-4. Análisis de la resistencia en los pavimentos . . . . 398X-5. Pruebas especiales en la tecnología de pavimentos . . 402X-6. Métodos de diseño para pavimentos flexibles . . . . 410X-7. Métodos de diseño en pavimentos r íg id o s .................................427X-8. Rueda de diseño. Criterios de carga equivalente . . . 4 3 1

Anexo X-a. Prueba del C.B.R................................................................................436X-a.l G eneralidades............................................................................... 436X-a.2 E q u ip o ............................................................................................436X-a.3 Preparación de probetas remoldeadas.................................... 437X-a.4 Prueba de p en etració n ............................................................. 439X-a.5 Datos y resultados de p r u e b a ........................................... 441X-a.6 Procedimiento de preparación de muestras remoldeadas 441X-a.7 Procedimiento para preparación de muestras inalteradas 442X-a.8 Prueba de c a m p o .............................. • • ■ • • • 443

Anexo X-b. Gráficas para la utilización del método del C.B.R. paradiseño de pavimentos f le x ib le s ..................................... • 444

Capítulo XI. P r in c ip io s b á s ic o s p a r a e l d is e ñ o d e p r e s a s

d e TIERRA.

XI-I.XI-2.XI-3.

XI-4. XI-5. XI-6. XI-7.

Anexo Xl-a. Anexo Xl-b. Anexo XI-c. Anexo Xl-d.

XI-d.l XI-d.2 XI-d.3

Anexo Xl-e.

XI-e.l

XI-e.2 XI-e.3

Añero Xl-f. X l-f.l XI-f.2 XI-f.3

Anexo Xl-g.

Introducción .................................................................................. 449Tipos de presas de t i e r r a .......................................................450Breve descripción de algunas de las partes constituyentesde una presa de t i e r r a .............................................................454Análisis de estabilidad............................................................. 457Condiciones de trabajo en las presas de tierra . . . . 460Causas de falla en presas de t i e r r a .......................................... 461Normas fundamentales de construcción..............................471Drenes en presas de t i e r r a .......................................................476Filtros en presas de t i e r r a .......................................................477El corazón im permeable............................................................. 479Condiciones de trabajo en presas de tierra . . . . 482Condiciones de estabilidad durante la construcción . . 482Condiciones de estabilidad a presa l l e n a ..............................485Condiciones de estabilidad en vaciado rápido . . . 487Algunos métodos de análisis de estabilidad típicos delas presas de t i e r r a ................................................................... 488Método de análisis con dovelas, considerando interacciónentre e l l a s ...................................................................................... 488Método de la c u ñ a ................................................. 492Análisis de estabilidad tridimensional.................................... 494Efectos sísmicos en presas de t i e r r a .................................... 496Deslizamiento según una superficie circular . . . . 4%Deslizamiento según un p l a n o .................................................499Deslizamiento de c o n ju n to .......................................................501Fallas por licu a ció n ...................................................................502

Page 590: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

562 INDICE

Anexo Xl-h. Inyecciones...........................................................Anexo Xl-i. Algunas ideas sobre eficiencias de compactación

Página 511

. 516

Capítulo XII. B r e v e e x p o s i c i ó n s o b r e l a s c o n d ic io n e s d e

CIMENTACIÓN EN E L VA LLE DE M ÉXICO

XII-1. Zonificación y estratigrafía del subsuelo del Valle deM é x ic o ..................................................................................... 525

XII-2. Propiedades índice y composición del subsuelo de laCiudad de M éx ico ................................................................... 529

XII-3. Propiedades mecánicas de resistencia y compresibilidad enlas arcillas del Valle de México . 532

XII-4. El hundimiento general de la Ciudad de México . . 538XII-5. Comportamiento de cimentaciones. Aplicabilidad de las dis­

tintas teorías disponibles........................................................548

Page 591: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ESTA OBRA SE TERMINO DE IMPRIMIR EL DIA 15 DE JUNIO DE 1973, EN LOS TALLERES DE LITOGRAFICA INGRAMEX, S. A„ CENTENO 162, MEXICO 13, D. F,

LA EDICION CONSTA DE 1,000 EJEMPLARES Y SOBRANTES PARA REPOSICION.

KE-75

Page 592: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

ESTA OBRA SE TERMINO DE IMPRIMIR EL DIA 15 DE JUNIO DE 1973, EN LOS TALLERES DE LITOGRAFICA INGRAMEX, S. A., CENTENO 162, MEXICO 13, D. F.

LA EDICION CONSTA DE 1,000 EJEMPLARES Y SOBRANTES PARA REPOSICION.

KE-75

Page 593: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 594: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

www.freelibros.org

Page 595: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 596: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez
Page 597: Mecánica de Suelos, Tomo II - Eulalio Juárez Badillo y Alfonso Rico Rodríguez

www.freelibros.org