74
MEMORIA DE CÁLCULO “SUSTITUCION Y MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO DISTRITO DE ACORIA”

Memoria de Calculo de Colegio

Embed Size (px)

Citation preview

MEMORIA DE CÁLCULO

“SUSTITUCION Y MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO

DISTRITO DE ACORIA”

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

1

MEMORIA DE CÁLCULO

1. GENERALIDADES.

1.1. Introducción. La presente memoria de cálculo, hace referencia al diseño y análisis estructural de la Infraestructura Educativa correspondiente al proyecto “SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”, ubicado en la localidad de Muquecc Bajo, Distrito de Acoria, Provincia y Departamento de Huancavelica.

El presente proyecto contempla la construcción de: 01 Área Pedagógica conformado por un módulo de 06 aulas, una batería de SS.HH y un ambiente para la Dirección y 01 caja de escaleras, este modulo está constituido por Pórticos en la Dirección Longitudinal y sistema dual (Pórtico - Albañilería) en el sentido Transversal, para los cuales en ambos casos se realiza la verificación de los desplazamientos laterales de entrepiso según lo establecido en la Norma E-030 del Reglamento Nacional de Edificaciones.

Tabla 1: Ambientes Área Pedagógica.

AREA SUB ZONAS AMBIENTE AREA SUB TOTAL(m2)

AREA PEDAGOGICA

AULAS 6 AULAS 56 336 ADMINISTRACION ADMINISTRACION 26 26 SS.HH SS.HH 26 26 CAJA DE ESCALERA CAJA DE ESCALERA 16 16

TOTAL 404

Las tres primeras sub zonas constan de 02 niveles, constituidos en sistemas mixtos, duales y pórticos, en todos los casos se realizan las verificaciones de los desplazamientos laterales de entrepiso según establecido en la Norma E.030.

1.2. Objetivos. Realizar el modelamiento y los cálculos estructurales necesarios que garanticen la funcionalidad adecuada de los diversos tipos de estructuras propuestas en el proyecto; asimismo determinar las dimensiones optimas y características de éstos, cumpliendo las normas sísmicas y de diseño en concreto armado, realizándose el diseño de los elementos de acuerdo a las normas del ACI (American Concrete Institute), pero con los factores de

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

2

MEMORIA DE CÁLCULO

mayoración indicados en el Reglamento Nacional de Edificaciones, dentro del Acápite de la Norma E-060, Concreto Armado.

1.3. Filosofía de Diseño. El proyecto deberá desarrollarse con la finalidad de garantizar un comportamiento que haga posible:

Resistir sismos leves sin daño. Resistir sismos moderados considerando la posibilidad de daños

estructurales leves. Resistir sismos severos con posibilidad de daños estructurales

importantes, evitando el colapso de la edificación.

1.4. Análisis Estructural. Con la finalidad de resolver sistemas estructurales hiperestáticos se ha desarrollado métodos no tradicionales, considerando la facilidad en el desarrollo del método seleccionado así como su sistematización mediante el uso de computadoras para este caso se usará el método de rigidez y el método de los Elementos Finitos (placas y muros), por seguir un procedimiento organizado que sirve para resolver estructuras determinadas e indeterminadas, estructuras linealmente elásticas y no linealmente elásticas.

En la actualidad con el desarrollo de la computación se han desarrollado innumerables programas de cómputo basados en el método general de rigidez y sobretodo el método de los Elementos Finitos, los programas utilizados en el proyecto son los siguientes:

1.4.1. ETABS VERSIÓN 9.7.2 El programa Etabs al igual que el Sap2000, pertenecen a la empresa CSI Computers & Structures, INC, apoyados en los sistemas operativos Windows 2000, Windows NT, Windows XP y W7

ETABS se ha desarrollado en un ambiente constructivo totalmente integrado del análisis y del diseño, ideal para el análisis y diseño de edificios y naves industriales, al igual que el SAP2000, puede realizar análisis de estructuras complejas, pero tiene muchísimas opciones extras que simplifican el diseño de edificaciones, como por ejemplo: cálculo automático de coordenadas de centros de masa (Xm, Ym), cálculo automático de coordenadas de centros de rigideces (Xt, Yt), cálculo automático de fuerzas sísmicas, sus excentricidades y aplicación en el

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

3

MEMORIA DE CÁLCULO

centro de masas, cálculo automático de masas del edificio a partir de los casos de carga elegidos, división automática de elementos (Auto-Mesh), así se pueden definir elementos que se cruzan, y el programa los divide automáticamente en su análisis interno, o se puede dar el comando de que divida los elementos en el mismo modelo, plantillas predefinidas de sistemas de losas planas, losas en una dirección, losas reticulares o con nervaduras y casetones, cubiertas, etc.

1.4.2. SAP2000 VERSIÓN 14.2 Es un programa basado en el método de rigideces por procedimientos matriciales y por el Método de Elementos Finitos, escrito bajo la hipótesis de la teoría de la elasticidad: continuidad, homogeneidad, isotropía, linealidad y elasticidad.

Teniendo en cuenta estas hipótesis, el programa SAP2000 es capaz de analizar sistemas estructurales formados en base a elementos del tipo marco, cáscara y sólidos realizando un análisis tridimensional.

Este programa nos permite realizar el modelo idealizado de la estructura; a través de una interface gráfica, y posteriormente el respectivo análisis tridimensional, realizando la debida combinación de cargas según las diversas solicitaciones estipuladas tanto para el diseño de elementos de Concreto Armado (Norma E.060- sección 10.2) y Acero (Especificaciones AISC –LRFD 93), lo cual nos permite obtener los esfuerzos últimos de diseño de cada elemento.

1.4.3. SAFE VERSIÓN 12.0 Es un programa especial que automatiza el análisis de cimentaciones o fundaciones, empleando el Método de los Elementos Finitos y las técnicas de métodos numéricos más confiables y eficientes.

Sus características son:

Diseño de cimentaciones o fundaciones con la forma real, (sin aproximar la Geometría). Cimientos Aislados (circulares, Rectangulares, irregulares, etc.), de Borde, de Esquina, Combinados, Sobre pilotes.

Plateas con diferentes espesores, sobre distintos terrenos (en un mismo sistema de cimentaciones), con huecos, etc.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

4

MEMORIA DE CÁLCULO

Se puede definir las condiciones de frontera que el usuario indique (Naturales o Impuestas). Refinamiento automático de mallas, Exportación al AutoCad de la planta general de fundaciones.

Cuantificación instantánea de materiales a utilizar. Análisis estructural normal o iterativo. También considera una opción comprensiva de la exportación de datos a partir del programa ETABS, lo cual crea automáticamente modelos seguros completos de cualquier piso o de la fundación de ETABS para el diseño inmediato por el programa SAFE.

1.5. Análisis Estructural por Cargas Verticales: El metrado de cargas es una técnica con la cual se estiman las cargas actuantes (cargas muertas o permanentes y cargas vivas o sobrecargas) sobre los distintos elementos estructurales que componen el edificio. Este proceso es aproximado ya que por lo general se desprecian los efectos hiperestáticos producidos por los momentos flectores, salvo que estos sean muy importantes. En el Reglamento Nacional de Edificaciones, en el acápite de Cargas, Norma E-020 se especifica las cargas estáticas mínimas que se deben de adoptar para el análisis estructural.

A continuación se hace una breve descripción de ambos casos.

Análisis por Cargas Permanentes o Muertas. Este tipo de análisis se realizará en base a las cargas que actúan permanentemente en la estructura en análisis tales como: Peso propio de vigas, columnas, losas, tabiquería, acabados, coberturas, etc. Estas cargas serán repartidas a cada uno de los elementos que componen la estructura.

