Mesin 4 langkah

  • Upload
    thiandd

  • View
    62

  • Download
    0

Embed Size (px)

DESCRIPTION

sistim kerja motor 4 langkah

Citation preview

Mesin 4 langkah & 2 langkah Document Transcript 1. MESIN 4 LANGKAH Maksud langkah pada suatu mesin 4 tak yaitu untuk melakukan kerja diperlukan 4 langkah, dan hal itu memerlukan proses empat kali naik turun piston, dua kali rotasi (720 derajat) kruk as atau crankshaft dan satu putaran (360 derajat) noken as atau camshaft. Motor Bakar empat langkah (4 Tak) adalah motor yang menyelesaikan satu siklus dalam empat langkah torak atau dua kali putaran poros engkol. Jadi dalam empat langkah itu telah mengadakan proses pengisian, kompresi dan penyalaan, ekspansi serta pembuangan. Dibandingkan motor 2 tak, motor 4 tak ini lebih sulit dalam pemeliharaannya mengingat lebih banyaknya onderdil atau bagian mesinnya. Berikut ini langkah pada mesin 4 tak: 1. Langkah Hisap - Piston bergerak turun dari TMA (Titik Mati Atas) sampai TMB (Titik Mati Bawah). Gerakan piston ini menyebabkan kehampaan di ruang bakar. Piston bergerak 1 gerakan (turun). - Pada saat ini katup masukan juga dibuka, maka campuran bahan bakar dan udara yang berasal dari karburator, masuk ke ruang bakar. Katup keluaran ditutup. - Kruk as berputar 180 derajat. - Camshaft berputar 90 derajat. 2. Gambar proses langkah hisap 2. Langkah Kompresi - Klep masukan dan klep keluaran ditutup. - Piston terdorong ke atas dari TMB menuju TMA karena ada momentum dariflywheel. Dorongan piston ini mendesak campuran udara dan bahan bakar di dalam ruang bakar yang tadi masuk ketika langkah hisap. Karena tekanannya sangat tinggi, campuran udara dan bahan bakar akan sangat mudah terbakar. Piston naik ke atas brarti udah gerakan piston kedua - Kruk as berputar 180 derajat, berarti sampai langkah kompresi, kruk as sudah berputar satu kali putaran atau 360 derajat. - Camshaft berputar 90 derajat, berarti camshaft sudah berputar 180 derajat - Ketika campuran bahan bakar dan udara selesai dikompresi yang mengakibatkan mereka berdua menjadi sangat mudah terbakar, busi menghasilkan percikan api dan terjadi ledakan. Gambar proses langkah kompresi 3. 3. Langkah Usaha - Piston terdorong dari TMA ke TMB, dalam hal ini piston melakukan usaha, maka dinamakan langkah usaha. Piston bergerak ke bawah (gerakan ketiga). Gerakan usaha yang linier ini diteruskan ke kruk as agar menjadi gerakan rotasi atau putaran. Energi putaran ini disalurkan ke flywheel yang berfungsi menyimpan tenaga dan momentum. Flywheel bertugas memberikan energi ketika piston sedang tidak melakukan langkah usaha. Jadi pada langkah hisap, kompresi dan buang, flywheel lah yang membuat mesin tetap berputar. - Kedua katup masih menutup - Camshaft berputar lagi 90 derajat, maka total sudah berputar 270 derajat. - Kruk as berputar lagi 180 derajat, maka total sudah berputar 540 derajat. Gambar proses langkah usaha 4. Langkah Buang - Piston bergerak ke atas (gerakan keempat), karena gaya dari flywheel - Klep keluaran dibuka - Kruk as berputar 180 derajat, maka total