Los pesos de los materiales necesarios para la estimación de cargas muertas se encuentran registrados en la Norma de Cargas E.020.

Análisis por Sobre cargas o Cargas Vivas. Este análisis se realizará en base a las sobrecargas estipuladas en el Reglamento Nacional de Edificaciones referidas a la Norma de Cargas E.020.

1.6. Análisis Estructural por Cargas Dinámicas: El análisis dinámico de las edificaciones se realiza mediante procedimientos de superposición espectral, según lo estipulado en la Norma de Diseño Sismorresistente E-030.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

5

MEMORIA DE CÁLCULO

Actualmente la Norma de Diseño Sismorresistente E-030 exige analizar cada dirección con el 100% del sismo actuando en forma independiente: sin embargo, otros reglamentos contemplan la posibilidad que el sismo actúe en forma simultánea en ambas direcciones: 100% en X y 30% en Y, y viceversa.

Un sismo puede actuar en el sentido N-S o S-N y también O-E o E-O, ya que las aceleraciones son positivas y negativas. De esta manera, para efectos de diseño, se trabaja con las envolventes de esfuerzos en condición de rotura. Al estructurar se buscará que la ubicación de columnas y vigas tengan la mayor rigidez posible, de modo que el sismo al actuar, éstas puedan soportar dichas fuerzas sin alterar la estructura.

Para la determinación de los esfuerzos internos de la estructura en un análisis por sismo se emplea el Método de Discretización (Método de las Masas Concentradas).

1.6.1. Método de Discretización de Masas Son modelos que permiten comprender de manera simplista el comportamiento de las estructuras.

Debido a la dificultad para resolver problemas estructurales considerados como medios continuos, es decir, a tener que dar la respuesta de un sistema estructural cualesquiera en una infinidad de puntos se convierte en un problema complejo o complicado. Este imposible se facilita solo si calculamos la respuesta en unos cuantos puntos a través de la discretización de las masas concentradas y demás acciones de puntos determinados

El número de concentraciones de masas depende de la exactitud deseada en la solución del problema.

El método de masas concentradas consiste en asumir que la masa se encuentra concentrada en puntos discretos en la que definimos solo desplazamientos, traslaciones, de tal manera que el modelo se asemeje de la mejor manera a la estructura real.

Las cargas dinámicas serán determinadas en base a un análisis dinámico según la ecuación matemática que gobierna la respuesta dinámica la cual se conoce con el nombre de ecuación de movimiento y se expresa de la siguiente manera:

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

6

MEMORIA DE CÁLCULO

Donde:

K : Matriz de rigidez de la Estructura

C : Matriz de amortiguamiento de la Estructura

M : Matriz de masas de la Estructura

ux(t), uy(t), uz(t): son las aceleraciones, velocidades y desplazamientos asociado a cada grado de libertad.

mx, my, mz: son las masas en cada dirección.

ugx, ugy, ugz: son las aceleraciones del terreno en cada dirección.

Uno de los métodos usados y de más fácil aplicación para obtener la solución de la ecuación diferencial de movimientos es el método de Superposición Modal para lo cual se hará uso del espectro de respuesta, donde se encuentra descrito en el Reglamento Nacional de Edificaciones para el Diseño Sismorresistente E.030.

1.7. Códigos y Normas El proceso de estimación de las cargas, así como el análisis y diseño de las estructuras está basado en los siguientes códigos.

Códigos y Normas.

Norma Técnica E.020, Cargas Norma Técnica E.030, Diseño Sismorresistente. Norma Técnica E.050, Suelos y Cimentaciones. Norma Técnica E.060, Concreto Armado. Norma Técnica E.070, Albañilería. Norma de Construcciones en Concreto Armado ACI 318-08.

Se entiende que todas aquellas normas a las que los códigos hacen referencia, forman parte integrante de los mismos en tanto sean aplicable a los materiales, cargas y procedimientos usados en el presente proyecto.

1.8. Propiedades de los Materiales Los siguientes materiales han sido considerados en el presente estudio:

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

7

MEMORIA DE CÁLCULO

1.8.1. Concreto. Modulo de Poisson : µ = 0.20 Módulo de Elasticidad : Peso Unitario del Concreto : = 2400.0

Kg/m3. Resistencia a la Compresión :

Vigas y columnas de Pórticos : f´c = 210.0 Kg/cm2.

Vigas y columnas de Confinamientos : f´c = 210.0 Kg/cm2.

Vigas de Cimentación : f´c = 210.0 Kg/cm2. Zapatas : f´c = 210.0

Kg/cm2. Cimientos y Sobrecimiento : f´c = 140.0 Kg/cm2. Solados de Zapatas : f´c = 80.0 Kg/cm2. Losas aligeradas : f´c = 210.0 Kg/cm2. Falso Piso : f´c = 140.0 Kg/cm2.

1.8.2. Albañilería. Resistencia Mecánica del ladrillo : f ‘m=85 kg/cm² Peso Albañilería de unidades sólidas : 1800 Kg/m3 = 1800

E-06 Kg/cm3. Peso Albañilería ladrillo hueco : 1350 Kg/m3 = 1350

E-06 Kg/cm3. Masa por Unidad de Volumen se divide el peso entre 9.806

m/seg². Módulo de Elasticidad : E=50 x f ‘m = 4250 Kg/cm². Módulo de Poisson cuantificado : v=0.25.

1.8.3. Acero Corrugado Acero Corrugado ASTM 615 Grado 60 : fy =4200.0 Kg/cm2. Modulo de Elasticidad del Acero : E =2x106 Kg/cm2.

1.9. Parámetros de Diseño Los siguientes materiales han sido considerados en el presente estudio:

Zonificación Sísmica. El territorio nacional se encuentra dividido en tres zonas, esta zonificación se basa en la distribución espacial de la sismicidad observada, las

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

8

MEMORIA DE CÁLCULO

características generales de los movimientos sísmicos y la atenuación de éstos con la distancia epicentral, así como en información neo tectónica. A cada zona se le asigna un factor Z según se indica en la tabla N° 01, este factor se interpreta como la aceleración máxima del terreno con una probabilidad de 10% de ser excedida en 50 años.

FACTORES DE ZONA ZONA FACTOR DE ZONA - Z (g) 3 2 1

0.4 0.3 0.15

Zonificacion Sismica (Z) Simbolo Valor

Castrovirreyna y Huaytara Zona 3 0.4

Acobamba, Angaraes, Churcampa, Tayacaja y

HuancavelicaZona 2 0.3

El presente proyecto se encuentra ubicado en: - Departamento : HUANCAVELICA - Provincia : HUANCAVELICA - Distrito : ACORIA - Lugar : MUQUECC

Factor de Uso (U):

Por el tipo de edificación el factor de uso es: U = 1.5 (Grupo A)

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

9

MEMORIA DE CÁLCULO

Categoria de la Edificacion (U) Simbolo Valor

GRUPO A 1.5

* Edificaciones donde se reunen gran cantidad de

personas como teatros, estadios, centros

comerciales, establecimientos penitenciarios, o que

guarden patrimonios valiosos como museos,

bibliotecas y archivos especiales: Tambien se

consideran depositos de granos y otros almacenes

importantes para el abastecimiento

GRUPO B 1.3

* Edificaciones comunes, cuya falla ocasionaria

perdidas de cuantia intermedia como viviendas,

oficinas, hoteles, restaurantes, depositos e

instalaciones industriales cuya falla no acarrea

peligros adicionales de incendio, fuga de

contaminantes, etc.