putaran hingga langkah buang ini adalah 720 derajat atau dua kali rotasi. - Camshaft berputar 90 derajat, maka total putaran adalah 1 putaran (360 derajat). Gambar proses langkah buang 4. Gambar siklus kerja mesin 4 langkah Gambar diagram P-V mesin 4 langkah 5. Gambar diagram P-V dan T-S siklus Otto mesin 4 langkah MESIN 2 LANGKAH Motor Bakar dua langkah (2 Tak) adalah motor yang menyelesaikan satu siklus dalam dua langkah torak,atau satu putaran poros engkol.Gerakan torak ke TMA adalah untuk mengadakan proses ekspansi. Pengisian muatan segar ke dalam silinder dilaksanakan ketika tekanan muatan itu melebihi tekana gas di dalam silinder. Pada keadaan tersebut, saluran pengisi ada dalam keadaan terbuka. Untuk itu, muatan segar harus memiliki tekanan yang lebih tinggi dari tekanan atmosfir. Dalam motor bensin 2 tak, piston melakukan 2 kali langkah kerja dalam 1 kali langkah usaha antara lain : 1. Langkah kompresi dan langkah hisap Pada langkah ini dalam motor 2 tak terjadi 2 aksi berbeda yang terjadi secara bersamaan yaitu aksi kompresi yang terjadi pada ruang silinder atau pada bagian atas dari piston dan aksi hisap yang terjadi pada ruang engkol atau pada bagian bawah piston. Yang terjadi dalam langkah ini adalah : - Piston bergerak dari TMB (titik mati bawah) ke TMA (titik mati atas). - Ruang dibawah piston menjadi vakum/hampa udara, akibatnya udara dan campuran bahan bakar terisap masuk ke dalam ruang dibawah piston. - Pada saat saluran pembiasan tertutup mulai dilakukan langkah kompresi pada ruang silinder. - Pada saat saluran hisap membuka maka campuran udara dan bensin akan masuk ke dalam ruang engkol. 6. - Pada saat 10-5 derajat sebelum TMA, busi memercikan bunga api, sehingga campuran udara dan bahan bakar yang telah naik temperatur dan tekanannya menjadi terbakar dan meledak. Gambar Langkah kompresi dan langkah hisap 2. Langkah usaha dan buang Dan pada langkah ini terjadi langkah usaha dan buang yang terjadi pada saat yang tidak bersamaan, jadi langkah usaha dahulu barulah setelah saluran pembiasan dan saluran buang terbuka terjadi langkah buang. Yang terjadi dalam langkah ini adalah : - Sebelum piston mencapai TMA (titik mati atas), busi akan memercikkan bunga api listrik sehingga campuran udara dan bahan bakar akar terbakar dan menyebabkan ledakan maka timbullah daya dorong terhadap piston, sehingga piston akan bergerak dari TMA (titik mati atas) ke TMB (titik mati bawah). - Sesaat setelah saluran hisap tertutup dan saluran bilas serta saluran buang membuka maka campuran udara dan bahan bakar yang berada di ruang engkol akan mendorong gas sisa hasil pembakaran melalui saluran bias ke saluran. 7. Gambar Langkah usaha dan buang Mesin 2 tak harus memakai oli pelumas samping selain pelumas mesin hal ini di sebabkan karena putaran yang dihasilkan lebih cepat. Karena hanya membutuhkan 2 langkah kerja mesin 2 lebih cepat/kencang dari 4 tak hal ini menyebabkan mesin 2 tak lebih berisik, dan boros bahan bakar, jadi tidak ada mesin yang sempurna pasti ada kekurangannya. Gambar siklus mesin 2 langkah

PENGERTIAN DAN CARA KERJA MESIN 4 TAK, 2 TAK 4 TAK

Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).Empat proses tersebut terbagi dalam siklus :Langkah hisap : Bertujuan untuk memasukkan kabut udara bahan bakar ke dalam silinder. Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.Prosesnya adalah ;1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).2. Klep inlet terbuka, bahan bakar masuk ke silinder3. Kruk As berputar 180 derajat4. Noken As berputar 90 derajat5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinderbLANGKAH KOMPRESI

Langkah KompresiDimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.Prosesnya sebagai berikut :1. Piston bergerak kembali dari TMB ke TMA2. Klep In menutup, Klep Ex tetap tertutup3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran5. Kruk as mencapai satu rotasi penuh (360 derajat)6. Noken as mencapai 180 derajatLANGKAH TENAGA

Langkah TenagaDimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.Prosesnya sebagai berikut :1. Ledakan tercipta secara sempurna di ruang bakar2. Piston terlempar dari TMA menuju TMB3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as5. Putaran Kruk As mencapai 540 derajat6. Putaran Noken As 270 derajatLANGKAH BUANG

Exhaust strokeLangkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.Prosesnya adalah :1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot4. Kruk as melakukan 2 rotasi penuh (720 derajat)5. Noken as menyelesaikan 1 rotasi penuh (360 derajat)FINISHING PENTING OVERLAPINGOverlap adalah sebuah kondisi dimana kedua klep intake dan out berada dalam possisi sedikit terbuka pada akhir langkah buang hingga awal langkah hisap.Berfungsi untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan dari kinerja mekanis klep dan inersia udara di dalam manifold, maka sangat diperlukan untuk mulai membuka klep masuk sebelum piston mencapai TMA di akhir langkah buang untuk mempersiapkan langkah hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran, klep buang tetap terbuka hingga setelah TMA. Derajat overlaping sangat tergantung dari desain mesin dan seberapa cepat mesin ini ingin bekerja.manfaat dari proses overlaping :1. Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran2. Pendinginan suhu di ruang bakar3. Membantu exhasut scavanging (pelepasan gas buang)4. memaksimalkan proses pemasukkan bahan-bakar2 TAK

Mesin dua tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi dua langkah piston, berbeda dengan putaran empat-tak yang mempunyai empat langkah piston dalam satu siklus pembakaran, meskipun keempat proses (intake, kompresi, tenaga, pembuangan) juga terjadi.Mesin dua tak juga telah digunakan dalam mesin diesel, terutama rancangan piston berlawanan, kendaraan kecepatan rendah seperti mesin kapal besar, dan mesin V8 untuk truk dan kendaraan berat lainnya.

Animasi cara kerja mesin dua tak.

Prinsip kerjaUntuk memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku dalam teknik otomotif: TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft). TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft). Ruang bilas yaitu ruangan dibawah piston dimana terdapat poros engkol (crankshaft), sering disebut dengan bak engkol (crankcase) berfungsi gas hasil campuran udara, bahan bakar dan pelumas bisa tercampur lebih merata. Pembilasan (scavenging) yaitu proses pengeluaran gas hasil pembakaran dan proses pemasukan gas untuk pembakaran dalam ruang bakar.Langkah kesatuPiston bergerak dari TMA ke TMB.1. Pada saat piston bergerak dari TMA ke TMB, maka akan menekan ruang bilas yang berada di bawah piston. Semakin jauh piston meninggalkan TMA menuju TMB, tekanan di ruang bilas semakin meningkat.2. Pada titik tertentu, piston (ring piston) akan melewati lubang pembuangan gas dan lubang pemasukan gas. Posisi masing-masing lubang