GRUPO C 1.0

* Edificaciones escenciales cuya funcion no deberia

interrumpirse inmediatamente despues de que

ocurra un sismo, como hospitales, centrales de

comunicación, cuarteles de bomberos, y policias,

subestaciones electricas reservorios de agua,

Centros educativos y Edificaciones cuyo colapso,

puede representar un adicional, como grandes

hornos, depositos de materiales inflamables o

toxicos.

* Edificaciones cuyas fallas causan perdidas de

menor cuantia y normalmente la probabilidad de

causar victimas es baja, como cercos de menos de

1.50 mt, de altura, depositos temporales, pequeñas

viviendas temporales y construccion similares.

GRUPO D 0.6

Factor de Suelo (S):

Condiciones Geotecnicas (S) Simbolo Parametris Valor

Factor de Suelo 1.2

Factor de Suelo 1.4

Periodo

Fundamental Tp0.9

Periodo

Fundamental Tp0.6

S 2

* Suelos Intermedios, se clasifican los de este tipo

los sitios con caracteristicas intermedias entre las

indicadas para los perfiles S1 y S3

* Suelos flexibles o con estratos de gran espesor,

corresponden a este tipo los suelos flexibles o

estratos de gran espesor en los que el periodo

fundamental para vibraciones de baja amplitud, es

mayor de 0.65 seg.

S 3

0.4

1.0

* Roca o Suelos muy rigidos, corresponden las

rocas y los suelos muy rigidos con velocidades de

propagacion de onda de corte similares al de una

roca, en los que el periodo fundamental para

vibraciones no excede a 0.25 seg.

S 1

Periodo

Fundamental Tp

Factor de Suelo

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

10

MEMORIA DE CÁLCULO

Coeficiente de Amplificación Sísmica (C): De acuerdo a las características de sitio se define el factor de amplificación sísmica (C) por la siguiente expresión:

; Este coeficiente se interpreta como el factor de amplificación de la respuesta estructural respecto a la aceleración en el suelo. “T” es el periodo fundamental, que para cada dirección se estimará con la siguiente expresión:

Dónde: CT = 35 para edificios cuyos elementos resistentes en la dirección considerada sea únicamente pórticos CT = 45 para edificios de concreto armado cuyos elementos Sismo resistente sean pórticos y las cajas de ascensores y escaleras. CT = 60 para estructuras de mampostería y para todos los edificios de concreto armado cuyos elementos Sismo resistente sean fundamentalmente muros de corte.

COEFICIENTE DE REDUCCIÓN POR DUCTILIDAD (R)

Sistemas Estructurales (R) Simbolo Valor

Sistema en el que la resistencia sismica esta dada

predominantemente por muros estructurales

sobre los que actua por lo menos el 80% del

cortante en la base

Muros

Estructurales6

Las acciones sismicas son resistidas por una

combinacion de porticos y muros estructurales.

Los porticos deberan ser diseñados para tomar el

25% del cortante en la base. Los muros

estruturales seran diseñados para las fuerzas

obtenidas del analisis según e articulo Nº16

Dual 7

Por los menos el 80% del cortante en la base actua

sobre las columnas de los porticos que cumplan

los requisitos de NTE E-060 Concreto Armado,

en caso se tengan muros estructurales estos

deberan diseñarse para resistir una fraccion de la

accion sismica total de acuerdo con su rigidez

Porticos 8

Desplazamientos: El máximo desplazamiento relativo de entrepiso, calculado con el análisis estructural realizado con el ETABS V.9.7.2, esta no deberá exceder la fracción de la altura de entrepiso que se indica:

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

11

MEMORIA DE CÁLCULO

LÍMITES PARA DESPLAZAMIENTO LATERAL DE ENTREPISO

MATERIAL PREDOMINANTE ( i / he¡ ) Concreto Armado

Acero (*) Albañilería Madera

0.007 0.010 0.005 0.010

(*) Estos límites no son aplicables a naves industriales.

Asentamientos: Condiciones de diseño:

i. Para el cálculo del factor de seguridad de cimentaciones: se utilizarán

como cargas aplicadas a la cimentación, las Cargas de Servicio que se utilizan para el diseño estructural de las columnas del nivel más bajo de la edificación.

ii. Para el cálculo del asentamiento de cimentaciones apoyadas sobre suelos granulares y cohesivos: se considerará la Carga obtenida de acuerdo a la Norma Técnica de Edificación E .020 Cargas.

iii. Para el cálculo de asentamientos, en el caso de edificaciones con sótanos en las cuales se emplee plateas o losas de cimentación, se podrá descontar de la carga total de la estructura (carga muerta más sobrecarga más el peso de losa de cimentación) el peso del suelo excavado para la construcción de los sótanos.

Se deberá indicar el asentamiento tolerable que se ha considerado para la edificación o estructura motivo del estudio. El Asentamiento Diferencial como se muestra en la figura, no debe ocasionar una distorsión angular mayor que la indicada en la Tabla siguiente. En el caso de suelos granulares el asentamiento diferencial se puede estimar como el 75% del asentamiento total.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

12

MEMORIA DE CÁLCULO

n = D/L DESCRIPCION

1/150Limite en el que se debe esperar daño estructural en edificios

convencionales

1/250Limite en que la perdida de verticalidad de edificios altos y rigidos puede

ser visible

1/300 Limite en que se debe esperar dificultades con puentes gruas

1/300 Limite en que se debe esperar las primeras grietas en paredes

1/500 Limite seguro para edificios en los que no se permiten grietas

1/500Limite para cimentaciones rigidas circulares o para anillos de cimentacion

de estructuras rigidas

1/650Limite para edificios rigidos de concreto cimentados sobre un solado con

espesor aproximado de 1

1/750 Limite donde se esperan dificultades en maquinaria a asentamientos

DISTORSION ANGULAR n

Torsión: Se supondrá que la fuerza en cada nivel (Fi) actúa en el centro de masas del nivel respectivo y debe considerarse además el efecto de excentricidades accidentales como se indica a continuación. Para cada dirección de análisis, la excentricidad accidental en cada nivel (ei), se considerara como 0.05 veces la dimensión del edificio en la dirección perpendicular a la de la acción de la fuerza. En cada nivel además de la fuerza actuante, se aplicara el momento accidental denominado Mti, que se calcula como: Mti = ±Fi x ei

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

13

MEMORIA DE CÁLCULO

Ocupacion o Uso Cargas Repartidas

Aulas 300 Kg/cm2

Escaleras y Corredores 400 Kg/cm2

Techos 100 Kg/cm2

CARGAS VIVAS CONSIDERADAS

Se puede suponer que las condiciones más desfavorables se obtienen considerando las excentricidades accidentales con el mismo signo en todos los niveles. Se consideraran únicamente los incrementos de las fuerzas horizontales tales no asi las disminuciones.