tergantung dari desain perancang. Umumnya ring piston akan melewati lubang pembuangan terlebih dahulu.3. Pada saat ring piston melewati lubang pembuangan, gas di dalam ruang bakar keluar melalui lubang pembuangan.4. Pada saat ring piston melewati lubang pemasukan, gas yang tertekan dalam ruang bilas akan terpompa masuk dalam ruang bakar sekaligus mendorong gas yang ada dalam ruang bakar keluar melalui lubang pembuangan.5. Piston terus menekan ruang bilas sampai titik TMB, sekaligus memompa gas dalam ruang bilas masuk ke dalam ruang bakarLangkah keduaPiston bergerak dari TMB ke TMA.1. Pada saat piston bergerak TMB ke TMA, maka akan menghisap gas hasil percampuran udara, bahan bakar dan pelumas masuk ke dalam ruang bilas. Percampuran ini dilakukan oleh karburator atau sistem injeksi. (Lihat pula:Sistem bahan bakar)2. Saat melewati lubang pemasukan dan lubang pembuangan, piston akan mengkompresi gas yang terjebak dalam ruang bakar.3. Piston akan terus mengkompresi gas dalam ruang bakar sampai TMA.4. Beberapa saat sebelum piston sampai di TMA, busi menyala untuk membakar gas dalam ruang bakar. Waktu nyala busi sebelum piston sampai TMA dengan tujuan agar puncak tekanan dalam ruang bakar akibat pembakaran terjadi saat piston mulai bergerak dari TMA ke TMB karena proses pembakaran sendiri memerlukan waktu dari mulai nyala busi sampai gas terbakar dengan sempurna.Perbedaan desain dengan mesin empat tak Pada mesin dua tak, dalam satu kali putaran poros engkol (crankshaft) terjadi satu kali proses pembakaran sedangkan pada mesin empat tak, sekali proses pembakaran terjadi dalam dua kali putaran poros engkol. Pada mesin empat tak, memerlukan mekanisme katup (valve mechanism) dalam bekerja dengan fungsi membuka dan menutup lubang pemasukan dan lubang pembuangan, sedangkan pada mesin dua tak, piston dan ring piston berfungsi untuk menbuka dan menutup lubang pemasukan dan lubang pembuangan. Pada awalnya mesin dua tak tidak dilengkapi dengan katup, dalam perkembangannya katup satu arah (one way valve) dipasang antara ruang bilas dengan karburator dengan tujuan: 1. Agar gas yang sudah masuk dalam ruang bilas tidak kembali ke karburator.2. Menjaga tekanan dalam ruang bilas saat piston mengkompresi ruang bilas. Lubang pemasukan dan lubang pembuangan pada mesin dua tak terdapat pada dinding silinder, sedangkan pada mesin empat tak terdapat pada kepala silinder (cylinder head). Ini adalah alasan paling utama mesin 4 tak tidak menggunakan oli samping.Lihat pula: Sistem pelumasanKelebihan dan kekuranganKelebihan mesin dua takDibandingkan mesin empat tak, kelebihan mesin dua tak adalah:1. Mesin dua tak lebih bertenaga dibandingkan mesin empat tak.2. Mesin dua tak lebih kecil dan ringan dibandingkan mesin empat tak. Kombinasi kedua kelebihan di atas menjadikan rasio berat terhadap tenaga (power to weight ratio) mesin dua lebih baik dibandingkan mesin empat tak.3. Mesin dua tak lebih murah biaya produksinya karena konstruksinya yang sederhana.Meskipun memiliki kelebihan tersebut di atas, jarang digunakan dalam aplikasi kendaraan terutama mobil karena memiliki kekurangan.Kekurangan mesin dua takKekurangan mesin dua tak dibandingkan mesin empat tak1. Efisiensi mesin dua tak lebih rendah dibandingkan mesin empat tak.2. Mesin dua tak memerlukan oli yang dicampur dengan bahan bakar (oli samping/two stroke oil) untuk pelumasan silinder mesin. Kedua hal di atas mengakibatkan biaya operasional mesin dua tak lebih tinggi dibandingkan mesin empat tak.3. Mesin dua tak menghasilkan polusi udara lebih banyak, polusi terjadi dari pembakaran oli samping dan gas dari ruang bilas yang terlolos masuk langsung ke lubang pembuangan.4. Pelumasan mesin dua tak tidak sebaik mesin empat tak, mengakibatkan usia suku cadang dalam komponen ruang bakar relatif lebih rendah.