Combinaciones de Carga: Cargas: Carga Muerta : D Carga Viva : L1 y L2 Sismo en X - X : Sx Sismo en Y - Y : Sy Combinaciones de Carga: Comb 01 = 1.4*D + 1.7*(L1+L2) Comb 02 = 1.25*D +1.25*(L1+L2) + Sx Comb 03 = 1.25*D +1.25*(L1+L2) - Sx Comb 04 = 1.25*D +1.25*(L1+L2) + Sy Comb 05 = 1.25*D +1.25*(L1+L2) - Sy Comb 06 = 0.9*D + Sx Comb 07 = 0.9*D - Sx Comb 08 = 0.9*D + Sy Comb 09 = 0.9*D – Sy ENVOL = Combinación que genera mayores esfuerzos

1.10. Metrado de Cargas El metrado de cargas verticales permanentes se realizo independientemente para cada modulo y elemento estructural de diseño, las cuales se mostraran más adelante en cada análisis correspondiente; por otro lado las cargas vivas consideradas según la Norma de Cargas E-020 son las siguientes:

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

14

MEMORIA DE CÁLCULO

Ocupacion o Uso Cargas Repartidas

Peso Losa Aligerada 20 cm 300 Kg/cm2

Peso de Tabiqueria 150 Kg/cm2

Peso de Acabados 100 Kg/cm2

Peso de Vigas 100 Kg/cm2

Peso de Columnas 60 Kg/cm2

Peso de Techo Liviano 50 Kg/cm2

CARGAS MUERTAS CONSIDERADAS

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

15

MEMORIA DE CÁLCULO

ANALISIS ESTRUCTURAL:

MODULO AULAS

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

16

MEMORIA DE CÁLCULO

2. DISEÑO ESTRUCTURAL DE LOS MÓDULOS PROPUESTOS.

2.1. DISEÑO ESTRUCTURAL MÓDULO AULAS.

2.1.1. Descripción General de la Edificación MÓDULO AULAS: La dirección longitudinal (Eje X), contempla columnas de sección geométrica “Cuadrada” siendo éste una configuración tipo pórtico con la finalidad de reducir el desplazamiento lateral ante un evento sísmico.

La dirección transversal está compuesta por un sistema dual Pórtico-Albañilería, reduciendo los desplazamientos en esta dirección. Las columnas que lo conforman son de sección “Cuadrada” (esquinas) en el centro se están ubicando columnas rectangulares (intermedias) cuya función es la de arriostrar el muro portante por la longitud que tiene mas no soporta las cargas trasmitidas por las viga.

Los techos del primer y segundo nivel son de Losa Aligerada compuestos de viguetas y ladrillos pandereta, siendo una losa totalmente rígida en ambos niveles.

Las vigas están unidas a las columnas, cumpliendo la función de transmisión de las diferentes cargas hacia las columnas. Sus dimensiones o características geométricas son diseñadas para soportar las cargas consideradas según el Reglamento Naciones de Edificaciones.

2.1.2. Diseño Sísmico y Desplazamiento Lateral El análisis dinámico, corresponde al módulo propuesto considerándose dos diafragmas rígidos. La masa de la estructura se determinada considerando el 100 % de las cargas permanentes (peso muerto y cargas externas) más el incremento del 50 % de las sobrecargas por cada nivel según lo estipulado en la Norma Sismorresistente E.030.

En cada nivel, se verifica el desplazamiento lateral de la edificación teniendo en cuenta los límites establecidos según el tipo y material de la edificación del RNE.

Espectro de Diseño. El análisis sísmico se realiza por superposición espectral, generándose el espectro de diseño según el factor de zona, categoría de edificación, tipo de suelo y sistema estructural.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

17

MEMORIA DE CÁLCULO

Para la determinación del espectro de respuesta se usan los siguientes parámetros de diseño, los cuales se encuentran especificados en la norma vigente de Diseño Sismorresistente E.030

Tabla 2: Datos para la Construcción del Espectro de Pseudo Aceleraciones

DESCRIPCION SIMBOLO TIPO VALOR

Zonificacion Sismica Z Zona 2 0.3

Tipo de Suelo (Condiciones Geotecnicas) S Perfil Tipo S2 1.2

Periodo Fundamental Tp 0.6

Categoria de la Edificacion U A 1.5

Sistema Estructural (Eje Longitudinal) R Cº Aº Porticos 8

Sistema Estructural (Eje Transversal) R Sistema Dual 7

Tabla 3: Periodo - Aceleraciones Muquecc – Acoria – Huancavelica

T Sa (Portic)

0.00 1.6554

0.10 1.6554

0.20 1.6554

0.30 1.6554

0.40 1.6554

0.50 1.6554

0.60 1.6554

0.70 1.4189

0.80 1.2416

0.90 1.1036

1.00 0.9933

1.10 0.9030

1.20 0.8277

1.30 0.7640

1.40 0.7095

1.50 0.6622

1.60 0.6208

1.70 0.5843

1.80 0.5518

1.90 0.5228

2.00 0.4966

2.10 0.4730

2.20 0.4515

2.30 0.4319

2.40 0.4139

2.50 0.3973

PORTICOS

EJE X-X (SISTEMA PORTICADO)

5.2 ; 5.2

C

T

TC P g

R

SCUZSa

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

18

MEMORIA DE CÁLCULO

T Sa (Dual)

0.00 1.8919

0.10 1.8919

0.20 1.8919

0.30 1.8919

0.40 1.8919

0.50 1.8919

0.60 1.8919

0.70 1.6217

0.80 1.4189

0.90 1.2613

1.00 1.1352

1.10 1.0320

1.20 0.9460

1.30 0.8732

1.40 0.8108

1.50 0.7568

1.60 0.7095

1.70 0.6677

1.80 0.6306

1.90 0.5975

2.00 0.5676

2.10 0.5406

2.20 0.5160

2.30 0.4935

2.40 0.4730

2.50 0.4541

ALBAÑILERIA CONFINADA

EJE Y-Y (SISTEMA DUAL)

Figura 1: Espectro Zona 2 – Muquecc - Acoria - Huancavelica

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

19

MEMORIA DE CÁLCULO

La norma E.030 establece dos criterios de superposición espectral, el primero en función de la suma de valores absolutos y la media cuadrática y el segundo como combinación cuadrática completa de valores (CQC).

Figura 2: ETABS, Modelamiento en 3D del Modulo de Aulas.

RD 75.0ii 1

H

m

i

i

m

i

i rrr1

2

1

75.025.0

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

20

MEMORIA DE CÁLCULO

Figura 4: Generación del modelo estructural (Planta y Elevación)

Figura 5: Generación del modelo estructural (Planta y Elevación)

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

21

MEMORIA DE CÁLCULO

Figura 6: Definiendo Propiedades de Elementos Estructurales (Columna 0.4x0.45)

Figura 7: Definiendo Propiedades de Elementos Estructurales (Viga VP – 0.3X0.55)

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

22

MEMORIA DE CÁLCULO

Figura 8: Definiendo Propiedades de Elementos Estructurales (Viga VS – 0.25X0.40)

Figura 9: Definiendo Propiedades de Elementos Estructurales (Losa Aligerada de 20 cm.)

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

23

MEMORIA DE CÁLCULO

Figura 10: Definiendo Propiedades de Elementos Estructurales (Muros de Albañilería)

Figura 11: Asignación de Elementos Estructurales (Columna, Viga, Losa Aligerada y Albañilería)

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

24

MEMORIA DE CÁLCULO

Figura 11: Asignación de diafragma rígido en el primer nivel

METRADOS DE CARGAS MUERTAS Y VIVAS (CARGAS – TON/M, TON/m2)

Concreto Armado

Peso específico 2.4 Ton/m3

Albañilería e=0.25 m.

Peso específico 1.8 Ton/m3

Albañilería e=0.15 m.

Peso específico 1.5 Ton/m3

Metrado de Cargas Muertas - 1º Nivel

Eje MaterialPeso

(ton/m3)

Espesor

(m)

Altura

(m)

Peso

(ton/m)

1 Eje 1 Primer Nivel Albañilería 1.50 0.15 2.20 0.50

3 Eje 3 Primer Nivel Albañilería 1.50 0.15 1.50 0.34

Metrado de Cargas Muertas Techo Inclinado - Viga Secundaria

Eje MaterialPeso

(ton/m2)

Ancho

Trib.

Peso

(ton/m)

Secundario Teja 0.05 3.30 0.17

Secundario Tarrajeo 0.10 3.30 0.33

0.50

Metrado de Cargas Muertas Techo Inclinado - Viga Principal

Eje MaterialPeso

(ton/m2)

Ancho

Trib.