Cara Kerja Mesin Diesel 4 Tak Pembakaran pada motor diesel terjadi karena bahan bakar yang diinjeksikan ke dalam selinder terbakar dengan sendirinya akibat tingginya suhu udara kompresi dalam ruang bakar. Untuk membantu pemahaman tentang prinsip kerja motor diesel penggerak generator listrik (4 tak), perhatikan dan pahami gambar siklus kerja motor diesel 4 tak dan diagram kerja katup motor diesel 4 tak berikut ini :

Siklus Kerja Motor Diesel 4 Tak

Gambar 3 Digram Kerja Katup Motor Diesel 4 TakPrinsip kerja motor diesel dapat dipahami dengan mempelajari urutan langkah kerja dalam menghasilkan satu usaha untuk memutar poros engkol. Urutan langkah kerjanya sebagai berikut :a). Langkah Hisap.Piston (torak) bergerak dari TMA ke TMB, katup masuk membuka dan katup buang tertutup. Udara murni terhisap masuk ke dalam selinder diakibatkan oleh dua hal. Pertama, karena kevakuman ruang selinder akibat semakin memperbesar volume karena gerakan torak dari titik mati atas (TMA) ke titik mati bawah (TMB), dan kedua, karena katup masuk (hisap) yang terbuka.Gambar 3 (diagram kerja katup motor diesel 4 tak), tanda panah putih melambangkan derajad pembukaan katup hisap. Katup hisap ternyata mulai membuka beberapa derajat sebelum torak (piston) mencapai TMA (dalam contoh : 100 sebelum TMA) dan menutup kembali beberapa derajad setelah TMB (dalam contoh : 490 setelah TMB).b). Langkah Kompresi.Poros engkol berputar, kedua katup tertutup rapat, piston (torak) bergerak dari TMB ke TMA. Udara murni yang terhisap ke dalam selinder saat langkah hisap, dikompresi hingga tekanan dan suhunya naik mencapai 35 atm dengan temperatur 500-8000C (pada perbandingan kompresi 20 : 1).Gambar 3 menunjukkan katup hisap baru menutup kembali setelah beberapa derajad setelah TMB (dalam contoh : 490 setelah TMB). Dengan kata lain, langkah kompresi efektif baru terjadi setelah katup masuk (hisap) benar-benar tertutup.c). Langkah Usaha (pembakaran).Poros engkol terus berputar, beberapa derajad sebelum torak mencapai TMA, injector (penyemprot bahan bakar) menginjeksikan bahan bakar ke ruang bakar (di atas torak / piston). Bahan bakar yang diinjeksikan dengan tekanan tinggi (150-300 atm) akan membentuk partikel-partikel kecil (kabut) yang akan menguap dan terbakar dengan cepat karena adanya temperatur ruang bakar yang tinggi (500-8000C). Pembakaran maksimal tidak terjadi langsung saat bahan bakar diinjeksikan, tetapi mengalami keterlambatan pembakaran (ignition delay). Dengan demikian meskipun saat injeksi terjadi sebelum TMA tetapi tekanan maksimum pembakaran tetap terjadi setelah TMA akibat adanya keterlambatan pembakaran (ignition delay). Proses pembakaran ini akan menghasilkan tekanan balik kepada piston (torak) sehingga piston akan terodorong ke bawah beberapa saat setelah mencapai TMA sehingga bergerak dari TMA ke TMB.Gaya akibat tekanan pembakaran yang mendorong piston ke bawah diteruskan oleh batang piston (torak) untuk memutar poros engkol. Poros engkol inilah yang berfungsi sebagai pengubah gerak naik turun torak menjadi gerak putar yang menghasilkan tenaga putar pada motor diesel.d). Langkah PembuanganKatup buang terbuka dan piston bergerak dari TMB ke TMA. Karena adanya gaya kelembamam yang dimiliki oleh roda gaya (fly wheel) yang seporos dengan poros engkol, maka saat langkah usaha berakhir, poros engkol tetap berputar. Hal tersebut menyebabkan torak bergerak dari TMB ke TMA. Karena katup buang terbuka, maka gas sisa pembakaran terdorong keluar oleh gerakan torak dari TMB ke TMA. Setelah langkah ini berakhir, langkah kerja motor diesel 4 langkah (4 tak) akan kembali lagi ke langkah hisap. Proses yang berulang-ulang tersebut diatas disebut dengan siklus diesel. Untuk lebih jelasnya perhatikan Gambar 2 (siklus kerja motor diesel 4 tak) dan Gambar 3 (diagram kerja katup motor diesel 4 tak).Mekanisme Katup pada motor diesel 4 tak

Gambar 4 Skema Mekanisme Katup Motor Diesel 4 Tak

Gambar 5 Skema Mekanisme Katup Motor Diesel 4 TakMekanisme katup pada motor diesel generator 4 tak berfungsi untuk mengatur pemasukan udara murni dan pengeluaran gas sisa pembakaran dengan cara membuka dan menutup kedua katup. Mekanisme katup pada motor diesel 4 tak terdiri dari : poros bubungan (camshaft), pengungkit (tappet), batang pendorong (pushrod), tuas penekan katup (rocker arm) dan katup beserta pegas pengembalinya.Cara kerja mekanisme katup yaitu : saat motor bekerja roda gigi poros engkol berputar menggerakkan roda gigi bubungan sehingga poros bubungan juga ikut berputar. Karena permukaan poros bubungan berbentuk eksentris (lonjong) maka pengungkit (tappet) yang berhubungan dengannya cenderung bergerak naik turun sesuai dengan bentuk permukaan poros bubungan yang menggerakkannya. Gerak naik turun tappet tersebut diteruskan oleh batang pendorong (push-rod) ke tuas penekan katup (rocker-arm) sehingga menekan (katup terbuka) dan membebaskan katup (katup tertutup) secara bergantian mengikuti putaran poros bubungan yang lonjong (eksentrik).