Peso

(ton/m)

Principales Teja 0.05 4.10 0.21

Principales 0.10 4.10 0.41

0.62

Metrado de Cargas: Losa Aligerada e=20 cm, con Ladrillo de Arcilla

Eje MaterialPeso

(ton/m3)Largo Ancho Alto

Peso

(ton/m2)

Recubrimiento Concreto 2.4 1.00 1.00 0.05 0.12

Concreto 2.4 1.00 0.25 0.15 0.09

Ladrillo 0.5 1.00 0.75 0.15 0.06

0.27

Descripción

Ladrillo Pandereta

Viguetas

TOTAL

Descripción

TOTAL

TOTAL

Cobertura de Teja Andina

Tarrajeo - Acabados

Descripción

Descripción

Tarrajeo - Acabados

Cobertura de Teja Andina

METRADO DE CARGAS MUERTAS Y VIVAS

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

25

MEMORIA DE CÁLCULO

Figura 12: Asignación de Cargas Muertas en la Estructura Propuesta Eje 1-1 (Ton/ml.)

Figura 13: Asignación de Cargas Muertas en la Estructura Propuesta Eje 3-3 (Ton/ml.)

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

26

MEMORIA DE CÁLCULO

2.1.3. Diagrama de Momentos Flectores (ton-m)

Figura 3: ETABS, Diagrama de Momentos Flectores (Envolvente) eje E Módulo Aulas.

Figura 4: ETABS, Diagrama de Momentos Flectores (Envolvente) eje D Módulo Aulas.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

27

MEMORIA DE CÁLCULO

Figura 5: ETABS, Diagrama de Momentos Flectores (Envolvente) eje A Módulo Aulas.

Figura 6: ETABS, Diagrama de Momentos Flectores (Envolvente) eje B Módulo Aulas.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

28

MEMORIA DE CÁLCULO

Figura 7: ETABS, Diagrama de Momentos Flectores (COM1) eje 2 Módulo Aulas.

Figura 81: ETABS, Diagrama de Momentos Flectores (COM1) eje 2 Módulo Aulas.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

29

MEMORIA DE CÁLCULO

2.1.4. Diagrama de Fuerzas Cortantes

Figura 9: ETABS, Diagrama de Fuerzas Cortantes (COM1) eje A Módulo Aulas.

Figura 10: ETABS, Diagrama de Fuerzas Cortantes (COM1)eje B Módulo Aulas.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

30

MEMORIA DE CÁLCULO

Figura 11: ETABS, Diagrama de Fuerzas Cortantes (COMB1) eje 1 Módulo Aulas.

Figura 12: ETABS, Diagrama de Fuerzas Cortantes (COMB2) eje 2 Módulo Aulas.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

31

MEMORIA DE CÁLCULO

2.1.5. Distribución de refuerzos

Figura 13: ETABS, PORTICO C Y I EJE 1 Y 3

Figura 14: ETABS, PORTICO C-E-F EJE 1-3.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

32

MEMORIA DE CÁLCULO

Figura 15: ETABS, PORTICO C-E-F EJE 1-3.

Figura 16: ETABS, PORTICO 1 EJE C-I.

Figura 17: ETABS, PORTICO 3 EJE C-I

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

33

MEMORIA DE CÁLCULO

Figura 18: ETABS, ACERO EN VA-101

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

34

MEMORIA DE CÁLCULO

2.1.6. Diseño de losa aligerada

DATOS :

F'c= 210.00 Kg/cm2

d= 14.50 Cm.

b= 40.00 Cm.

bw= 10.00 Cm.

Fy= 4,200.00 Kg/cm2

CARGA MUERTA

PESO LOSA 300.00 Kg/m2

PISO + CIELO RASO 100.00 Kg/m2

TABIQUERIA

WD= 400.00 Kg/m2

CARGA VIVA

WL= 150.00 Kg/m2

WU= 1.4WD+1.7WL

WU= 815.00 Kg/m2

CARGA POR VIGUETA 326.00 Kg/ml

COEFICIENTES DEL ACI

TRAMO 1 2 3 4 5

1/24 1/10 1/11 1/11 1/10 1/24

1/14 1/16 1/16 1/16 1/14

LONGITUD 4.10 4.10 4.10 4.10 4.10

MOMENTOS (TON-M)

0.23 0.55 0.50 0.50 0.55 0.23

0.39 0.34 0.34 0.34 0.39

ACERO (Cm2) ACERO MINIMO= Cm2

0.432 1.10 0.99 0.99 1.10 0.432

0.72 0.63 0.63 0.63 0.72

DISTRIBUCION:

1/2" 1/2" 1/2" 1/2" 1/2" 1/2"

1/2" 1/2" 1/2" 1/2" 1/2"

2.2. DISEÑO ESTRUCTURAL MÓDULO ADMINISTRATIVO.

2.2.1. Descripción General de la Edificación

ANALISIS ESTRUCTURAL:

MODULO ADMINISTRATIVO

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

1

MEMORIA DE CÁLCULO

MÓDULO ADMINISTRATIVO: La dirección longitudinal (Eje X), contempla columnas de sección geométrica “Rectangular” de (0.35x0.40) siendo éste una configuración tipo pórtico con la finalidad de reducir el desplazamiento lateral ante un evento sísmico.

Los techos del primer y segundo nivel son de Losa Aligerada compuesto de viguetas y panderetas, siendo una losa totalmente rígida en ambos niveles.

Las vigas están unidas a las columnas, cumpliendo la función de transmisión de las diferentes cargas hacia las columnas. Sus dimensiones o características geométricas son diseñadas para soportar las cargas consideradas según el Reglamento Naciones de Edificaciones.

Figura 19: ETABS, Planta Módulo Administrativo.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

2

MEMORIA DE CÁLCULO

2.2.2. Diseño Sísmico y Desplazamiento Lateral El análisis dinámico, corresponde al módulo propuesto considerándose dos diafragmas rígidos. La masa de la estructura se determinada considerando el 100 % de las cargas permanentes (peso muerto y cargas externas) más el incremento del 50 % de las sobrecargas por cada nivel según lo estipulado en la Norma Sismorresistente E.030.

En cada nivel, se verifica el desplazamiento lateral de la edificación teniendo en cuenta los límites establecidos según el tipo y material de la edificación del RNE.

Espectro de Diseño. El análisis sísmico se realiza por superposición espectral, generándose el espectro de diseño según el factor de zona, categoría de edificación, tipo de suelo y sistema estructural.

Para la determinación del espectro de respuesta se usan los siguientes parámetros de diseño, los cuales se encuentran especificados en la norma vigente de Diseño Sismorresistente E.030

Tabla 4: Datos para la Construcción del Espectro de Seudo Aceleraciones

DESCRIPCION SIMBOLO TIPO VALOR

Zonificacion Sismica Z Zona 2 0.3

Tipo de Suelo (Condiciones Geotecnicas) S Perfil Tipo S2 1.2

Periodo Fundamental Tp 0.6

Categoria de la Edificacion U A 1.5

Sistema Estructural (Eje Longitudinal) R Cº Aº Porticos 8

Sistema Estructural (Eje Transversal) R Sistema Dual 7

Tabla 5: Periodo - Aceleraciones Muquecc – Acoria – Huancavelica

T Sa (Portic)

0.00 1.6554

0.10 1.6554

0.20 1.6554

0.30 1.6554

0.40 1.6554

0.50 1.6554

0.60 1.6554

0.70 1.4189

0.80 1.2416

0.90 1.1036

1.00 0.9933

1.10 0.9030

1.20 0.8277

1.30 0.7640

1.40 0.7095

1.50 0.6622

1.60 0.6208

1.70 0.5843

1.80 0.5518

1.90 0.5228

2.00 0.4966

2.10 0.4730

2.20 0.4515

2.30 0.4319

2.40 0.4139

2.50 0.3973

PORTICOS

EJE X-Y (SISTEMA PORTICADO)

5.2 ; 5.2

C

T

TC P g

R

SCUZSa

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

3

MEMORIA DE CÁLCULO

La norma E.030 establece dos criterios de superposición espectral, el primero en función de la suma de valores absolutos y la media cuadrática y el segundo como combinación cuadrática completa de valores (CQC).

Figura 20: ETABS, Centro de masa módulo Administrativo.

RD 75.0ii 1

H

m

i

i

m

i

i rrr1

2

1

75.025.0

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

4

MEMORIA DE CÁLCULO

2.2.3. Diagrama de Momentos Flectores (ton-m)

Figura 21: ETABS, Diagrama de Momentos Flectores (comb1) eje A Módulo

Administrativo.

Figura 22: ETABS, Diagrama de Momentos Flectores (comb1) eje 3 Módulo Administrativo.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

5

MEMORIA DE CÁLCULO

Figura 23: ETABS, Diagrama de Momentos Flectores (comb1) eje 2 Módulo

Administrativo.

Figura 24: ETABS, Diagrama de Momentos Flectores(com1) eje 3 Módulo Administrativo..

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

6

MEMORIA DE CÁLCULO

2.2.4. Diagrama de Fuerzas Cortantes

Figura 25: ETABS, Diagrama de Fuerzas Cortantes eje A Módulo Administrativo.

Figura 26: ETABS, Diagrama de Fuerzas Cortantes eje A Módulo Administrativo.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

7

MEMORIA DE CÁLCULO

2.2.5. Distribución de refuerzos

Figura 27: ETABS, PORTICO A EJE 1 Y 3

Figura 28: ETABS, PORTICO B EJE 1 Y 3

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

8

MEMORIA DE CÁLCULO

Figura 27: ETABS, PORTICO 1 EJE A Y B

Figura 29: ETABS , PORTICO 3 EJE A Y B

2.3. DISEÑO ESTRUCTURAL MÓDULO CAJA DE ESCALERA.

ANALISIS ESTRUCTURAL:

MODULO CAJA DE ESCALERA

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

1

MEMORIA DE CÁLCULO

2.3.1. Descripción General de la Edificación CAJA DE ESCALERA: La dirección longitudinal (Eje X), contempla columnas de sección geométrica “Rectangular” de (0.25x0.25) siendo éste una configuración tipo pórtico con la finalidad de reducir el desplazamiento lateral ante un evento sísmico.

Los techos del primer y segundo nivel son de Losa Aligerada compuesto de viguetas y panderetas, siendo una losa totalmente rígida en ambos niveles.

Las vigas están unidas a las columnas, cumpliendo la función de transmisión de las diferentes cargas hacia las columnas. Sus dimensiones o características geométricas son diseñadas para soportar las cargas consideradas según el Reglamento Naciones de Edificaciones.

Figura 30: ETABS, Planta caja de escalera.

2.3.2. Diseño Sísmico y Desplazamiento Lateral El análisis dinámico, corresponde al módulo propuesto considerándose dos diafragmas rígidos. La masa de la estructura se determinada considerando el 100 % de las cargas permanentes (peso muerto y cargas externas) más el incremento del 50 % de las sobrecargas por cada nivel según lo estipulado en la Norma Sismorresistente E.030.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

2

MEMORIA DE CÁLCULO

En cada nivel, se verifica el desplazamiento lateral de la edificación teniendo en cuenta los límites establecidos según el tipo y material de la edificación del RNE.

Espectro de Diseño. El análisis sísmico se realiza por superposición espectral, generándose el espectro de diseño según el factor de zona, categoría de edificación, tipo de suelo y sistema estructural.

Para la determinación del espectro de respuesta se usan los siguientes parámetros de diseño, los cuales se encuentran especificados en la norma vigente de Diseño Sismorresistente E.030

Tabla 6: Datos para la Construcción del Espectro de Seudo Aceleraciones

DESCRIPCION SIMBOLO TIPO VALOR

Zonificacion Sismica Z Zona 2 0.3

Tipo de Suelo (Condiciones Geotecnicas) S Perfil Tipo S2 1.2

Periodo Fundamental Tp 0.6

Categoria de la Edificacion U A 1.5

Sistema Estructural (Eje Longitudinal) R Cº Aº Porticos 8

Sistema Estructural (Eje Transversal) R Sistema Dual 7

Tabla 7: Periodo - Aceleraciones Muquecc – Acoria – Huancavelica

T Sa (Portic)

0.00 1.6554

0.10 1.6554

0.20 1.6554

0.30 1.6554

0.40 1.6554

0.50 1.6554

0.60 1.6554

0.70 1.4189

0.80 1.2416

0.90 1.1036

1.00 0.9933

1.10 0.9030

1.20 0.8277

1.30 0.7640

1.40 0.7095

1.50 0.6622

1.60 0.6208

1.70 0.5843

1.80 0.5518

1.90 0.5228

2.00 0.4966

2.10 0.4730

2.20 0.4515

2.30 0.4319

2.40 0.4139

2.50 0.3973

PORTICOS

EJE X-Y (SISTEMA PORTICADO)

5.2 ; 5.2

C

T

TC P g

R

SCUZSa

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

3

MEMORIA DE CÁLCULO

La norma E.030 establece dos criterios de superposición espectral, el primero en función de la suma de valores absolutos y la media cuadrática y el segundo como combinación cuadrática completa de valores (CQC).

Figura 31: ETABS, Centro de masa caja de escalera.

RD 75.0ii 1

H

m

i

i

m

i

i rrr1

2

1

75.025.0

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

4

MEMORIA DE CÁLCULO

Figura 32: ETABS, secciones designadas

2.3.3. Diagrama de Momentos Flectores (ton-m)

Figura 33: ETABS, Diagrama de Momentos Flectores (envolvente) pórtico 01 eje A y B

Figura 34: ETABS, Diagrama de Momentos Flectores (envolvente) pórtico 01 eje A y B

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

5

MEMORIA DE CÁLCULO

Figura 35: ETABS, Diagrama de Momentos Flectores (envolvente) pórtico A eje 1 y 2

Figura 36: ETABS, Diagrama de Momentos Flectores(com1) pórtico B eje 1 y 2

.

Figura 373: ETABS, Diagrama de Momentos Flectores(envolvente) escalera

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

6

MEMORIA DE CÁLCULO

2.3.4. Diagrama de Fuerzas Cortantes

Figura 38: ETABS, Diagrama de Fuerzas Cortantes pórtico 01 eje A y B

Figura 39: ETABS, Diagrama de Fuerzas Cortantes pórtico 02 eje A y B

Figura 25: ETABS, Diagrama de Fuerzas Cortantes pórtico A eje 1 Y 3

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

7

MEMORIA DE CÁLCULO

2.3.5. Distribución de refuerzos

Figura 40: ETABS, PORTICO 1 EJE A Y B

Figura 41: ETABS, PORTICO 2 EJE A Y B

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

8

MEMORIA DE CÁLCULO

Figura 27: ETABS, PORTICO A EJE 1 Y 3

Figura 42: ETABS, PORTICO B EJE 1 Y 3

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

9

MEMORIA DE CÁLCULO

Figura 43: ETABS , PORTICO 3 EJE A Y B

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

10 CÁLCULO ESTRUCTURAL

ANALISIS ESTRUCTURAL:

TANQUE ELEVADO Y CISTERNA

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

11 CÁLCULO ESTRUCTURAL

2.4. DISEÑO ESTRUCTURAL TANQUE ELEVADO Y CISTERNA (sap2000).

2.4.1. Descripción General de la Edificación TANQUE ELEVADO: La dirección longitudinal (Eje X), contempla columnas de sección geométrica “Rectangular” de (0.25x0.25) siendo éste una configuración tipo pórtico con la finalidad de reducir el desplazamiento lateral ante un evento sísmico.

Las vigas están unidas a las columnas, cumpliendo la función de transmisión de las diferentes cargas hacia las columnas. Sus dimensiones o características geométricas son diseñadas para soportar las cargas consideradas según el Reglamento Naciones de Edificaciones.

Figura 44: ETABS, ELEVACION DE TANQUE ELEVADO.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

12 CÁLCULO ESTRUCTURAL

2.4.2. Diseño Sísmico y Desplazamiento Lateral El análisis dinámico, corresponde al módulo propuesto considerándose dos diafragmas rígidos. La masa de la estructura se determinada considerando el 100 % de las cargas permanentes (peso muerto y cargas externas) más el incremento del 50 % de las sobrecargas por cada nivel según lo estipulado en la Norma Sismorresistente E.030.

En cada nivel, se verifica el desplazamiento lateral de la edificación teniendo en cuenta los límites establecidos según el tipo y material de la edificación del RNE.

Espectro de Diseño. El análisis sísmico se realiza por superposición espectral, generándose el espectro de diseño según el factor de zona, categoría de edificación, tipo de suelo y sistema estructural.

Para la determinación del espectro de respuesta se usan los siguientes parámetros de diseño, los cuales se encuentran especificados en la norma vigente de Diseño Sismorresistente E.030

Tabla 8: Datos para la Construcción del Espectro de Seudo Aceleraciones

DESCRIPCION SIMBOLO TIPO VALOR

Zonificacion Sismica Z Zona 2 0.3

Tipo de Suelo (Condiciones Geotecnicas) S Perfil Tipo S2 1.2

Periodo Fundamental Tp 0.6

Categoria de la Edificacion U A 1.5

Sistema Estructural (Eje Longitudinal) R Cº Aº Porticos 8

Sistema Estructural (Eje Transversal) R Sistema Dual 7

Tabla 9: Periodo - Aceleraciones Muquecc – Acoria – Huancavelica 5.2 ; 5.2

C

T

TC P g

R

SCUZSa

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

13 CÁLCULO ESTRUCTURAL

T Sa (Portic)

0.00 1.6554

0.10 1.6554

0.20 1.6554

0.30 1.6554

0.40 1.6554

0.50 1.6554

0.60 1.6554

0.70 1.4189

0.80 1.2416

0.90 1.1036

1.00 0.9933

1.10 0.9030

1.20 0.8277

1.30 0.7640

1.40 0.7095

1.50 0.6622

1.60 0.6208

1.70 0.5843

1.80 0.5518

1.90 0.5228

2.00 0.4966

2.10 0.4730

2.20 0.4515

2.30 0.4319

2.40 0.4139

2.50 0.3973

PORTICOS

EJE X-Y (SISTEMA PORTICADO)

La norma E.030 establece dos criterios de superposición espectral, el primero en función de la suma de valores absolutos y la media cuadrática y el segundo como combinación cuadrática completa de valores (CQC).

2.4.3. Cargas y combinaciones a intervenir

Se considera las cargas muertas, las cargas vivas, y carga por efecto de presión o empuje o por el agua y también se definen las diferentes combinaciones con las amplificaciones determinadas en el capitulo III que va a realizar el programa. También se ingresa el espectro Normalizado siguiente luego se carga para obtener la respuesta al espectro.

COMBINACIONES UTILIZADOS:

COMB1 = 1.4D + 1.7V+1.5PRESION

COMB2 = 1.25D + 1.25V + Sx+1.5PRESION

COMB3 = 1.25D + 1.25V – Sx+1.5PRESION

COMB4 = 1.25D + 1.25V + Sy+1.5PRESION

RD 75.0ii 1

H

m

i

i

m

i

i rrr1

2

1

75.025.0

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

14 CÁLCULO ESTRUCTURAL

COMB5 = 1.25D + 1.25V – Sy+1.5PRESION

COMB6 = 0.9D + Sx

COMB7 = 0.9D – Sx

COMB8 = 0.9D + Sy

COMB9= 0.9D – Sy

ENVOL = Sumatoria de las 09 combinaciones.

Nota: se considera el caso de carga presión con una constante de 1.5 en todas las combinaciones que presentan carga viva según el RNE E.060 articulo 10 enciso 10.2.4

2.4.4. Datos ingresados al programa sap2000

Figura 45: SAP2000, secciones designadas

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

15 CÁLCULO ESTRUCTURAL

Figura 469: SAP2000, presiones designadas en el tanque cisterna

Figura 4720: SAP2000, presiones designadas en el tanque elevado.

2.4.5. Diagrama de Momentos Flectores (ton-m)

Figura 48: SAP2000, Diagrama de Momentos Flectores (envolvente) VIGA (25X25)

Figura 49:SAP2000, diagrama de momentos flectores (envolvent) pórtico 1 y 2 eje A y B

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

16 CÁLCULO ESTRUCTURAL

Figura 50: SAP2000, Diagrama de Momentos Flectores(com1) pórtico B eje 1 y 2

.

Figura 513: SAP2000, desplazamiento en el techo

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

17 CÁLCULO ESTRUCTURAL

2.4.6. Distribución de refuerzos

Figura 52: SAP2000, PORTICO 1 Y 2 EJE A Y B

Figura 53: SAP2000, PORTICO 1 Y 2 EJE A Y B

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

18 CÁLCULO ESTRUCTURAL

Diseño de cimentaciones

MODULO AULAS-ADMINISTRATIVO

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

19 CÁLCULO ESTRUCTURAL

3. Diseño de Cimentaciones

3.1. Introducción Considerando que el diseño de las cimentaciones se realiza para absorber esfuerzo de corte y flexión así como algunas verificaciones como las de punzonamiento, adherencia y anclaje, transmisión de esfuerzos, etc. El diseño considera las expresiones indicadas en la Norma de Concreto Armado y Concreto Armado Comentarios en su sección 11 Flexión, sección 13 Corte y Torsión y sección 16 Zapata; Así mismo, se deberá tomar en cuenta algunas disposiciones para el diseño sísmico como las mencionadas en la Norma ACI 318 – 08 en su sección 21.8 Cimentaciones.

Para el análisis de cimentaciones se emplea el programa SAFE, exportando las cargas directamente desde el programa de análisis y diseño de Edificaciones ETABS, empleando el Método de los Elementos Finitos, con modelamiento en los apoyos tipo resorte según el módulo de balasto del terreno.

Como referencia al módulo de balasto1 se tiene la siguiente Tabla 10: Esfuerzo admisible versus módulo de balasto, el cual presenta valores en función a la capacidad de carga del terreno.

3.2. Pre-dimensionamiento Del análisis de la superestructura se obtienen las reacciones en todos los apoyos, siendo estos valores los datos necesarios para la asignación de las dimensiones de las cimentaciones, teniendo como primera etapa el pre-dimensionamiento correspondiente.

3.3. Verificación de esfuerzos Para el presente estudio, el suelo indica un esfuerzo admisible mínimo de 2.6 kg/cm², que equivale a 5.20 kg/cm³ (Winkler) siendo éste dato importante para el análisis de la cimentación.

La verificación de los resultados obedece a las combinaciones según el reglamento que exige, se crea una combinación de SERVICIO con el fin de comprobar los esfuerzos del terreno y esfuerzos en la estructura según las dimensiones geométricas de las zapatas asignadas.

1 Universidad Politécnica de Cataluña, Barcelona- España. 1993 (Autor Nelson Morrison). Tesis de maestría “Interacción Suelo-

Estructuras: Semi-espacio de Winkler”.

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

20 CÁLCULO ESTRUCTURAL

Tabla 10: Esfuerzo admisible versus módulo de balasto

Esf Adm Winkler Esf Adm Winkler Esf Adm Winkler

(Kg/Cm2) (Kg/Cm3) (Kg/Cm2) (Kg/Cm3) (Kg/Cm2) (Kg/Cm3)

0.25 0.65 1.55 3.19 2.85 5.700.30 0.78 1.60 3.28 2.90 5.800.35 0.91 1.65 3.37 2.95 5.900.40 1.04 1.70 3.46 3.00 6.000.45 1.17 1.75 3.55 3.05 6.100.50 1.30 1.80 3.64 3.10 6.200.55 1.39 1.85 3.73 3.15 6.300.60 1.48 1.90 3.82 3.20 6.400.65 1.57 1.95 3.91 3.25 6.500.70 1.66 2.00 4.00 3.30 6.600.75 1.75 2.05 4.10 3.35 6.700.80 1.84 2.10 4.20 3.40 6.800.85 1.93 2.15 4.30 3.45 6.900.90 2.02 2.20 4.40 3.50 7.000.95 2.11 2.25 4.50 3.55 7.101.00 2.20 2.30 4.60 3.60 7.201.05 2.29 2.35 4.70 3.65 7.301.10 2.38 2.40 4.80 3.70 7.401.15 2.47 2.45 4.90 3.75 7.501.20 2.56 2.50 5.00 3.80 7.601.25 2.65 2.55 5.10 3.85 7.701.30 2.74 2.60 5.20 3.90 7.801.35 2.83 2.65 5.30 3.95 7.901.40 2.92 2.70 5.40 4.00 8.001.45 3.01 2.75 5.501.50 3.10 2.80 5.60

3.4. Verificación Por punzonamiento El procedimiento que lleva el programa SAFE para los cálculos al corte por punzonamiento son bastante rigurosos y usa las fórmulas siguientes.

Ratio: Expresa la relación entre el esfuerzo de corte por punzonamiento (valor máximo) y la capacidad del esfuerzo de corte por punzonamiento con el factor incluido.

L

e

LS

Pq

611

L

e

LS

Pq

612

24321

22dC

qqLS

qqFV XX

U

dbfbc

ØV CC

0

'2153.085.0

dbfb

dØV CC

0

'

0

[email protected]

dbfØV CC 0

'85.0

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

21 CÁLCULO ESTRUCTURAL

cap

máx

C

u

V

V

Øv

vRatioShear

11.12.2.1) .....(ACI

'4

'2

'4

2

cf

cfb

d

cf

mínvo

sc

. 20

. 30

. 40

EsquinerasColumnasPara

LateralesColumnasPara

InterioresColumnasPara

s

La Capacidad del esfuerzo de corte máximo (Vcap) viene a ser las tres últimas ecuaciones presentadas anteriormente; cabe mencionar que, el programa SAFE los representa como esfuerzos, es decir, fuerza sobre área y las ecuaciones en el sistema Inglés son:

Donde β es la relación de las dimensiones de la sección crítica, bo es el perímetro de la sección crítica y αs es un factor con respecto a la ubicación de la sección crítica.

PREDIMENCIONAMIENTO DE ZAPATAS DE MODULO DE AULAS

ZAPATA TIPO P Fx Fy Mx My

kgf kgf kgf kgf-m kgf-m

5

MUERTA 13186.08 -54.47 -666.79 39.947 9.264

CARGA 5695.87 -88.46 -223.15 -29.609 43.653

VIVA 1392.73 -6.31 4.26 -20.497 -2.778

DL 18881.95 -142.93 -889.94 10.338 52.917

LL 1392.73 -6.31 4.26 -20.497 -2.778

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

22 CÁLCULO ESTRUCTURAL

ZAPATA TIPO P Fx Fy Mx My

kgf kgf kgf kgf-m kgf-m

6

MUERTA 15972.16 -0.76 -894.71 122.634 -6.328

CARGA 10493.85 -2.59 -550.49 49.965 -10.878

VIVA 3393.62 0.04 -235.54 77.705 -3.185

DL 26466.01 -3.35 -1445.2 172.599 -17.206

LL 3393.62 0.04 -235.54 77.705 -3.185

ZAPATA TIPO P Fx Fy Mx My

kgf kgf kgf kgf-m kgf-m

2

MUERTA 22475.35 1.45 1113.6 85.392 0.832

CARGA 18316.62 -1.8 739.35 37.444 -8.537

VIVA 8190.04 2.48 392.81 98.786 4.846

DL 40791.97 -0.35 1852.95 122.836 -7.705

LL 8190.04 2.48 392.81 98.786 4.846

ZAPATA TIPO P Fx Fy Mx My

kgf kgf kgf kgf-m kgf-m

1

MUERTA 18039.12 -80.9 1066.57 -44.647 -77.646

CARGA 11233.39 -147.22 545.12 -25.975 -149.581

VIVA 4659.51 -10.19 322.7 -1.413 -15.555

DL 29272.51 -228.12 1611.69 -70.622 -227.227

LL 4659.51 -10.19 322.7 -1.413 -15.555

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

23 CÁLCULO ESTRUCTURAL

ZAPATA TIPO P Fx Fy Mx My

kgf kgf kgf kgf-m kgf-m

4

MUERTA 15794.71 -2.59 251.02 -242.257 -21.452

CARGA 9364.29 -5.83 -2.52 -131.081 -48.184

VIVA 4301.17 -0.69 207.12 -193.641 -5.176

DL 25159.00 -8.42 248.5 -373.338 -69.636

LL 4301.17 -0.69 207.12 -193.641 -5.176

ZAPATA TIPO P Fx Fy Mx My

kgf kgf kgf kgf-m kgf-m

3

MUERTA 13475.97 -30.38 337.66 -203.532 -102.773

CARGA 5579.28 -55.45 130.32 -118.138 -195.175

VIVA 2229.24 -1.78 289.75 -159.323 -0.277

DL 19055.25 -85.83 467.98 -321.67 -297.948

LL 2229.24 -1.78 289.75 -159.323 -0.277

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

24 CÁLCULO ESTRUCTURAL

Figura 54: SAFE, Dimensiones de zapatas, modulo aulas (kg/m2).

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

25 CÁLCULO ESTRUCTURAL

Figura 55: SAFE, Presiones en el suelo de las zapatas, modulo aulas (kg/cm2).

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

26 CÁLCULO ESTRUCTURAL

Figura 29: SAFE, cuantía de acero en zapatas, modulo aulas .

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

27 CÁLCULO ESTRUCTURAL

Figura 56: SAFE, cuantía de aceros en viga de cimentación, modulo aulas .

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

28 CÁLCULO ESTRUCTURAL

Figura 57: SAFE, Dimensiones de zapatas, modulo administración (kg/m2).

Figura 58: SAFE, Presiones en el suelo de las zapatas, modulo administración (kg/cm2).

Figura 59: SAFE, cuantía de acero zapatas, modulo administración .

“SUSTITUCION, MEJORAMIENTO DE LA INFRAESTRUCTURA DE LA INSTITUCION EDUCATIVA Nº 36019 DE MUQUECC BAJO – DISTRITO DE ACORIA”

29 CÁLCULO ESTRUCTURAL